July 1982 lunar eclipse
Total eclipse | |||||||||||||||||
Date | July 6, 1982 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gamma | −0.0579 | ||||||||||||||||
Magnitude | 1.7180 | ||||||||||||||||
Saros cycle | 129 (36 of 71) | ||||||||||||||||
Totality | 105 minutes, 44 seconds | ||||||||||||||||
Partiality | 235 minutes, 35 seconds | ||||||||||||||||
Penumbral | 373 minutes, 51 seconds | ||||||||||||||||
| |||||||||||||||||
A total lunar eclipse occurred at the Moon’s descending node of orbit on Tuesday, July 6, 1982,[1] with an umbral magnitude of 1.7180. It was a central lunar eclipse, in which part of the Moon passed through the center of the Earth's shadow. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A total lunar eclipse occurs when the Moon's near side entirely passes into the Earth's umbral shadow. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. A total lunar eclipse can last up to nearly two hours, while a total solar eclipse lasts only a few minutes at any given place, because the Moon's shadow is smaller. Occurring about 1.2 days after apogee (on July 5, 1982, at 2:30 UTC), the Moon's apparent diameter was smaller.[2]
Visibility
[edit]The eclipse was completely visible over western and central North America, western South America, and Antarctica, seen rising over northwestern North America, Australia, and the western Pacific Ocean and setting over northeastern North America, eastern South America, and west and southern Africa.[3]
Eclipse details
[edit]Shown below is a table displaying details about this particular solar eclipse. It describes various parameters pertaining to this eclipse.[4]
Parameter | Value |
---|---|
Penumbral Magnitude | 2.78600 |
Umbral Magnitude | 1.71795 |
Gamma | −0.05792 |
Sun Right Ascension | 07h00m26.1s |
Sun Declination | +22°42'50.6" |
Sun Semi-Diameter | 15'43.9" |
Sun Equatorial Horizontal Parallax | 08.6" |
Moon Right Ascension | 19h00m26.1s |
Moon Declination | -22°45'58.4" |
Moon Semi-Diameter | 14'43.7" |
Moon Equatorial Horizontal Parallax | 0°54'03.4" |
ΔT | 52.6 s |
Eclipse season
[edit]This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.
June 21 Ascending node (new moon) |
July 6 Descending node (full moon) |
July 20 Ascending node (new moon) |
---|---|---|
Partial solar eclipse Solar Saros 117 |
Total lunar eclipse Lunar Saros 129 |
Partial solar eclipse Solar Saros 155 |
Related eclipses
[edit]Eclipses in 1982
[edit]- A total lunar eclipse on January 9.
- A partial solar eclipse on January 25.
- A partial solar eclipse on June 21.
- A total lunar eclipse on July 6.
- A partial solar eclipse on July 20.
- A partial solar eclipse on December 15.
- A total lunar eclipse on December 30.
Metonic
[edit]- Preceded by: Lunar eclipse of September 16, 1978
- Followed by: Lunar eclipse of April 24, 1986
Tzolkinex
[edit]- Preceded by: Lunar eclipse of May 25, 1975
- Followed by: Lunar eclipse of August 17, 1989
Half-Saros
[edit]- Preceded by: Solar eclipse of June 30, 1973
- Followed by: Solar eclipse of July 11, 1991
Tritos
[edit]- Preceded by: Lunar eclipse of August 6, 1971
- Followed by: Lunar eclipse of June 4, 1993
Lunar Saros 129
[edit]- Preceded by: Lunar eclipse of June 25, 1964
- Followed by: Lunar eclipse of July 16, 2000
Inex
[edit]- Preceded by: Lunar eclipse of July 26, 1953
- Followed by: Lunar eclipse of June 15, 2011
Triad
[edit]- Preceded by: Lunar eclipse of September 4, 1895
- Followed by: Lunar eclipse of May 6, 2069
Lunar eclipses of 1980–1984
[edit]This eclipse is a member of a semester series. An eclipse in a semester series of lunar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[5]
The penumbral lunar eclipses on March 1, 1980 and August 26, 1980 occur in the previous lunar year eclipse set, and the penumbral lunar eclipses on May 15, 1984 and November 8, 1984 occur in the next lunar year eclipse set.
Lunar eclipse series sets from 1980 to 1984 | ||||||||
---|---|---|---|---|---|---|---|---|
Descending node | Ascending node | |||||||
Saros | Date Viewing |
Type Chart |
Gamma | Saros | Date Viewing |
Type Chart |
Gamma | |
109 | 1980 Jul 27 |
Penumbral |
1.4139 | 114 | 1981 Jan 20 |
Penumbral |
−1.0142 | |
119 | 1981 Jul 17 |
Partial |
0.7045 | 124 | 1982 Jan 09 |
Total |
−0.2916 | |
129 | 1982 Jul 06 |
Total |
−0.0579 | 134 | 1982 Dec 30 |
Total |
0.3758 | |
139 | 1983 Jun 25 |
Partial |
−0.8152 | 144 | 1983 Dec 20 |
Penumbral |
1.0747 | |
149 | 1984 Jun 13 |
Penumbral |
−1.5240 |
Saros 129
[edit]This eclipse is a part of Saros series 129, repeating every 18 years, 11 days, and containing 71 events. The series started with a penumbral lunar eclipse on June 10, 1351. It contains partial eclipses from September 26, 1531 through May 11, 1892; total eclipses from May 24, 1910 through September 8, 2090; and a second set of partial eclipses from September 20, 2108 through April 26, 2469. The series ends at member 71 as a penumbral eclipse on July 24, 2613.
The longest duration of totality was produced by member 37 at 106 minutes, 24 seconds on July 16, 2000. All eclipses in this series occur at the Moon’s descending node of orbit.[6]
Greatest | First | |||
---|---|---|---|---|
The greatest eclipse of the series occurred on 2000 Jul 16, lasting 106 minutes, 24 seconds.[7] |
Penumbral | Partial | Total | Central |
1351 Jun 10 |
1531 Sep 26 |
1910 May 24 |
1946 Jun 14 | |
Last | ||||
Central | Total | Partial | Penumbral | |
2036 Aug 07 |
2090 Sep 08 |
2469 Apr 26 |
2613 Jul 24 |
Eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
Series members 26–48 occur between 1801 and 2200: | |||||
---|---|---|---|---|---|
26 | 27 | 28 | |||
1802 Mar 19 | 1820 Mar 29 | 1838 Apr 10 | |||
29 | 30 | 31 | |||
1856 Apr 20 | 1874 May 01 | 1892 May 11 | |||
32 | 33 | 34 | |||
1910 May 24 | 1928 Jun 03 | 1946 Jun 14 | |||
35 | 36 | 37 | |||
1964 Jun 25 | 1982 Jul 06 | 2000 Jul 16 | |||
38 | 39 | 40 | |||
2018 Jul 27 | 2036 Aug 07 | 2054 Aug 18 | |||
41 | 42 | 43 | |||
2072 Aug 28 | 2090 Sep 08 | 2108 Sep 20 | |||
44 | 45 | 46 | |||
2126 Oct 01 | 2144 Oct 11 | 2162 Oct 23 | |||
47 | 48 | ||||
2180 Nov 02 | 2198 Nov 13 | ||||
Inex series
[edit]The inex series repeats eclipses 20 days short of 29 years, repeating on average every 10571.95 days. This period is equal to 358 lunations (synodic months) and 388.5 draconic months. Saros series increment by one on successive Inex events and repeat at alternate ascending and descending lunar nodes.
This period is 383.6734 anomalistic months (the period of the Moon's elliptical orbital precession). Despite the average 0.05 time-of-day shift between subsequent events, the variation of the Moon in its elliptical orbit at each event causes the actual eclipse time to vary significantly. It is a part of Lunar Inex series 39.
All events in this series listed below and more are total lunar eclipses.
Ascending node | Descending node | Ascending node | Descending node | ||||
---|---|---|---|---|---|---|---|
Saros | Date | Saros | Date | Saros | Date | Saros | Date |
96 | 1027 Apr 23 | 97 | 1056 Apr 2 | 98 | 1085 Mar 14 | 99 | 1114 Feb 21 |
100 | 1143 Feb 1 | 101 | 1172 Jan 13 | 102 | 1200 Dec 22 | 103 | 1229 Dec 2 |
104 | 1258 Nov 12 | 105 | 1287 Oct 22 | 106 | 1316 Oct 2 | 107 | 1345 Sep 12 |
108 | 1374 Aug 22 | 109 | 1403 Aug 2 | 110 | 1432 Jul 13 | 111 | 1461 Jun 22 |
112 | 1490 Jun 2 | 113 | 1519 May 14 | 114 | 1548 Apr 22 | 115 | 1577 Apr 2 |
116 | 1606 Mar 24 | 117 | 1635 Mar 3 | 118 | 1664 Feb 11 | 119 | 1693 Jan 22 |
120 | 1722 Jan 2 | 121 | 1750 Dec 13 | 122 | 1779 Nov 23 | 123 | 1808 Nov 3 |
124 | 1837 Oct 13 | 125 | 1866 Sep 24 | 126 | 1895 Sep 4 | 127 | 1924 Aug 14 |
128 | 1953 Jul 26 |
129 | 1982 Jul 6 |
130 | 2011 Jun 15 |
131 | 2040 May 26 |
132 | 2069 May 6 |
133 | 2098 Apr 15 |
134 | 2127 Mar 28 | 135 | 2156 Mar 7 |
136 | 2185 Feb 14 | 137 | 2214 Jan 27 | 138 | 2243 Jan 7 | 139 | 2271 Dec 17 |
140 | 2300 Nov 27 | 141 | 2329 Nov 7 | 142 | 2358 Oct 18 | 143 | 2387 Sep 28 |
144 | 2416 Sep 7 | 145 | 2445 Aug 17 | 146 | 2474 Jul 29 |
Half-Saros cycle
[edit]A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[8] This lunar eclipse is related to two total solar eclipses of Solar Saros 136.
June 30, 1973 | July 11, 1991 |
---|---|
See also
[edit]Notes
[edit]- ^ "July 5–6, 1982 Total Lunar Eclipse (Blood Moon)". timeanddate. Retrieved 6 January 2025.
- ^ "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 6 January 2025.
- ^ "Total Lunar Eclipse of 1982 Jul 06" (PDF). NASA. Retrieved 6 January 2025.
- ^ "Total Lunar Eclipse of 1982 Jul 06". EclipseWise.com. Retrieved 6 January 2025.
- ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
- ^ "NASA - Catalog of Lunar Eclipses of Saros 129". eclipse.gsfc.nasa.gov.
- ^ Listing of Eclipses of series 129
- ^ Mathematical Astronomy Morsels, Jean Meeus, p.110, Chapter 18, The half-saros
External links
[edit]- NASA: Lunar Eclipses: Past and Future
- Total Lunar Eclipse of 1982 July 06 Photo Gallery
- Vulcan Eclipse End of Totality 6 July 1982, by Jerry Lodriguss
References
[edit]- Bao-Lin Liu, Canon of Lunar Eclipses 1500 B.C.-A.D. 3000, 1992