Jump to content

April 1967 lunar eclipse

From Wikipedia, the free encyclopedia
April 1967 lunar eclipse
Total eclipse
A view of the eclipse as seen from the Moon, as observed by Surveyor 3.
DateApril 24, 1967
Gamma0.2972
Magnitude1.3356
Saros cycle121 (53 of 84)
Totality77 minutes, 56 seconds
Partiality202 minutes, 46 seconds
Penumbral313 minutes, 18 seconds
Contacts (UTC)
P19:29:48
U110:25:03
U211:27:28
Greatest12:06:26
U312:45:24
U413:47:49
P414:43:05

A total lunar eclipse occurred at the Moon’s descending node of orbit on Monday, April 24, 1967,[1] with an umbral magnitude of 1.3356. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A total lunar eclipse occurs when the Moon's near side entirely passes into the Earth's umbral shadow. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. A total lunar eclipse can last up to nearly two hours, while a total solar eclipse lasts only a few minutes at any given place, because the Moon's shadow is smaller. Occurring only about 16 hours after perigee (on April 23, 1967, at 20:00 UTC), the Moon's apparent diameter was larger.[2]

This lunar eclipse was the first of a tetrad, with four total lunar eclipses in series, the others being on October 18, 1967; April 13, 1968; and October 6, 1968.

The Surveyor 3 probe landed on the moon during this eclipse.[3]

Visibility

[edit]

The eclipse was completely visible over northeast Asia, Australia, and much of the Pacific Ocean, seen rising over most of Asia and setting over North America and western and central South America.[4]

Eclipse details

[edit]

Shown below is a table displaying details about this particular solar eclipse. It describes various parameters pertaining to this eclipse.[5]

April 24, 1967 Lunar Eclipse Parameters
Parameter Value
Penumbral Magnitude 2.28924
Umbral Magnitude 1.33559
Gamma 0.29722
Sun Right Ascension 02h05m32.6s
Sun Declination +12°43'38.7"
Sun Semi-Diameter 15'54.1"
Sun Equatorial Horizontal Parallax 08.7"
Moon Right Ascension 14h06m04.6s
Moon Declination -12°27'13.7"
Moon Semi-Diameter 16'40.5"
Moon Equatorial Horizontal Parallax 1°01'11.8"
ΔT 37.7 s

Eclipse season

[edit]

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of April–May 1967
April 24
Descending node (full moon)
May 9
Ascending node (new moon)
Total lunar eclipse
Lunar Saros 121
Partial solar eclipse
Solar Saros 147
[edit]

Eclipses in 1967

[edit]

Metonic

[edit]

Tzolkinex

[edit]

Half-Saros

[edit]

Tritos

[edit]

Lunar Saros 121

[edit]

Inex

[edit]

Triad

[edit]

Lunar eclipses of 1966–1969

[edit]

This eclipse is a member of a semester series. An eclipse in a semester series of lunar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[6]

The penumbral lunar eclipse on August 27, 1969 occurs in the next lunar year eclipse set.

Lunar eclipse series sets from 1966 to 1969
Descending node   Ascending node
Saros Date
Viewing
Type
Chart
Gamma Saros Date
Viewing
Type
Chart
Gamma
111 1966 May 04
Penumbral
1.0554 116 1966 Oct 29
Penumbral
−1.0600
121 1967 Apr 24
Total
0.2972 126 1967 Oct 18
Total
−0.3653
131 1968 Apr 13
Total
−0.4173 136 1968 Oct 06
Total
0.3605
141 1969 Apr 02
Penumbral
−1.1765 146 1969 Sep 25
Penumbral
1.0656

Metonic series

[edit]

This eclipse is the third of four Metonic cycle lunar eclipses on the same date, April 23–24, each separated by 19 years:

The Metonic cycle repeats nearly exactly every 19 years and represents a Saros cycle plus one lunar year. Because it occurs on the same calendar date, the Earth's shadow will in nearly the same location relative to the background stars.

Metonic lunar eclipse sets 1948–2005
Descending node   Ascending node
Saros Date Type Saros Date Type
111 1948 Apr 23 Partial 116 1948 Oct 18 Penumbral
121 1967 Apr 24 Total 126 1967 Oct 18 Total
131 1986 Apr 24 Total 136 1986 Oct 17 Total
141 2005 Apr 24 Penumbral 146 2005 Oct 17 Partial

Saros 121

[edit]

This eclipse is a part of Saros series 121, repeating every 18 years, 11 days, and containing 82 events. The series started with a penumbral lunar eclipse on October 6, 1047. It contains partial eclipses from May 10, 1408 through July 3, 1498; total eclipses from July 13, 1516 through May 26, 2021; and a second set of partial eclipses from June 6, 2039 through August 11, 2147. The series ends at member 82 as a penumbral eclipse on March 18, 2508.

The longest duration of totality was produced by member 43 at 100 minutes, 29 seconds on October 18, 1660. All eclipses in this series occur at the Moon’s descending node of orbit.[7]

Greatest First
The greatest eclipse of the series occurred on 1660 Oct 18, lasting 100 minutes, 29 seconds.[8] Penumbral Partial Total Central
1047 Oct 06
1408 May 10
1516 Jul 13
1570 Aug 15
Last
Central Total Partial Penumbral
1949 Apr 13
2021 May 26
2147 Aug 11
2508 Mar 18

Eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

Tritos series

[edit]

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
1803 Aug 03
(Saros 106)
1814 Jul 02
(Saros 107)
1825 Jun 01
(Saros 108)
1836 May 01
(Saros 109)
1847 Mar 31
(Saros 110)
1858 Feb 27
(Saros 111)
1869 Jan 28
(Saros 112)
1879 Dec 28
(Saros 113)
1890 Nov 26
(Saros 114)
1901 Oct 27
(Saros 115)
1912 Sep 26
(Saros 116)
1923 Aug 26
(Saros 117)
1934 Jul 26
(Saros 118)
1945 Jun 25
(Saros 119)
1956 May 24
(Saros 120)
1967 Apr 24
(Saros 121)
1978 Mar 24
(Saros 122)
1989 Feb 20
(Saros 123)
2000 Jan 21
(Saros 124)
2010 Dec 21
(Saros 125)
2021 Nov 19
(Saros 126)
2032 Oct 18
(Saros 127)
2043 Sep 19
(Saros 128)
2054 Aug 18
(Saros 129)
2065 Jul 17
(Saros 130)
2076 Jun 17
(Saros 131)
2087 May 17
(Saros 132)
2098 Apr 15
(Saros 133)
2109 Mar 17
(Saros 134)
2120 Feb 14
(Saros 135)
2131 Jan 13
(Saros 136)
2141 Dec 13
(Saros 137)
2152 Nov 12
(Saros 138)
2163 Oct 12
(Saros 139)
2174 Sep 11
(Saros 140)
2185 Aug 11
(Saros 141)
2196 Jul 10
(Saros 142)

Half-Saros cycle

[edit]

A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[9] This lunar eclipse is related to two annular solar eclipses of Solar Saros 128.

April 19, 1958 April 29, 1976

See also

[edit]

Notes

[edit]
  1. ^ "April 24, 1967 Total Lunar Eclipse (Blood Moon)". timeanddate. Retrieved 2 January 2025.
  2. ^ "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 2 January 2025.
  3. ^ A Solar Eclipse from the Moon APOD 2014 April 7
  4. ^ "Total Lunar Eclipse of 1967 Apr 24" (PDF). NASA. Retrieved 2 January 2025.
  5. ^ "Total Lunar Eclipse of 1967 Apr 24". EclipseWise.com. Retrieved 2 January 2025.
  6. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  7. ^ "NASA - Catalog of Lunar Eclipses of Saros 121". eclipse.gsfc.nasa.gov.
  8. ^ Listing of Eclipses of series 121
  9. ^ Mathematical Astronomy Morsels, Jean Meeus, p.110, Chapter 18, The half-saros
[edit]