Jump to content

October 1967 lunar eclipse

From Wikipedia, the free encyclopedia
Total Lunar Eclipse
October 18, 1967
(No photo)

The moon passes west to east (right to left) across the Earth's umbral shadow, shown in hourly intervals.
Series 126 (43 of 72)
Gamma -0.3653
Magnitude 1.1426
Duration (hr:mn:sc)
Totality 59:45
Partial 3:38:52
Penumbral 6:07:07
Contacts UTC
P1 7:12:15
U1 8:26:21
U2 9:45:54
Greatest 10:15:48
U3 10:45:42
U4 12:05:15
P4 13:19:21

A total lunar eclipse took place on Wednesday, October 18, 1967, the second of two total lunar eclipses in 1967, the first being on April 24, 1967.[1]

Visibility

[edit]

It was completely visible over Asia, Australia, Pacific Ocean, North America, South America, and Arctic, seen rising over Asia and Australia and setting over North America and South America.

[edit]

Lunar year series

[edit]
Lunar eclipse series sets from 1966–1969
Descending node   Ascending node
Saros Date
Viewing
Type
Chart
Gamma Saros Date
Viewing
Type
Chart
Gamma
111 1966 May 4
Penumbral
1.05536 116 1966 Oct 29
Penumbral
−1.05999
121 1967 Apr 24
Total
0.29722 126 1967 Oct 18
Total
−0.36529
131 1968 Apr 13
Total
−0.41732 136 1968 Oct 6
Total
0.36054
141 1969 Apr 2
Penumbral
−1.17648 146 1969 Sep 25
Penumbral
1.06558
Last set 1965 Jun 14 Last set 1965 Dec 8
Next set 1970 Feb 21 Next set 1969 Aug 27

Saros series

[edit]

It is part of saros series 126.

Lunar saros series 126, repeating every 18 years and 11 days, has a total of 70 lunar eclipse events including 14 total lunar eclipses. Solar Saros 133 interleaves with this lunar saros with an event occurring every 9 years 5 days alternating between each saros series.

First penumbral lunar eclipse: 18 July 1228

First partial lunar eclipse: 24 March 1625

First total lunar eclipse: 19 June 1769

First central lunar eclipse: 11 July 1805

Greatest eclipse of the lunar saros 126: 13 August 1859, lasting 106 minutes.

Last central lunar eclipse: 26 September 1931

Last total lunar eclipse: 9 November 2003

Last partial lunar eclipse: 5 June 2346

Last penumbral lunar eclipse: 19 August 2472

1901-2100

15 September 1913

26 September 1931

7 October 1949

18 October 1967

28 October 1985

9 November 2003

19 November 2021

30 November 2039

11 December 2057

22 December 2075

1 January 2094


Metonic series

[edit]

This eclipse is the third of four Metonic cycle lunar eclipses on the same date, April 23–24, each separated by 19 years:

The Metonic cycle repeats nearly exactly every 19 years and represents a Saros cycle plus one lunar year. Because it occurs on the same calendar date, the Earth's shadow will in nearly the same location relative to the background stars.

Metonic lunar eclipse sets 1948–2005
Descending node   Ascending node
Saros Date Type Saros Date Type
111 1948 Apr 23 Partial 116 1948 Oct 18 Penumbral
121 1967 Apr 24 Total 126 1967 Oct 18 Total
131 1986 Apr 24 Total 136 1986 Oct 17 Total
141 2005 Apr 24 Penumbral 146 2005 Oct 17 Partial

Tritos series

[edit]

The tritos series repeats 31 days short of 11 years at alternating nodes. Sequential events have incremental Saros cycle indices.

This series produces 23 total eclipses between June 22, 1880 and August 9, 2120.

Tritos eclipse series (subset 1901–2100)
Ascending node   Descending node
Saros Date
Viewing
Type
chart
Saros Date
Viewing
Type
chart
120 1902 Apr 22
Total
121 1913 Mar 22
Total
122 1924 Feb 20
Total
123 1935 Jan 19
Total
124 1945 Dec 19
Total
125 1956 Nov 18
Total
126 1967 Oct 18
Total
127 1978 Sep 16
Total
128 1989 Aug 17
Total
129 2000 Jul 16
Total
130 2011 Jun 15
Total
131 2022 May 16
Total
132 2033 Apr 14
Total
133 2044 Mar 13
Total
134 2055 Feb 11
Total
135 2066 Jan 11
Total
136 2076 Dec 10
Total
137 2087 Nov 10
Total
138 2098 Oct 10
Total

Half-Saros cycle

[edit]

A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[2] This lunar eclipse is related to two total solar eclipses of Solar Saros 133.

October 12, 1958 October 23, 1976

Tzolkinex

[edit]

See also

[edit]

Notes

[edit]
  1. ^ Hermit Eclipse: Saros cycle 126
  2. ^ Mathematical Astronomy Morsels, Jean Meeus, p.110, Chapter 18, The half-saros
[edit]