Jump to content

June 2058 lunar eclipse

From Wikipedia, the free encyclopedia
June 2058 lunar eclipse
Total eclipse
The Moon's hourly motion shown right to left
DateJune 6, 2058
Gamma−0.1181
Magnitude1.6628
Saros cycle131 (36 of 72)
Totality97 minutes, 19 seconds
Partiality213 minutes, 22 seconds
Penumbral323 minutes, 37 seconds
Contacts (UTC)
P116:32:07
U117:27:17
U218:25:19
Greatest19:15:48
U320:02:38
U421:00:40
P421:55:44
← December 2057
November 2058 →

A total lunar eclipse will occur at the Moon’s descending node of orbit on Thursday, June 6, 2058,[1] with an umbral magnitude of 1.6628. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A total lunar eclipse occurs when the Moon's near side entirely passes into the Earth's umbral shadow. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. A total lunar eclipse can last up to nearly two hours, while a total solar eclipse lasts only a few minutes at any given place, because the Moon's shadow is smaller. Occurring about 1.6 days before perigee (on June 8, 2058, at 9:30 UTC), the Moon's apparent diameter will be larger.[2]

Visibility

[edit]

The eclipse will be completely visible over east Africa, Antarctica, west, central, and south Asia, and western Australia, seen rising over west Africa, Europe, and eastern South America and setting over east Asia and eastern Australia.[3]

Eclipse details

[edit]

Shown below is a table displaying details about this particular solar eclipse. It describes various parameters pertaining to this eclipse.[4]

June 6, 2058 Lunar Eclipse Parameters
Parameter Value
Penumbral Magnitude 2.62261
Umbral Magnitude 1.66277
Gamma −0.11810
Sun Right Ascension 05h00m41.7s
Sun Declination +22°43'57.0"
Sun Semi-Diameter 15'45.8"
Sun Equatorial Horizontal Parallax 08.7"
Moon Right Ascension 17h00m35.5s
Moon Declination -22°50'55.4"
Moon Semi-Diameter 16'25.3"
Moon Equatorial Horizontal Parallax 1°00'16.2"
ΔT 90.8 s

Eclipse season

[edit]

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.

Eclipse season of May–June 2058
May 22
Ascending node (new moon)
June 6
Descending node (full moon)
June 21
Ascending node (new moon)
Partial solar eclipse
Solar Saros 119
Total lunar eclipse
Lunar Saros 131
Partial solar eclipse
Solar Saros 157
[edit]

Eclipses in 2058

[edit]

Metonic

[edit]

Tzolkinex

[edit]

Half-Saros

[edit]

Tritos

[edit]

Lunar Saros 131

[edit]

Inex

[edit]

Triad

[edit]

Lunar eclipses of 2056–2060

[edit]
Lunar eclipse series sets from 2056-2060
Descending node   Ascending node
111 2056 Jun 27
penumbral
116 2056 Dec 22
penumbral
121 2057 Jun 17
partial
126 2057 Dec 11
partial
131 2058 Jun 06
total
136 2058 Nov 30
total
141 2059 May 27
partial
146 2059 Nov 19
partial
156 2060 Nov 08
penumbral

Saros 131

[edit]

Lunar Saros series 131, has 72 lunar eclipses. Solar Saros 138 interleaves with this lunar saros with an event occurring every 9 years 5 days alternating between each saros series.

This eclipse series began in AD 1427 with a partial eclipse at the southern edge of the Earth's shadow when the Moon was close to its descending node. Each successive Saros cycle, the Moon's orbital path is shifted northward with respect to the Earth's shadow, with the first total eclipse occurring in 1950. For the following 252 years, total eclipses occur, with the central eclipse being predicted to occur in 2078. The first partial eclipse after this is predicted to occur in the year 2220, and the final partial eclipse of the series will occur in 2707. The total lifetime of the lunar Saros series 131 is 1280 years. Solar Saros 138 interleaves with this lunar saros with an event occurring every 9 years 5 days alternating between each saros series.

Because of the ⅓ fraction of days in a Saros cycle, the visibility of each eclipse will differ for an observer at a given fixed locale. For the lunar Saros series 131, the first total eclipse of 1950 had its best visibility for viewers in Eastern Europe and the Middle East because mid-eclipse was at 20:44 UT. The following eclipse in the series occurred approximately 8 hours later in the day with mid-eclipse at 4:47 UT, and was best seen from North America and South America. The third total eclipse occurred approximately 8 hours later in the day than the second eclipse with mid-eclipse at 12:43 UT, and had its best visibility for viewers in the Western Pacific, East Asia, Australia and New Zealand. This cycle of visibility repeats from the initiation to termination of the series, with minor variations. Solar Saros 138 interleaves with this lunar saros with an event occurring every 9 years 5 days alternating between each saros series.

Lunar Saros series 131, repeating every 18 years and 11 days, has a total of 72 lunar eclipse events including 57 umbral lunar eclipses (42 partial lunar eclipses and 15 total lunar eclipses). Solar Saros 138 interleaves with this lunar saros with an event occurring every 9 years 5 days alternating between each saros series.

Greatest First

The greatest eclipse of the series will occur on 2094 Jun 28, lasting 102 minutes.[5]
Penumbral Partial Total Central
1427 May 10 1553 July 25 1950 Apr 2 2022 May 16
Last
Central Total Partial Penumbral
2148 Jul 31 2202 Sep 3 2563 Apr 9 2707 Jul 7
1901–2100
1914 Mar 12 1932 Mar 22 1950 Apr 2
1968 Apr 13 1986 Apr 24 2004 May 4
2022 May 16 2040 May 26 2058 Jun 6
2076 Jun 17 2094 Jun 28

Tritos series

[edit]

The tritos series repeats 31 days short of 11 years at alternating nodes. Sequential events have incremental Saros cycle indices.

This series produces 20 total eclipses between April 24, 1967 and August 11, 2185, only being partial on November 19, 2021.

Tritos eclipse series (subset 1901–2087)
Descending node   Ascending node
Saros Date
Viewing
Type
chart
Saros Date
Viewing
Type
chart
115 1901 Oct 27
Partial
116 1912 Sep 26
Partial
117 1923 Aug 26
Partial
118 1934 Jul 26
Partial
119 1945 Jun 25
Partial
120 1956 May 24
Partial
121 1967 Apr 24
Total
122 1978 Mar 24
Total
123 1989 Feb 20
Total
124 2000 Jan 21
Total
125 2010 Dec 21
Total
126 2021 Nov 19
Partial
127 2032 Oct 18
Total
128 2043 Sep 19
Total
129 2054 Aug 18
Total
130 2065 Jul 17
Total
131 2076 Jun 17
Total
132 2087 May 17
Total
133 2098 Apr 15
Total

Inex series

[edit]

The inex series repeats eclipses 20 days short of 29 years, repeating on average every 10571.95 days. This period is equal to 358 lunations (synodic months) and 388.5 draconic months. Saros series increment by one on successive Inex events and repeat at alternate ascending and descending lunar nodes.

This period is 383.6734 anomalistic months (the period of the Moon's elliptical orbital precession). Despite the average 0.05 time-of-day shift between subsequent events, the variation of the Moon in its elliptical orbit at each event causes the actual eclipse time to vary significantly. It is a part of Lunar Inex series 40.

All events in this series shown (from 1000 to 2500) are central total lunar eclipses.

Inex series from 1000–2500 AD
Descending node Ascending node Descending node Ascending node
Saros Date Saros Date Saros Date Saros Date
95 1016 May 24 96 1045 May 3 97 1074 Apr 14 98 1103 Mar 25
99 1132 Mar 3 100 1161 Feb 12 101 1190 Jan 23 102 1219 Jan 2
103 1247 Dec 13 104 1276 Nov 23 105 1305 Nov 2 106 1334 Oct 13
107 1363 Sep 23 108 1392 Sep 2 109 1421 Aug 13 110 1450 Jul 24
111 1479 Jul 4 112 1508 Jun 13
113 1537 May 24 114 1566 May 4
115 1595 Apr 24 116 1624 Apr 3 117 1653 Mar 14 118 1682 Feb 21
119 1711 Feb 3 120 1740 Jan 13 121 1768 Dec 23 122 1797 Dec 4
123 1826 Nov 14 124 1855 Oct 25 125 1884 Oct 4 126 1913 Sep 15
127 1942 Aug 26
128 1971 Aug 6
129 2000 Jul 16
130 2029 Jun 26
131 2058 Jun 6
132 2087 May 17
133 2116 Apr 27 134 2145 Apr 7
135 2174 Mar 18 136 2203 Feb 26 137 2232 Feb 7 138 2261 Jan 17
139 2289 Dec 27 140 2318 Dec 9 141 2347 Nov 19 142 2376 Oct 28
143 2405 Oct 8 144 2434 Sep 18 145 2463 Aug 29 146 2492 Aug 8

Half-Saros cycle

[edit]

A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[6] This lunar eclipse is related to two annular solar eclipses of Solar Saros 138.

May 31, 2049 June 11, 2067

See also

[edit]

Notes

[edit]
  1. ^ "June 6–7, 2058 Total Lunar Eclipse (Blood Moon)". timeanddate. Retrieved 13 December 2024.
  2. ^ "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 13 December 2024.
  3. ^ "Total Lunar Eclipse of 2058 Jun 06" (PDF). NASA. Retrieved 13 December 2024.
  4. ^ "Total Lunar Eclipse of 2058 Jun 06". EclipseWise.com. Retrieved 13 December 2024.
  5. ^ Listing of Eclipses of cycle 131
  6. ^ Mathematical Astronomy Morsels, Jean Meeus, p.110, Chapter 18, The half-saros
[edit]