Jump to content

2021 in paleontology

From Wikipedia, the free encyclopedia

List of years in paleontology (table)
In paleobotany
2018
2019
2020
2021
2022
2023
2024
In arthropod paleontology
2018
2019
2020
2021
2022
2023
2024
In paleoentomology
2018
2019
2020
2021
2022
2023
2024
In paleomalacology
2018
2019
2020
2021
2022
2023
2024
In reptile paleontology
2018
2019
2020
2021
2022
2023
2024
In archosaur paleontology
2018
2019
2020
2021
2022
2023
2024
In mammal paleontology
2018
2019
2020
2021
2022
2023
2024
In paleoichthyology
2018
2019
2020
2021
2022
2023
2024

Paleontology or palaeontology is the study of prehistoric life forms on Earth through the examination of plant and animal fossils.[1] This includes the study of body fossils, tracks (ichnites), burrows, cast-off parts, fossilised feces (coprolites), palynomorphs and chemical residues. Because humans have encountered fossils for millennia, paleontology has a long history both before and after becoming formalized as a science. This article records significant discoveries and events related to paleontology that occurred or were published in the year 2021.

Flora

[edit]

Plants

[edit]

Fungi

[edit]

New taxa

[edit]
Name Novelty Status Authors Age Type locality Location Notes Images

Allocordyceps[2]

Gen. et sp. nov

In press

Poinar & Maltier

Eocene

Baltic amber

Europe (Baltic Sea region)

A fungus belonging to the group Hypocreales and the family Clavicipitaceae. Genus includes new species A. baltica.

Bleximothyrium[3]

Gen. et sp. nov

Valid

Le Renard et al.

Early Cretaceous (Aptian)

Potomac Group

 United States
( Virginia)

A dothideomycete fly-speck fungus. Type species B. ostiolatum.

Chaenothecopsis polissica[4]

Sp. nov

Valid

Heluta & Sukhomlyn in Sukhomlyn et al.

Late Eocene

Rovno amber

 Ukraine

A species of Chaenothecopsis.

Columnomyces electri[5]

Sp. nov

Valid

Haelewaters & Perreau in Perreau, Haelewaters & Tafforeau

Miocene

Dominican amber

 Dominican Republic

A laboulbeniale fungus,
parasitic on the beetle Proptomaphaginus alleni.

Glomites oqoti[6]

Sp. nov

In press

Lalica & Tomescu

Devonian (Emsian)

Battery Point Formation

 Canada
( Quebec)

Spores with affinities to the Glomeromycotina.

Meliolinites scanicus[7]

Sp. nov

In press

McLoughlin et al.

Late Cretaceous (Santonian–early Campanian)

 Sweden

A member of the family Meliolaceae.

Nyssopsora eocaenica[8]

Sp. nov

Valid

Tykhonenko & Hayova in Tykhonenko et al.

Middle Eocene

Naibuchi Formation
(Sakhalinian amber)

 Russia
( Sakhalin Oblast)

A member of Pucciniales.

Rhizophydites[9]

Gen. et sp. nov

Valid

Krings, Serbet & Harper

Early Devonian

Rhynie chert

 United Kingdom

A Chytridiomycotan fungus. Type species R. matryoshkae.

Stomatothyrium[10]

Gen. et sp. nov

Valid

Le Renard et al.

Early Cretaceous (Aptian)

Potomac Group

 United States
( Virginia)

A member of Dothideomycetes. Genus includes new species S. placocentrum.

Stomiopeltites ivoeensis[7]

Sp. nov

In press

McLoughlin et al.

Late Cretaceous (Santonian–early Campanian)

 Sweden

A member of the family Micropeltidaceae.

Yongnicta[11]

Gen. et sp. nov

In press

Tobias & Maslova in Xu et al.

Late Oligocene

Yongning Formation

 China

A member of Ascomycota described on the basis of fungal fruiting bodies preserved on fossil tupelo endocarps. Genus includes new species Y. nyssae.

Research

[edit]
  • Exceptionally preserved specimens of Tawuia, providing new information on the anatomy of this organism, are described from the Tonian Liulaobei and Shiwangzhuang formations (China) by Tang et al. (2021), who interpret Tawuia as a coenocytic eukaryote, possibly a macroalga.[12]
  • Microfossils which may represent early terrestrial fungi are described from the Ediacaran Doushantuo Formation (China) by Gan et al. (2021).[13]
  • A Rhynie chert fossil Mycokidstonia sphaerialoides, originally interpreted as an ascomycete, is reclassified as a member of Glomeromycota belonging to the family Ambisporaceae by Walker et al. (2021).[14]
  • Carboniferous organism Oochytrium lepidodendri, originally classified as a fungus, is reinterpreted as an oomycete by Strullu-Derrien et al. (2021).[15]
  • Probable fossils of multicellular eukaryotic macroalgae (possibly with a green algal affinity) are described from the Tonian Dolores Creek Formation in the Wernecke Mountains (Canada) by Maloney et al. (2021), who interpret these fossils as likely to be some of the few green algae and some of the largest macroscopic eukaryotes yet recognized in the early Neoproterozoic, indicating that eukaryotic algae colonized marine environments by the early Neoproterozoic.[16]
  • Fossil material of macroalgae, providing information on the early evolution of holdfast morphologies and attachment strategies of benthic macroalgae, is described from the Ediacaran Lantian biota and Miaohe biota (China) by Wang et al. (2021).[17]

Cnidarians

[edit]

New taxa

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Agastophyllum parvum[18]

Sp. nov

Valid

McLean

Devonian

A rugose coral belonging to family Cystiphyllidae.

Ankhelasma canadense[19]

Sp. nov

In press

Chwieduk

Carboniferous (Viséan)

Flett Formation

 Canada

A rugose coral belonging to the group Stauriida and the family Zaphrentoididae.

Apocladophyllia guigouensis[20]

Sp. nov

Valid

Vasseur & Lathuilière

Early Jurassic (Pliensbachian)

 Morocco

A stony coral belonging to the family Cladophylliidae.

Apoplacophyllia asiatica[21]

Sp. nov

Valid

Baron-Szabo

Early Cretaceous (Albian)

Langshan Formation

 China

A stony coral belonging to the family Heterocoeniidae.

Axosmilia amellagouensis[20]

Sp. nov

Valid

Vasseur & Lathuilière

Early Jurassic (Pliensbachian)

 Morocco

A stony coral belonging to the family Axosmiliidae.

Balkhanomeandra[22]

Gen. et sp. nov

Valid

Bugrova

Early Cretaceous

 Azerbaijan
 Turkmenistan

A stony coral belonging to the family Latomeandridae. The type species is B. roniewiczae.

Calcariastraea[23]

Gen. et comb. nov

Valid

McLean & Wright

Devonian

 Australia

A rugose coral. The type species is "Phillipsastrea" currani Etheridge; genus also includes "P." speciosa Chapman, "P." maculosa Hill, "P." linearis Hill and "P." oculoides Hill.

Cantabriastraea orourkei[23]

Sp. nov

Valid

McLean & Wright

A rugose coral.

Catenatus[24]

Gen. et sp. nov

Valid

Carrera et al.

Ordovician (FloianDarriwilian)

San Juan Formation

 Argentina

A member of Octocorallia, possibly belonging to the group Alcyonacea. The type species is C. argentinus.

Cladochonus nagatoensis[25]

Sp. nov

Valid

Niko

Early Carboniferous

 Japan

A tabulate coral.

Columnocoenia falkenbergensis[26]

Sp. nov

Valid

Baron-Szabo

Early Cretaceous (Aptian)

Schrattenkalk Formation

 Germany
 Romania

A stony coral.

Confusaforma prima[27]

Sp. nov

Valid

Löser in Löser et al.

Early Cretaceous (Valanginian)

Sierra del Pozo Formation

 Spain

A coral belonging to the family Solenocoeniidae.

Cordilleria[28]

Gen. et comb. nov

Valid

Fedorowski, Bamber & Richards

Carboniferous (Mississippian)

Lower Rundle Group

 Canada
 United States

A rugose coral belonging to the group Stauriida and the family Lithostrotionidae. The type species is "Diphyphyllum" mutabile Kelly (1942); genus also includes "Lithostrotion" flexuosum Warren (1927), "Lithostrotion (Siphonodendron)" warreni Nelson (1960) and "Lithostrotion (Siphonodendron)" oculinum Sando (1963).

Coryphyllia bicuneiformis[20]

Sp. nov

Valid

Vasseur & Lathuilière

Early Jurassic (Pliensbachian)

 Morocco

A stony coral belonging to the family Coryphylliidae.

Coryphyllia capillaria[20]

Sp. nov

Valid

Vasseur & Lathuilière

Early Jurassic (Pliensbachian)

 France
 Morocco

A stony coral belonging to the family Coryphylliidae.

Crebriphyllum[23]

Gen. et comb. et 3 sp. nov

Valid

McLean & Wright

Devonian

 Australia

A rugose coral. The type species is "Phillipsastrea" callosa Hill; genus also includes new species C. duni, C. jelli and C. struszi.

Cyathoclisia sukhensis[29]

Sp. nov

Valid

Ohar & Denayer

Carboniferous (Viséan)

 Ukraine

A rugose coral belonging to the family Aulophyllidae.

Cystiphylloides calnanense[18]

Sp. nov

Valid

McLean

Devonian

A rugose coral belonging to family Cystiphyllidae.

Cystiphylloides tetsaense[18]

Sp. nov

Valid

McLean

Devonian

A rugose coral belonging to family Cystiphyllidae.

Cystiplasma curraense[18]

Sp. nov

Valid

McLean

Devonian

A rugose coral belonging to family Cystiphyllidae.

Decimoconularia[30]

Gen. et sp. nov

Valid

Guo et al.

Cambrian Stage 2

Yanjiahe Formation

 China

A hexangulaconulariid. Genus includes new species D. isofacialis.

Digonophyllum clarkense[18]

Sp. nov

Valid

McLean

Devonian

A rugose coral belonging to family Cystiphyllidae.

Distichophyllia pauciseptata[20]

Sp. nov

Valid

Vasseur & Lathuilière

Early Jurassic (Pliensbachian)

 Morocco

A stony coral belonging to the family Reimaniphylliidae.

Ekvasophyllum variabilis[19]

Sp. nov

In press

Chwieduk

Carboniferous (Viséan)

Flett Formation

 Canada

A rugose coral belonging to the group Stauriida and the family Ekvasophyllidae.

Eopreverastrea[27]

Gen. et sp. nov

Valid

Löser in Löser et al.

Early Cretaceous (Valanginian)

Sierra del Pozo Formation

 Spain

A coral belonging to the family Aulastraeoporidae. The type species is E. llanoensis.

Epismiliopsis paraeudesi[20]

Sp. nov

Valid

Vasseur & Lathuilière

Early Jurassic (Pliensbachian)

 Morocco

A stony coral belonging to the family Stylophyllidae.

Favia misakiensis[31]

Sp. nov

Valid

Niko & Suzuki

Miocene

Katsuta Group

 Japan

A species of Favia.

Floriastrea iberica[27]

Sp. nov

Valid

Löser in Löser et al.

Early Cretaceous (Valanginian)

Sierra del Pozo Formation

 Spain

A coral belonging to the family Actinastreidae.

Fungiaphyllia praecursor[20]

Sp. nov

Valid

Vasseur & Lathuilière

Early Jurassic (Pliensbachian)

 Morocco

A stony coral belonging to the family Deltocyathiidae.

Fungiaphyllia rotunda[20]

Sp. nov

Valid

Vasseur & Lathuilière

Early Jurassic (Pliensbachian)

 Morocco

A stony coral belonging to the family Deltocyathiidae.

Gyrosmilia maltensis[32]

Sp. nov

Valid

Saint Martin et al.

Oligocene (Chattian)

Lower Coralline Limestone

 Malta

A species of Gyrosmilia.

Julfamichelinia[33]

Gen. et comb. nov

Valid

Niko & Badpa

Permian (Wuchiapingian)

Dzhulfa Formation

 Armenia
 Azerbaijan
 Iran
 Afghanistan?

A tabulate coral belonging to the family Micheliniidae. The type species is "Michelinopora" allata Tchudinova in Ruzhentsev & Sarycheva (1965).

Kluaphyllum[18]

Gen. et sp. nov

Valid

McLean

Devonian

A rugose coral belonging to family Cystiphyllidae. Genus includes new species K. sulcatum.

Lekanophyllum nordlingense[18]

Sp. nov

Valid

McLean

Devonian

A rugose coral belonging to family Cystiphyllidae.

Lekanophyllum robbense[18]

Sp. nov

Valid

McLean

Devonian

A rugose coral belonging to family Cystiphyllidae.

Loboplasma sutchersense[18]

Sp. nov

Valid

McLean & Wright in McLean

Devonian

A rugose coral belonging to family Cystiphyllidae.

Margarosmilia dividenda[20]

Sp. nov

Valid

Vasseur & Lathuilière

Early Jurassic (Pliensbachian)

 Morocco

A stony coral belonging to the family Margarophylliidae.

Microplasma fromense[18]

Sp. nov

Valid

McLean & Wright in McLean

Devonian

A rugose coral belonging to family Cystiphyllidae.

Microplasma hedingeri[18]

Sp. nov

Valid

McLean

Devonian

A rugose coral belonging to family Cystiphyllidae.

Microplasma nabeschense[18]

Sp. nov

Valid

McLean

Devonian

A rugose coral belonging to family Cystiphyllidae.

Miophora naxxarensis[32]

Sp. nov

Valid

Saint Martin et al.

Oligocene (Chattian)

Lower Coralline Limestone

 Malta

A stony coral.

Monopachyphyllia[34]

Gen. et sp. nov

Valid

Kołodziej & Marian

Early Cretaceous (Aptian)

 Romania

A colonial coral belonging to the group Pachythecaliina, possibly belonging to the superfamily Heterocoenioidea and the family Carolastraeidae. Genus includes new species M. roniewiczae.

Nailiana[35]

Gen. et sp. nov

Valid

Ou & Shu in Ou et al.

Cambrian Stage 3

Heilinpu Formation

 China

An early anthozoan. The type species is N. elegans.

Nardophyllum cavanense[18]

Sp. nov

Valid

McLean

Devonian

A rugose coral belonging to family Cystiphyllidae.

Nerthastraea maltensis[32]

Sp. nov

Valid

Saint Martin et al.

Oligocene (Chattian)

Lower Coralline Limestone

 Malta

A stony coral.

Ogmophylloides[18]

Gen. et sp. nov

Valid

McLean

Devonian

A rugose coral belonging to family Cystiphyllidae. Genus includes new species O. taylori.

Palaeodiphasia[36]

Gen et comb. nov

Valid

Song et al.

Late Cambrian

Fengshan Formation

 China

A member of Leptothecata belonging to the group Macrocolonia; a new genus for "Siberiograptus" simplex Lin (1985).

Paraconularia abagaensis[37]

Sp. nov

In press

Min et al.

Permian

 China

A conulariid.

Paravolzeia calabrensis[20]

Sp. nov

Valid

Vasseur & Lathuilière

Early Jurassic (Pliensbachian)

 Italy

A stony coral belonging to the family Protoheterastraeidae.

Phacelostylophyllum arbustulum[20]

Sp. nov

Valid

Vasseur & Lathuilière

Early Jurassic (Pliensbachian)

 France

A stony coral belonging to the family Stylophyllidae.

Phillipsastrea chapmani[23]

Sp. nov

Valid

McLean & Wright

Devonian (Pragian)

 Australia

A rugose coral.

Phillipsastrea mcraeorum[23]

Sp. nov

Valid

McLean & Wright

A rugose coral.

Phillipsastrea pedderi[23]

Sp. nov

Valid

McLean & Wright

A rugose coral.

Podosmilia[20]

Gen. et sp. nov

Valid

Vasseur & Lathuilière

Early Jurassic (Pliensbachian)

 France
 Morocco

A stony coral belonging to the family Stylophyllidae. The type species is P. horologium.

Prismastrea[20]

Gen. et sp. nov

Valid

Vasseur & Lathuilière

Early Jurassic (Pliensbachian)

 Morocco

A stony coral belonging to the family Thecosmiliidae. The type species is P. organum.

Proleptophyllia calix[20]

Sp. nov

Valid

Vasseur & Lathuilière

Early Jurassic (Pliensbachian)

 Morocco

A stony coral belonging to the family Dermosmiliidae.

Proleptophyllia magna[20]

Sp. nov

Valid

Vasseur & Lathuilière

Early Jurassic (Pliensbachian)

 Morocco

A stony coral belonging to the family Dermosmiliidae.

Proleptophyllia subphaceloida[20]

Sp. nov

Valid

Vasseur & Lathuilière

Early Jurassic (Pliensbachian)

 Morocco

A stony coral belonging to the family Dermosmiliidae.

Retiophyllia zizensis[20]

Sp. nov

Valid

Vasseur & Lathuilière

Early Jurassic (Pliensbachian)

 Morocco

A stony coral belonging to the family Reimaniphylliidae.

Siderohelia[38]

Gen. et sp. nov

Valid

Löser in Löser et al.

Cretaceous (Hauterivian to Santonian)

 Spain

A stony coral belonging to the family Rhizangiidae. The type species is S. aquilai.

Spongiocoenia[20]

Gen. et comb. nov

Valid

Vasseur & Lathuilière

Early Jurassic (Sinemurian-Pliensbachian)

 Spain

A stony coral of uncertain affinities. The type species is "Coccophyllum" liasicum Turnšek & Geyer in Turnšek, Seyfried & Geyer (1975).

Stylophyllopsis bovista[20]

Sp. nov

Valid

Vasseur & Lathuilière

Early Jurassic (Pliensbachian)

 France

A stony coral belonging to the family Stylophyllidae.

Stylophyllopsis veracolumella[20]

Sp. nov

Valid

Vasseur & Lathuilière

Early Jurassic (Pliensbachian)

 France

A stony coral belonging to the family Stylophyllidae.

Sutherlandia khachikensis[33]

Sp. nov

Valid

Niko & Badpa

Permian (Capitanian)

Khachik Formation

 Iran

A tabulate coral belonging to the family Favositidae.

Trigerastraea sikharulidzeae[21]

Sp. nov

Valid

Baron-Szabo

Early Cretaceous (Albian)

 France

A stony coral belonging to the family Latomeandridae.

Tropalicystis[18]

Gen. nov

Valid

McLean

Devonian

A rugose coral belonging to family Cystiphyllidae.

Tubulosmilia[20]

Gen. et sp. nov

Valid

Vasseur & Lathuilière

Early Jurassic (Pliensbachian)

 Morocco

A stony coral belonging to the family Stylophyllidae. The type species is T. regularis.

Variocystis[18]

Gen. et sp. nov

Valid

McLean

Devonian

A rugose coral belonging to family Cystiphyllidae. Genus includes new species V. caribouensis.

Research

[edit]
  • Anatomical evidence indicative of a close relationship between cloudinids and Cambrian animals with cnidarian affinities: Cambroctoconus, Lipopora and Tretocylichne is published by Park et al. (2021).[39]
  • A study on the morphology, embryonic development and phylogenetic relationships of Quadrapyrgites is published by Zhao et al. (2021), who interpret this taxon and its probable relative Olivooides as more likely to be diploblastic cnidarians than triploblastic cycloneuralians.[40]
  • An exceptionally preserved conulariid specimen, keeping its aperture semi-closed and making it possible to see most of the internal part of the closure with rib continuation inwards, is described from the Ordovician of southeastern Brandenburg (Germany) by Sendino & Bochmann (2021).[41]
  • Revision of Palaenigma wrangeli is published by Kröger et al. (2021), who argue that this organism can be best interpreted as a conulariid, and name a new family Palaenigmaidae.[42]
  • A study on the earliest growth stages and branching process in specimens of Oligophylloides from the Devonian (Famennian) of Morocco, and on the implications of these specimens for the knowledge of the phylogenetic relationships of Heterocorallia, is published by Berkowski et al. (2021).[43]

Arthropods

[edit]

Bryozoans

[edit]

New taxa

[edit]
Name Novelty Status Authors Age Type locality Location Notes Images

Acoscinopleura beniamovski[44]

Sp. nov

Valid

Koromyslova, Taylor & Pakhnevich

Late Cretaceous (Maastrichtian)

 Kazakhstan

A cheilostome bryozoan.

Antropora guajirensis[45]

Sp. nov

Valid

Flórez, Di Martino & Ramalho

Early Miocene

Siamaná Formation

 Colombia

A species of Antropora.

Atoichos[45]

Gen. et sp. nov

Valid

Flórez, Di Martino & Ramalho

Early Miocene

Siamaná Formation

 Colombia

A member of the family Onychocellidae. The type species is A. magnus.

Calpensia caribensis[45]

Sp. nov

Valid

Flórez, Di Martino & Ramalho

Early Miocene

Siamaná Formation

 Colombia

A member of the family Microporidae.

Conopeum flumineum[46]

Sp. nov

Valid

Taylor & Rogers

Late Cretaceous (Campanian)

Judith River Formation

 United States
( Montana)

A species of Conopeum.

Cribrilaria multicostata[45]

Sp. nov

Valid

Flórez, Di Martino & Ramalho

Early Miocene

Siamaná Formation

 Colombia

A member of the family Cribrilinidae.

Cribrilaria nixor[45]

Sp. nov

Valid

Flórez, Di Martino & Ramalho

Early Miocene

Siamaná Formation

 Colombia

A member of the family Cribrilinidae.

Cycloavicularia[47]

Gen. et sp. nov

Valid

Flórez, Di Martino & Ramalho

Early Miocene

Siamaná Formation

 Colombia

A member of the family Teuchoporidae. The type species C. parva.

Ditaxiporina colombiana[47]

Sp. nov

Valid

Flórez, Di Martino & Ramalho

Early Miocene

Siamaná Formation

 Colombia

A member of the family Catenicellidae.

Escharifora? invisibilia[44]

Sp. nov

Valid

Koromyslova, Taylor & Pakhnevich

Late Cretaceous (Maastrichtian)

 Kazakhstan

A cheilostome bryozoan.

Figularia bragai[45]

Sp. nov

Valid

Flórez, Di Martino & Ramalho

Early Miocene

Siamaná Formation

 Colombia

Figularia elcanoi[48]

Sp. nov

Valid

López-Gappa et al.

Early Miocene

 Argentina

A member of Cheilostomatida.

Gymnophorella[45]

Gen. et sp. nov

Valid

Flórez, Di Martino & Ramalho

Early Miocene

Siamaná Formation

 Colombia

A member of the family Steginoporellidae. The type species is G. hadra.

Jolietina victoria[48]

Sp. nov

Valid

López-Gappa et al.

Early Miocene

 Argentina

A member of Cheilostomatida.

Parafigularia pigafettai[48]

Sp. nov

Valid

López-Gappa et al.

Early Miocene

 Argentina

A member of Cheilostomatida.

Poricella paulae[47]

Sp. nov

Valid

Flórez, Di Martino & Ramalho

Early Miocene

Siamaná Formation

 Colombia

A member of the family Arachnopusiidae.

Research

[edit]
  • Protomelission gatehousei is reinterpreted as a potential stem-group bryozoan by Zhang et al. (2021).[49]
  • A study on the evolutionary history of cyclostome and cheilostome bryozoans over the past 150 million years, focusing on causes of cheilostome taxonomic richness surpassing the richness of once dominant cyclostomes, is published by Lidgard et al. (2021).[50]

Brachiopods

[edit]

New taxa

[edit]
Name Novelty Status Authors Age Type locality Location Notes Images

Alispiriferella turnbulli[51]

Sp. nov

Valid

Waterhouse & Campbell

Permian

 New Zealand

A member of Spiriferida belonging to the family Spiriferellidae.

?Becscia pentagona[52]

Sp. nov

Valid

Baarli

Solvik Formation

 Norway

Bellistrophia askarensis[53]

Sp. nov

Valid

Popov & Nikitina in Popov et al.

Cambrian (Wuliuan)

Athei Formation

 Kazakhstan

A kutorginide brachiopod.

Carinagypa robecki[54]

Sp. nov

Valid

Blodgett et al.

Devonian (Emsian)

 United States
( Alaska)

A member of Pentamerida belonging to the family Gypidulidae.

Crinisarina pseudoglobularis[55]

Sp. nov

Valid

Serobyan et al.

Devonian (Famennian)

 Armenia

An athyride brachiopod.

Eisaella[52]

Gen. et sp. nov

Valid

Baarli

Solvik Formation

 Norway

Genus includes new species E. uniplicata.

Eoconulus tucunucoensis[56]

Sp. nov

Valid

Lavié, Mestre & Carrera

Ordovician

San Juan Formation

 Argentina

An acrotretid brachiopod.

Ferronirhynchia[57]

Gen. et sp. nov

Valid

García-Alcalde

Devonian (Emsian)

Moniello Formation

 Spain

A member of Rhynchonellida belonging to the family Trigonirhynchiidae. The type species is F. pulgari.

Grebneffia[58]

Gen. et sp. nov

Valid

Waterhouse & Campbell

Permian

McLean Peaks Formation

 New Zealand

A member of Terebratulida belonging to the family Dielasmidae. The type species is G. divaricata.

Gypospirifer? inexpectans[51]

Sp. nov

Valid

Waterhouse & Campbell

Permian

 New Zealand

A member of Spiriferida belonging to the family Neospiriferidae.

Ingelarella intrudus[59]

Sp. nov

Valid

Waterhouse

Permian

Lakes Creek Formation

 Australia

A member of Spiriferida belonging to the family Ingelarellidae.

Kermanirhyncha[60]

Gen. et sp. nov

Valid

Popov et al.

Silurian (Aeronian)

Shabdjereh Formation

 Iran

A rhynchonellide brachiopod. Genus includes new species K. granulata.

Levanispirifer[60]

Gen. et sp. nov

Valid

Popov et al.

Silurian (Aeronian)

Shabdjereh Formation

 Iran

A spiriferide brachiopod. Genus includes new species L. alatus.

Longtancunella xiazhuangensis[61]

Sp. nov

In press

Wang et al.

Cambrian Stage 3

Hongjingshao Formation

 China

Luthieria[56]

Gen. et sp. nov

Valid

Lavié, Mestre & Carrera

Ordovician

San Juan Formation

 Argentina

An obolid brachiopod. Genus includes new species L. diminuta.

Mictospirifer obtusus[60]

Sp. nov

Valid

Popov et al.

Silurian (Aeronian)

Shabdjereh Formation

 Iran

A spiriferide brachiopod.

Neilotreta lakeensis[59]

Sp. nov

Valid

Waterhouse

Permian

Lakes Creek Formation

 Australia

A member of member of Spiriferida belonging to the family Georginakingiidae.

Orbiculoidea verum[62]

Sp. nov

Valid

Masunaga & Shiino

Middle Permian

Hoso-o Formation

 Japan

Paterula (?) vasilievae[63]

Sp. nov

Valid

Smirnova & Zhegallo

Devonian (Frasnian)

 Russia

A member of Linguloidea belonging to the family Paterulidae.

Protoanidanthus costata[59]

Sp. nov

Valid

Waterhouse

Permian

Lakes Creek Formation

 Australia

A member of Productida belonging to the superfamily Paucispiniferoidea and the family Anidanthidae.

Pseudostrophalosia routi[64]

Sp. nov

Valid

Waterhouse

Permian

Mangarewa Formation

 New Zealand

A member of Productida belonging to the group Strophalosiidina and the family Dasyalosiidae.

Psiloria karasuensis[53]

Sp. nov

Valid

Popov & Nikitina in Popov et al.

Cambrian (Wuliuan)

Athei Formation

 Kazakhstan

A protorthide brachiopod.

Pteroplecta blakei[59]

Sp. nov

Valid

Waterhouse

Permian

Lakes Creek Formation

 Australia

A member of Spiriferida belonging to the superfamily Paeckelmanelloidea and the family Pterospiriferidae.

Schellwienella clarkei[65]

Sp. nov

Valid

Rezende & Isaacson

Devonian

Ponta Grossa Formation

 Brazil

A member of Orthotetida.

Sepkoskirhynchia[66]

Gen. et sp. nov

In press

Radulović

Early Jurassic (Pliensbachian)

Budoš Limestone

 Montenegro

A rhynchonellide brachiopod belonging to the family Basiliolidae. Genus includes new species S. sphaerica.

Shelvothyris bivittata[52]

Sp. nov

Valid

Baarli

Solvik Formation

 Norway

Terrakea densispinosa[64]

Sp. nov

Valid

Waterhouse

Permian

Mangarewa Formation

 New Zealand

A member of Productida belonging to the superfamily Proboscidelloidea and the family Paucispinauriidae.

Thulatrypa huangi[52]

Sp. nov

Valid

Baarli

Solvik Formation

 Norway

Thulatrypa vikenensis[52]

Sp. nov

Valid

Baarli

Solvik Formation

 Norway

Xanastur[67]

Nom. nov

Valid

García-Alcalde

Early Devonian

 Spain

A terebratulid brachiopod; a replacement name for Xana García-Alcalde (1972).

Xinjiangiproductus? junggarensis[68]

Sp. nov

In press

Guo, Chen & Liao

Early Carboniferous

Hongshanzui Formation

 China

Research

[edit]
  • Revision and a study on the biogeography of brachiopod faunas from the Early Ordovician Mediterranean Province is published by Cocks & Popov (2021).[69]
  • A study on the evolution of the strophomenoid brachiopods, aiming to determine whether environmental changes at the time of the Great Ordovician Biodiversification Event correlated with the diversification of this group, is published by Congreve, Patzkowsky & Wagner (2021).[70]
  • A study on the selectivity of extinction of rhynchonelliform brachiopods from the Appalachian Foreland Basin during the two pulses of the Frasnian–Famennian mass extinction, aiming to determine the primary kill mechanism in this fauna, is published by Pier et al. (2021).[71]
  • A study on the phylogenetic relationships and evolutionary history of late Permian and Triassic rhynchonellides is published by Guo et al. (2021).[72]

Molluscs

[edit]

Echinoderms

[edit]

New taxa

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Amphoracrinus tenax[73]

Sp. nov

Valid

Ausich et al.

Carboniferous (Viséan)

Borden Formation

 United States
( Kentucky)

A monobathrid camerate belonging to the family Amphoracrinidae.

Archiacia ramitaensis[74]

Sp. nov

Valid

Néraudeau & Mouty

Late Cretaceous (Cenomanian)

 Syria

A sea urchin belonging to the family Archiaciidae.

Barbaraster[75]

Gen. et 2 sp. nov

Valid

Thuy & Numberger-Thuy

Early Jurassic (Toarcian)

Posidonia Shale

 Luxembourg

A brittle star belonging to the group Ophiurida. The type species is B. colbachi; genus also includes B. muenzbergerae.

Boxaster[76]

Gen. et sp. nov

In press

Loba & Radwańska

Late Jurassic (Kimmeridgian)

 Poland

A starfish belonging to the group Paxillosida, possibly a member of the family Astropectinidae. The type species is B. wapienensis.

Bulbosphaeraster[77]

Gen. et sp. nov

Valid

Gale

Middle Jurassic (Bathonian)

 France

A starfish belonging to the family Sphaerasteridae. The type species is B. valettei.

Calvaticrinus[78]

Gen. et comb. nov

In press

Gale & Matrion

Early Cretaceous (Albian)

 France
 United Kingdom

A microcrinoid belonging to the family Roveacrinidae. The type species is "Plotocrinus" monocarinatus Destombes (1984); genus also includes C. subplanatus (Destombes, 1984) and "Discocrinus integer Hess (2010).

Cantabrigiaster[79]

Gen. et sp. nov

Disputed

Hunter & Ortega-Hernández

Early Ordovician

Fezouata Formation

 Morocco

A somasteroid asterozoan. The type species is C. fezouataensis. Blake & Hotchkiss (2022) considered Cantabrigiaster to be a junior synonym of the chinianasterid genus Villebrunaster, though the authors maintained C. fezouataensis as a distinct species within the latter genus.[80]

Cherbonniericrinus requiensis[81]

Sp. nov

Valid

Roux, Martinez & Vizcaïno

Eocene (Ypresian)

 France

A crinoid belonging to the family Rhizocrinidae.

Chomataster breizh[82]

Sp. nov

Valid

Jagt et al.

Late Cretaceous (Campanian)

Spiennes Chalk Formation

 Belgium

A starfish belonging to the family Goniasteridae.

Chrispaulia spinosa[83]

Sp. nov

Valid

Gale & Wesener

Early Cretaceous (Hauterivian)

Tealby Clay

 Germany
 United Kingdom

A starfish belonging to the family Goniopectinidae.

Chrispaulia wrightorum[83]

Sp. nov

Valid

Gale & Wesener

Early Cretaceous (Albian)

Hunstanton Formation

 United Kingdom

A starfish belonging to the family Goniopectinidae.

Costatocrinus fragilis[84]

Sp. nov

In press

Gale

Late Cretaceous (Campanian)

 United Kingdom

A crinoid.

Dermacantha reolidi[75]

Sp. nov

Valid

Thuy & Numberger-Thuy

Early Jurassic (Toarcian)

Posidonia Shale

 Luxembourg

A brittle star belonging to the family Ophionereididae.

Douglasicrinus[84]

Gen. et sp. nov

In press

Gale

Late Cretaceous (Campanian)

 United Kingdom

A crinoid. Genus includes new species D. alumensis.

Echinosphaeraster[77]

Gen. et comb. nov

Valid

Gale

Late Jurassic (Kimmeridgian)

 Germany
  Switzerland

A starfish belonging to the family Sphaerasteridae. The type species is "Asterias" scutatus Goldfuss (1833).

Eosphaeraster[77]

Gen. et sp. nov

Valid

Gale

Early Jurassic (Pliensbachian)

 Morocco

A starfish belonging to the family Sphaerasteridae. The type species is E. amellagensis.

Gastecrinus[85]

Gen. et sp. nov

Valid

Roux & Philippe

Early Miocene

 France

A stalked crinoid of uncertain phylogenetic placement. Genus includes new species G. vinealis.

Gennaeocrinus tariatensis[86]

Sp. nov

Valid

Waters & Ausich

Devonian (Emsian)

Tariat Formation

 Mongolia

A monobathrid crinoid.

Globator aegyptiaca[87]

Sp. nov

In press

El Qot

Early Cretaceous (Albian)

 Egypt

A sea urchin.

Globulocrinus[81]

Gen. et sp. nov

Valid

Roux, Martinez & Vizcaïno

Eocene (Ypresian)

 France

A crinoid belonging to the family Rhizocrinidae. Genus includes new species G. amphoraformis.

Halocrinites heinorum[88]

Sp. nov

Valid

Bohatý & Ausich

Devonian (EifelianGivetian)

 Germany

A crinoid belonging to the group Eucladida.

Hessicrinus vectensis[84]

Sp. nov

In press

Gale

Late Cretaceous (Campanian)

 United Kingdom

A crinoid.

Holopus plaziati[81]

Sp. nov

Valid

Roux, Martinez & Vizcaïno

Eocene (Ypresian)

 France

A crinoid belonging to the family Holopodidae.

Hrabalicrinus[89]

Gen. et sp. nov

Valid

Salamon & Płachno

Late Jurassic (Oxfordian)

 Czech Republic

A comatulid crinoid. Genus includes new species H. zitti.

Ikerus[90]

Gen. et sp. nov

Valid

Jell & Sprinkle

Cambrian

Thorntonia Limestone

 Australia

An edrioblastoid. Genus includes new species I. edgari

Imagdacrinus[91]

Gen. et sp. et comb. nov

Valid

Rozhnov

Silurian

 Russia

A myelodactylid disparid crinoid. Genus includes new species I. minutus, as well as "Myelodactylus" flexibilis Stukalina (1982) and "Myelodactylus" rimatus Stukalina (2000).

Inexpectacantha ullmanni[75]

Sp. nov

Valid

Thuy & Numberger-Thuy

Early Jurassic (Toarcian)

Posidonia Shale

 Luxembourg

A brittle star belonging to the group Euryophiurida.

Jurapecten dhondtae[83]

Sp. nov

Valid

Gale & Wesener

Late Cretaceous (Maastrichtian)

Maastricht Formation

 Belgium

A starfish belonging to the family Benthopectinidae.

Jurapecten infrajurensis[83]

Sp. nov

Valid

Gale & Wesener

Jurassic (ToarcianAalenian)

 France
 Germany

A starfish belonging to the family Benthopectinidae.

Kholokholnyacrinus[92]

Gen. et sp. nov

Valid

Mirantsev

Carboniferous (Pennsylvanian)

Smedva Formation

 Russia
( Tver Oblast)

A cladid crinoid. Genus includes new species K. ilkhovskyi.

Kunmingeocrinus[93]

Gen. et sp. nov

In press

Zhao et al.

Cambrian Stage 4

 China

A gogiid eocrinoid. Genus includes new species K. cupuliformis.

Lapidaster hougardae[75]

Sp. nov

Valid

Thuy & Numberger-Thuy

Early Jurassic (Toarcian)

Posidonia Shale

 Luxembourg

A brittle star belonging to the group Ophioscolecida and the family Ophioscolecidae.

Mooreocrinus liaoi[94]

Sp. nov

In press

Mao & Li in Mao et al.

Carboniferous (Pennsylvanian)

Outangdi Formation

 China

A cladid crinoid.

Nafarroina[95]

Gen. et sp. nov

Valid

Forner i Valls, Arbilla Karasatorre & Moreno Alcalde

Late Cretaceous (Coniacian)

 Spain

A sea urchin belonging to the group Holasteroida and the family Stegasteridae. The type species is N. singularis.

Nymphaster mudzborgh[82]

Sp. nov

Valid

Jagt et al.

Late Cretaceous (Campanian)

 Germany

A starfish belonging to the family Goniasteridae, a species of Nymphaster.

Ophioduplantiera[96]

Gen. et sp. nov

Valid

Thuy, Numberger-Thuy & Pineda-Enríquez

Early Jurassic (Sinemurian to Pliensbachian)

Adnet Formation

 Austria

A brittle star belonging to the family Ophiuridae. The type species is O. noctiluca.

Ophiogojira[96]

Gen. et 3 sp. nov

Valid

Thuy, Numberger-Thuy & Pineda-Enríquez

Early Jurassic (Pliensbachian to Toarcian)

Aubange Formation

 France
 Luxembourg

A brittle star belonging to the group Ophiurina. The type species is O. labadiei Thuy, Numberger-Thuy & Pineda-Enríquez; genus also includes new species O. andreui Thuy, Numberger-Thuy & Pineda-Enríquez and O. aliorbis Thuy & Numberger-Thuy.[75]

Ophiomisidium pratchettae[75]

Sp. nov

Valid

Thuy & Numberger-Thuy

Early Jurassic (Toarcian)

Posidonia Shale

 Luxembourg

A brittle star belonging to the group Ophiurida and the family Astrophiuridae.

Ophiomusa perezi[75]

Sp. nov

Valid

Thuy & Numberger-Thuy

Early Jurassic (Toarcian)

Posidonia Shale

 Luxembourg

A brittle star belonging to the group Ophiurida and the family Ophiomusaidae.

Ophiosuperstes[97]

Gen. et sp. nov

Valid

Thuy, Maxwell & Pruss

Early Triassic

Moenkopi Formation

 United States
( Nevada)

A brittle star belonging to the group Ophintegrida. The type species is O. praeparvus.

Ophiotardis[75]

Gen. et sp. et comb. nov

Valid

Thuy & Numberger-Thuy

Early Jurassic (Sinemurian-Toarcian)

 Luxembourg  United Kingdom  France?  Germany?

A brittle star belonging to the group Ophiurida and the family Ophiopyrgidae. The type species is O. tennanti; genus also includes "Ophiura" astonensis Hess (1964).

Palaeocoma kortei[75]

Sp. nov

Valid

Thuy & Numberger-Thuy

Early Jurassic (Toarcian)

Posidonia Shale

 Luxembourg

A brittle star belonging to the group Ophiurida and the family Ophiopyrgidae.

Papacrinus[85]

Gen. et sp. nov

Valid

Roux & Philippe

Early Miocene

 France

A stalked crinoid belonging to the family Balanocrininae. Genus includes new species P. avignonensis.

Paraconocrinus rhodanicus[85]

Sp. nov

Valid

Roux & Philippe

Early Miocene

 France

A stalked crinoid belonging to the family Rhizocrinidae.

Perikefalea[98]

Gen. et 2 sp. nov

Valid

Lefebvre & Ausich

Silurian?-Devonian

Santa Rosa Formation

 Bolivia
 Canada?

A mitrate. Genus includes new species P. racheboeufi and possibly P? cybeleae

Pouzaster[77]

Gen. et sp. nov

Valid

Gale

Jurassic (Toarcian to Bathonian)

 France

A starfish belonging to the family Sphaerasteridae. The type species is P. pocknotata.

Pseudobystrowicrinus[99]

Gen. et sp. nov

Valid

Donovan, Deckers & Jagt

Devonian

 United Kingdom

A crinoid columnal. The type species is P. fionae.

Pseudoconocrinus lavadensis[81]

Sp. nov

Valid

Roux, Martinez & Vizcaïno

Eocene (Ypresian)

 France

A crinoid belonging to the family Rhizocrinidae. Originally described as a species of Pseudoconocrinus; transferred to the genus Lessinicrinus by Manni (2022).[100]

Pseudodiplocidaris[101]

Gen. et comb. nov

Valid

Hostettler et al.

Late Jurassic (Oxfordian)

St-Ursanne Formation

  Switzerland

A sea urchin belonging to the group Cidaroida and the family Diplocidaridae. The type species is "Diplocidaris" bernasconii Bischof, Hostettler & Menkveld-Gfeller (2018).

Punkaster[83]

Gen. et 2 sp. nov

Valid

Gale & Wesener

Late Cretaceous

Tor Formation

 Belgium
 Czech Republic
 Denmark
 Germany
 United Kingdom

A starfish belonging to the family Benthopectinidae. The type species is P. spinifera; genus also includes P. ruegenensis.

Rugosphaeraster[77]

Gen. et sp. nov

Valid

Gale

Late Cretaceous (Campanian and Maastrichtian)

 Germany
 Sweden

A starfish belonging to the family Sphaerasteridae. The type species is R. ruegenensis.

Sagittacrinus rotundacutus[84]

Sp. nov

In press

Gale

Late Cretaceous (Campanian)

 United Kingdom

A crinoid.

Scolechinus sossanensis[102]

Sp. nov

Valid

Borghi, Bottazzi & Caporiondo

Eocene (Priabonian)

 Italy

A sea urchin belongint to the family Trigonocidaridae.

Sidericrinus (col.) plymouthensis[103]

Sp. nov

Valid

Donovan & Fearnhead

Early Devonian

 United Kingdom

A crinoid.

Sinaiosalenia[87]

Gen. et sp. nov

In press

El Qot

Late Cretaceous (Cenomanian)

 Egypt

A sea urchin. Genus includes new species S. rhombohedralis.

Sinosura dieschbourgae[75]

Sp. nov

Valid

Thuy & Numberger-Thuy

Early Jurassic (Toarcian)

Posidonia Shale

 Luxembourg

A brittle star belonging to the group Ophioscolecida and the family Ophioleucidae.

Thanataster[75]

Gen. et sp. et comb. nov

Valid

Thuy & Numberger-Thuy

Early Jurassic (Sinemurian to Toarcian)

 Luxembourg

A brittle star belonging to the group Ophiurida. The type species is T. desdemonia; genus also includes "Ophiomusium" sinemurensis Kutscher & Hary (1991).

Thorntonites[90]

Gen. et sp. nov

Valid

Jell & Sprinkle

Cambrian

Thorntonia Limestone

 Australia

A stalked eocrinoid. Genus includes new species T. dowlingi

Tiburtocrinus[104]

Gen. et sp. nov

Valid

Manni & Di Nardo

Early Jurassic (Toarcian)

Corniola Formation

 Italy

A crinoid belonging to the group Isocrinida and the family Paracomatulidae. The type species is T. toarcensis.

Trecrinus[105]

Gen. et sp. nov

Valid

Semenov et al.

Ordovician (Darriwilian)

 Russia

A hybocrinid crinoid. Genus includes new species T. schmidti.

Valettaster planus[76]

Sp. nov

In press

Loba & Radwańska

Late Jurassic (Kimmeridgian)

 Poland

A starfish belonging to the family Sphaerasteridae.

Valettaster thuyi[77]

Sp. nov

Valid

Gale

Early Jurassic (Toarcian)

 France

A starfish belonging to the family Sphaerasteridae.

Valimocrinus[91]

Gen. et sp. nov

Valid

Rozhnov

Ordovician

 Russia
( Leningrad Oblast)

A crinoid, possibly a myelodactylid disparid. Genus includes new species V. terentyevi

Zoroaster marambioensis[106]

Sp. nov

Valid

Palópolo et al.

Eocene

La Meseta Formation

Antarctica

A starfish belonging to the family Zoroasteridae.

Zuravlicrinus[91]

Gen. et sp. nov

Valid

Rozhnov

Silurian

 Russia

A crinoid, possibly a myelodactylid disparid. Genus includes new species Z. milicinae

Research

[edit]
  • Fossil material of Dendrocystites belonging or related to the species D. sedgwicki is described from the Ordovician Lower Ktaoua Formation (Morocco) by Nohejlová & Lefebvre (2021), representing the first record of Soluta from Morocco and Africa in general reported to date.[107]
  • A study on the anatomy of Glyptosphaerites is published by Paul & Toom (2021).[108]
  • Redescription of the anatomy of Cystoblastus, and a study on the phylogenetic relationships of glyptocystitoids and hemicosmitoids, is published by Paul & Toom (2021).[109]
  • A study on the functional efficiency of hydrospires of blastoids, evaluating their potential significance for longer survival of blastoids than other blastozoan echinoderms, is published by Paul (2021).[110]
  • A study on extinction selectivity and changes in taxonomic, morphological and ecological diversity of diplobathrid crinoids throughout their evolutionary history is published by Cole & Hopkins (2021).[111]
  • A brittle star specimen (belonging to the group Oegophiurida and probably to the genus Protaster) preserving the body cavity in three dimensions and soft tissues, including the tube feet and internal structures, is described from the Silurian Herefordshire Lagerstätte (United Kingdom) by Carter et al. (2021).[112]

Conodonts

[edit]

New taxa

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Ancyrogondolella? bohorensis[113]

Sp. nov

Valid

Karádi et al.

Late Triassic (Norian)

 Slovenia

A member of the family Gondolellidae.

Ancyrogondolella goldingi[113]

Sp. nov

Valid

Karádi et al.

Late Triassic (Norian)

 Slovenia

A member of the family Gondolellidae.

Apsidognathus yanbianensis[114]

Sp. nov

Valid

Yan & Wu

Silurian

 China

Borinella? curvata[115]

Sp. nov

In press

Orchard

Early Triassic (Olenekian)

 Canada
( British Columbia)

Carbogondolella[116]

Gen. nov

Valid

Golding & Orchard

Carboniferous (Pennsylvanian)

A member of family Gondolellidae.

Caudicriodus anitae[117]

Sp. nov

Valid

Barrick, Sundgren & McAdams

Devonian (Lochkovian)

 United States

Caudicriodus murphyi[117]

Sp. nov

Valid

Barrick, Sundgren & McAdams

Devonian (Lochkovian)

 United States

Columbitella brevis[115]

Sp. nov

In press

Orchard

Early Triassic (Olenekian)

 Canada
( British Columbia)

Columbitella talpa[118]

Sp. nov

In press

Golding

Early Triassic (Olenekian)

 Canada
( British Columbia)

Columbitella weitschati[115]

Sp. nov

In press

Orchard

Early Triassic (Olenekian)

 United States
( Idaho)

Declinognathodus benedictus[116]

Sp. nov

Valid

Golding & Orchard

Carboniferous

 Canada
( British Columbia)

Dollymae peregrina[119]

Sp. nov

In press

Świś

Devonian (Famennian)

 Poland

Drepanoistodus iommii[120]

Sp. nov

Valid

Rasmussen, Eriksson & Lindskog

Middle Ordovician

Lynna Formation

 Russia

A member of Protopanderodontida belonging to the family Drepanoistodontidae.

Drepanoistodus svendi[120]

Sp. nov

Valid

Rasmussen, Eriksson & Lindskog

Middle Ordovician

Volkhov Formation

 Russia

A member of Protopanderodontida belonging to the family Drepanoistodontidae.

Drepanoistodus viirae[120]

Sp. nov

Valid

Rasmussen, Eriksson & Lindskog

Middle Ordovician

Sillaoru Formation

 Russia

A member of Protopanderodontida belonging to the family Drepanoistodontidae.

Epigondolella buseri[113]

Sp. nov

Valid

Karádi et al.

Late Triassic (Norian)

 Slovenia

A member of the family Gondolellidae.

Epigondolella kozjanskoensis[113]

Sp. nov

Valid

Karádi et al.

Late Triassic (Norian)

 Slovenia

A member of the family Gondolellidae.

Epigondolella ritae[113]

Sp. nov

Valid

Karádi et al.

Late Triassic (Norian)

 Austria
 Slovenia

A member of the family Gondolellidae.

Epigondolella senovoensis[113]

Sp. nov

Valid

Karádi et al.

Late Triassic (Norian)

 Slovenia

A member of the family Gondolellidae.

Epigondolella slovenica[113]

Sp. nov

Valid

Karádi et al.

Late Triassic (Norian)

 Slovenia

A member of the family Gondolellidae.

Guangxidella minuta[121]

Sp. nov

Valid

Maekawa & Jenks

Early Triassic (Olenekian)

Thaynes Group

 United States
( Nevada)

Idiognathodus coffeyvillensis[122]

Sp. nov

Valid

Rosscoe & Barrick

Carboniferous (Kasimovian)

Atrasado Formation

 United States
( New Mexico
 Oklahoma)

Idiognathodus grubbsi[116]

Sp. nov

Valid

Golding & Orchard

 Canada
( British Columbia)

Idiognathodus kinneyensis[122]

Sp. nov

Valid

Rosscoe & Barrick

Carboniferous (Kasimovian)

Atrasado Formation

 United States
( New Mexico)

Magnigondolella acuminata[115]

Sp. nov

In press

Orchard

Early Triassic (Olenekian)

 Canada
( British Columbia)

Magnigondolella incurva[115]

Sp. nov

In press

Orchard

Early Triassic (Olenekian)

 Canada
( British Columbia)

Magnigondolella? minuta[115]

Sp. nov

In press

Orchard

Early Triassic (Olenekian)

 United States
( Nevada)

Magnigondolella mutata[115]

Sp. nov

In press

Orchard & Goudemand in Orchard

Early Triassic (Olenekian)

 United States
( California)

Magnigondolella peribola[115]

Sp. nov

In press

Orchard & Golding in Orchard

Early Triassic (Olenekian)

 Canada
( British Columbia)

Magnigondolella tozeri[115]

Sp. nov

In press

Orchard

Early Triassic (Olenekian)

 Canada
( British Columbia)

Magnigondolella trutchensis[115]

Sp. nov

In press

Orchard

Early Triassic (Olenekian)

 Canada
( British Columbia)

Mesogondolella qiangtangensis[123]

Sp. nov

In press

Yuan et al.

Permian (Kungurian)

Lugu Formation

 China

Mosherella longnanensis[124]

Sp. nov

Valid

Li & Lai in Li et al.

Late Triassic (Carnian)

Dengdengqiao Formation

 China

Neognathodus brulensis[116]

Sp. nov

Valid

Golding & Orchard

Carboniferous

 Canada
( British Columbia)

Neogondolella bucheri[115]

Sp. nov

In press

Orchard

Early Triassic (Olenekian)

 United States
( Nevada)

Neogondolella darwinensis[115]

Sp. nov

In press

Orchard & Goudemand in Orchard

Early Triassic (Olenekian)

 United States
( California)

Neogondolella gradinarui[125]

Sp. nov

Valid

Golding & Orchard in Golding

Middle Triassic (Anisian)

 China
 Romania

Neogondolella praeacuta[115]

Sp. nov

In press

Orchard & Goudemand in Orchard

Early Triassic (Olenekian)

 United States
( California)

Neogondolella sinuosa[115]

Sp. nov

In press

Orchard & Goudemand in Orchard

Early Triassic (Olenekian)

 United States
( California)

Neogondolella spathiconstricta[115]

Sp. nov

In press

Orchard

Early Triassic (Olenekian)

 United States
( Nevada)

Norigondolella imperfecta[116]

Sp. nov

Valid

Golding & Orchard

 Canada
( British Columbia)

Ozarkodina huenickeni[126]

Sp. nov

In press

Gómez et al.

Silurian (Ludfordian) to Devonian (Lochkovian)

Los Espejos Formation

 Argentina

Paragondolella ebruae[127]

Sp. nov

Valid

Kılıç

Middle Triassic (Anisian)

 Turkey

Paragondolella hirschii[127]

Sp. nov

Valid

Kılıç & Budurov in Kılıç

Middle Triassic (Anisian)

 Turkey

Paragondolella nyoromo[116]

Sp. nov

Valid

Golding & Orchard

 Canada
( British Columbia)

Paragondolella praecornuta[127]

Sp. nov

Valid

Kılıç et al. in Kılıç

Middle Triassic (Anisian)

 Turkey

Parvigondolella ciarapicae[128]

Sp. nov

Valid

Rigo & Du in Du et al.

Late Triassic (Norian and Rhaetian)

Gabbs Formation
San Hipolito Formation
Scillato Formation

 Hungary
 Italy
 Mexico
 United States
( Nevada)

Pelekysgnathus soarae[129]

Sp. nov

Valid

Over et al.

Devonian–Carboniferous transition

Dyer Formation

 United States
( Colorado)

Praeicriodus simpsoni[117]

Sp. nov

Valid

Barrick, Sundgren & McAdams

Silurian (LudlowPridoli)

 Australia

Pseudosweetognathus accensus[116]

Sp. nov

Valid

Golding & Orchard

Permian

 Canada
( British Columbia)

Tasmanognathus coronatus[130]

Sp. nov

Valid

Yang et al.

Ordovician (Katian)

 China

Research

[edit]
  • A study aiming to resolve the nature, porosity and permeability of conodont white matter is published by Atakul-Özdemir et al. (2021).[131]
  • A study aiming to determine feeding behavior, growth patterns and possible changes of feeding behavior during ontogeny in Proconodontus muelleri and Panderodus equicostatus is published by Leonhard et al. (2021).[132]
  • An exceptionally preserved specimen of Panderodus unicostatus is described from the Waukesha Lagerstätte (Wisconsin, United States) by Murdock & Smith (2021), who evaluate the implications of this specimen for the knowledge of the homology within conodont feeding apparatuses and body anatomy of primitive conodonts, and interpret P. unicostatus as a macrophagous predator.[133]
  • A study on the phylogenetic relationships of Early Triassic conodonts is published by Bai et al. (2021).[134]
  • Han et al. (2021) reconstruct ontogenetic series for seven stratigraphically important Early Triassic conodont species, on the basis of fossil material from the Salt Range and Surghar Range (Pakistan), and study the phylogenetic relationships among these taxa.[135]

Fish

[edit]

Amphibians

[edit]

New taxa

[edit]
Name Novelty Status Authors Age Type locality Location Notes Images

Bermanerpeton[136]

Gen. et sp. nov

Valid

Werneburg, Schneider & Lucas

Carboniferous (Kasimovian)

Atrasado Formation

 United States
( New Mexico)

A dvinosauroid temnospondyl. The type species is B. kinneyi.

Euronecturus[137]

Gen. et sp. nov

Valid

Macaluso, Villa & Mörs

Miocene

Ville Formation

 Germany

A proteid salamander. The type species is E. grogu.

Joermungandr[138]

Gen. et sp. nov

Valid

Mann, Calthorpe & Maddin

Carboniferous (Moscovian)

Mazon Creek fossil beds

 United States
( Illinois)

A member of Recumbirostra. The type species is J. bolti.

Laosuchus hun[139]

Sp. nov

Valid

Liu & Chen

Late Permian

Naobaogou

 China

A chroniosuchian.

Leiopelma bishopi[140]

Sp. nov

Valid

Easton, Tennyson & Rawlence

Late Pliocene (Waipipian–Mangapanian)

Kowai Formation

 New Zealand

A species of Leiopelma.

Neimengtriton[141]

Gen. et comb. nov

Jia, Anderson & Gao

Middle Jurassic (Bathonian)

Haifanggou Formation

 China

A stem-hynobiid salamander; a new genus for "Liaoxitriton" daohugouensis.

Palaeobatrachus codreavladi[142]

Sp. nov

Valid

Roček, Rage & Venczel

Miocene[143]

Palaeobatrachus minutus[142]

Sp. nov

Valid

Roček, Rage & Venczel

Primaevorana[144]

Gen. et sp. nov

Valid

Moura et al.

Early Cretaceous (Aptian)

Crato Formation

 Brazil

A frog belonging to the suborder Neobatrachia. The type species is P. cratensis

Rocekophryne[145]

Gen. et sp. nov

Valid

Rage et al.

Eocene

 Algeria

A frog belonging to the group Ranoidea. The type species is R. ornata.

Sclerocephalus concordiae[146]

Sp. nov

Valid

Schoch & Sobral

 Germany

Thoosuchus abbasovi[147]

Sp. nov

Valid

Novikov

Early Triassic

 Russia

Research

[edit]
  • A study on the function and evolution of forelimbs of early tetrapods, based on data from three-dimensional models of bones and muscles of forelimbs of Eusthenopteron foordi, Acanthostega gunnari and Pederpes finneyae, is published by Molnar et al. (2021).[148]
  • A study on the evolutionary dynamics of early tetrapods and their closest fish relatives is published by Simões & Pierce (2021).[149]
  • A study on the anatomy of the skull of Whatcheeria deltae is published by Rawson et al. (2021).[150]
  • Description of the anatomy of the postcranial skeleton of Whatcheeria deltae is published by Otoo et al. (2021).[151]
  • A study on the femoral bone histology of Greererpeton, and on its implications for the knowledge of the life history of this tetrapod, is published by Whitney & Pierce (2021).[152]
  • A study on the locomotor capabilities of tetrapods from the earliest Carboniferous Blue Beach site (Nova Scotia, Canada) is published by Lennie et al. (2021).[153]
  • A study on the early evolution of long bone elongation and bone marrow in tetrapods, based on data from temnospondyls (Apateon and Metoposaurus) and seymouriamorphs (Seymouria and Discosauriscus), is published by Estefa et al. (2021), who find the terrestrial Permian seymouriamorphs to be the oldest known tetrapods exhibiting a centralized marrow organization of long bones (which allows production of blood cells as in extant amniotes), and argue that the migration of blood-cell production in long bones probably wasn't an exaptation predating the water-to-land transition.[154]
  • A study on the skeletal anatomy of the holotype specimen of Ichthyerpeton bradleyae is published by Ó Gogáin & Wyse Jackson (2021).[155]
  • A study on the relations between vertebral shape and terrestriality in the evolution of temnospondyls is published by Carter et al. (2021).[156]
  • Description of new fossil material of temnospondyls from the Triassic of the Ruhuhu and Luangwa basins (Tanzania and Zambia), providing new information on the diversity of Triassic African temnospondyls and their recovery after the Permian–Triassic extinction event, is published by Steyer et al. (2021).[157]
  • A study on the morphological changes in the skeleton of Onchiodon labyrinthicus during its ontogeny, on the phylogenetic relationships of eryopids, and on the evolution of the life cycle in eryopids is published by Schoch (2021).[158]
  • A study on the anatomy and phylogenetic relationships of "Cheliderpeton" lellbachae is published by Schoch (2021), who transfers this species to the genus Glanochthon in the family Sclerocephalidae.[159]
  • A study on the histology of different-sized femora and vertebra of specimens of Platyoposaurus stuckenbergi is published by Uliakhin, Skutschas & Saburov (2021).[160]
  • Redescription of the holotype of Cryobatrachus kitchingi is published by Gee, Makovicky & Sidor (2021), who interpret this specimen as more likely to be the juvenile of an indeterminate capitosaur than a lydekkerinid, and who also describe partial temnospondyl skull from the lower Fremouw Formation (Antarctica), provisionally referred to Lydekkerinidae.[161]
  • A study on the anatomy and phylogenetic relationships of Tertrema acuta is published by Slodownik, Mörs & Kear (2021).[162]
  • Redescription of the metoposaurid fossil material from the Upper Triassic Zions View locality (New Oxford Formation; Pennsylvania, United States) is published by Gee & Jasinski (2021), who assign this material to the species Anaschisma browni, expanding known geographic range of this taxon.[163]
  • Redescription of the holotype specimens of Borborophagus wyomingensis and Koskinonodon princeps, and a reassessment of their synonymy with Anaschisma browni, is published by Kufner & Gee (2021).[164]
  • A study on the histology of the mandible of Metoposaurus krasiejowensis is published by Gruntmejer, Bodzioch & Konietzko-Meier (2021).[165]
  • A study on the anatomy and phylogenetic relationships of Timonya anneae and Procuhy nazariensis is published by Marsicano et al. (2021).[166]
  • A study on the anatomy and phylogenetic relationships of Macrerpeton huxleyi is published by Schoch & Milner (2021).[167]
  • A study on the phylogenetic relationships of dissorophid temnospondyls is published by Gee (2021).[168]
  • Description of a new specimen of Conjunctio from the Permian Cutler Formation (Colorado, United States), and a study on the phylogenetic relationships of this genus, is published by Gee et al. (2021).[169]
  • New fossil material of Micropholis stowi, expanding known geographic range of this species, is described from the lower Fremouw Formation (Halfmoon Bluff, Antarctica) by Gee & Sidor (2021).[170]
  • New early adult specimen of Milnererpeton huberi, providing new information on the ontogenetic development of amphibamiform temnospondyls, is described from the Carboniferous (Kasimovian) Atrasado Formation (New Mexico, United States) by Werneburg, Schneider & Lucas (2021).[171]
  • A study on the skeletal anatomy of Apateon dracyiensis, the anatomical variation in the fossil material of this species, and on its ontogeny, is published by Werneburg (2021).[172]
  • A study on the anatomy and development of the wrist of Genibatrachus is published by Roček et al. (2021).[173]
  • An early Campanian assemblage of anuran bones, suggestive of high local species richness of frogs, is described from the Aguja Formation (Texas, United States) by Wick (2021).[174]
  • Fossil material of Late Cretaceous frogs, including fossils of calyptocephalellid frogs and the southernmost record of pipids (Kuruleufenia) worldwide reported to date, is described from the CampanianMaastrichtian assemblages from Chilean and Argentinean Patagonia (Dorotea, Allen and Los Alamitos formations) by Suazo Lara & Gómez (2021).[175]
  • Description of new pipimorph fossil material from the Cenomanian Candeleros Formation (Argentina), and a study on the implications of these fossils for the knowledge of the formation of the sacrum in pipimorphs throughout their evolutionary history, is published by Báez, Muzzopappa & Araújo (2021).[176]
  • Description of new fossil material of Hungarobatrachus szukacsi from the Upper Cretaceous (Santonian) Csehbánya Formation (Hungary), and a study on the anatomy and phylogenetic relationships of this species, is published by Venczel, Szentesi & Gardner (2021).[177]
  • Revision of the fossil record of the family Ceratophryidae is published by Gómez & Turazzini (2021).[178]
  • Redescription and a study on the phylogenetic relationships of Bufo servatus is published by Lemierre et al. (2021), who interpret this species as a senior synonym of Thaumastosaurus gezei (resulting in new combination Thaumastosaurus servatus), and assign it to the family Pyxicephalidae.[179]
  • Revision of the fossil material of Mesozoic temnospondyls and anurans housed in the collections of the Sirindhorn Museum and the Palaeontological Research and Education Centre of Mahasarakham University (Thailand), including fossils of brachyopids resembling the Chinese forms, is published by Nonsrirach, Manitkoon & Lauprasert (2021).[180]
  • Redescription of Nannaroter mckinziei, based on data from the holotype and from a new specimen from the Richards Spur locality (Oklahoma, United States), is published by MacDougall et al. (2021).[181]
  • A study aiming to determine plausible body postures and locomotion of Orobates pabsti is published by Zwafing et al. (2021).[182]
  • A study on the anatomy of the braincase and inner ear of Limnoscelis dynatis is published by Klembara et al. (2021).[183]

Reptiles

[edit]

Synapsids

[edit]

Non-mammalian synapsids

[edit]

New taxa

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Acratophorus[184]

Gen. et comb. nov

Valid

Kammerer & Ordoñez

Middle Triassic (Anisian)?

Río Seco de la Quebrada

 Argentina

A kannemeyeriid dicynodont, the type species is "Kannemeyeria" argentinensis.

Borealestes cuillinensis[185]

Sp. nov

Valid

Panciroli et al.

Middle Jurassic (Bathonian)

Kilmaluag Formation

 United Kingdom

A docodont.

B. cuillinensis (bottom, blue)

Dobunnodon[185]

Gen. et comb. nov

Valid

Panciroli et al.

Middle Jurassic (Bathonian)

Forest Marble Formation

 United Kingdom

A docodont; a new genus for "Borealestes" mussettae Sigogneau−Russell (2003).

Fossiomanus[186]

Gen. et sp. nov

Valid

Mao et al.

Early Cretaceous (Aptian)

Jiufotang Formation

 China

A cynodont belonging to the family Tritylodontidae. Genus includes new species F. sinensis.

Impidens[187]

Gen. et sp. nov

Valid

Tolchard et al.

Middle Triassic

Cynognathus Assemblage Zone

Antarctica
 South Africa

A gomphodont cynodont. Genus includes new species I. hancoxi.

Isengops[188]

Gen. et sp. nov

Sidor, Tabor & Smith

Late Permian

Madumabisa Mudstone

 Zambia

A burnetiamorph biarmosuchian. Genus includes new species I. luangwensis.

Kannemeyeria aganosteus[184]

Sp. nov

Valid

Kammerer & Ordoñez

Middle Triassic (Anisian)?

Quebrada de los Fósiles

 Argentina

A species of Kannemeyeria.

Mobaceras[189]

Gen. et sp. nov

Valid

Kammerer & Sidor

Middle Permian

Madumabisa Mudstone

 Zambia

A burnetiid therapsid. The type species is M. zambeziense.

Shashajaia[190]

Gen. et sp. nov

Huttenlocker et al.

Carboniferous (Gzhelian)

Halgaito Formation

 United States
( Utah)

An early member of Sphenacodontia. The type species is S. bermani.

Turfanodon jiufengensis[191]

Sp. nov

Valid

Liu

Late Permian

Naobaogou Formation

 China

A dicynodontoid dicynodont.

Research

[edit]
  • A study comparing species richness of synapsids and reptiles during the Pennsylvanian and Cisuralian, evaluating the impact of the preservation biases, the effect of Lagerstätten, and contested phylogenetic placement of late Carboniferous and early Permian tetrapods on estimates of relative diversity patterns of synapsids and reptiles, is published by Brocklehurst (2021), who interprets his findings as challenging the assumption that synapsids dominated during the Pennsylvanian and Cisuralian.[192]
  • A study on the evolution of the vertebral column in synapsids is published by Jones et al. (2021), who interpret their findings as refuting the idea that the transition from non-mammalian synapsids to mammals involved a shift from reptile-like lateral bending of the backbone to sagittal bending, and argue that non-mammalian synapsids were characterized by their own unique functional regime of the vertebral column, distinct from that of extant reptiles and amphibians.[193]
  • A study comparing the forelimb morphology in extant mammals and fossil non-mammalian synapsids, aiming to determine whether extant mammals are good ecomorphological analogues for extinct synapsids, whether examples of ecomorphological convergence can be found among synapsids, and whether evolutionary history determined available functional solutions in synapsid forelimbs, is published by Lungmus & Angielczyk (2021).[194]
  • A study aiming to determine when major shifts in shoulder joint function and a shift from sprawling to parasagittal posture occurred during synapsid evolution, based on relationships between shoulder joint morphology, mobility, and muscle function in extant Argentine black and white tegu, short-beaked echidna and Virginia opossum, as well as on data on anatomical transformations preserved in the fossil record, is published by Brocklehurst et al. (2021).[195]
  • A study aiming to determine the index of blood flow into the femora of non-mammalian synapsids, and using it to determine the maximum metabolic rate of these synapsids, is published by Knaus et al. (2021), who interpret their findings as indicating that aerobic capacity was elevated in non-therapsid synapsids above the level of most recent non-varanid lepidosaurs, turtles and crocodilians since the late Carboniferous, with maximum aerobic metabolic rates at, or above, the level of varanids.[196]
  • Matamales-Andreu et al. (2021) describe probable caseid tracks from the lower Permian of Mallorca (Spain), and evaluate the implications of these tracks for the knowledge of the locomotion of early synapsids.[197]
  • A study comparing the morphology of the maxillary canal of Heleosaurus scholtzi, Varanosaurus acutrostris, Orovenator mayorum and Prolacerta broomi, and evaluating the implications of the morphology of the maxillary canal for the knowledge of the phylogenetic placement of varanopids, is published by Benoit et al. (2021).[198]
  • A study on the neurosensory anatomy of varanopids is published by Bazzana et al. (2021).[199]
  • A study on the skeletal anatomy and phylogenetic relationships of Raranimus dashankouensis is published by Duhamel et al. (2021).[200]
  • A study on the ontogenetic variation in the anatomy of the skulls of biarmosuchians, based on data from skulls of juvenile specimens, is published by Duhamel et al. (2021).[201]
  • A study on the paleoneurology and likely paleobiology of Anteosaurus magnificus is published by Benoit et al. (2021).[202]
  • A study on bone architecture and histology in two species of Anteosaurus from the Tapinocephalus Assemblage Zone of the Karoo Basin (South Africa), aiming to determine the inter-elemental variation in their bone histology and their possible lifestyle adaptations, is published by Bhat, Shelton & Chinsamy (2021).[203]
  • A study on the bone histology of multiple skeletal elements of three specimens belonging to the genus Jonkeria from the Tapinocephalus Assemblage Zone, and on its implications for the knowledge of the paleobiology of these dinocephalians, is published by Bhat, Shelton & Chinsamy (2021).[204]
  • A study on the bone histology of multiple skeletal elements of dinocephalians from the Tapinocephalus Assemblage Zone of the Karoo Basin is published by Bhat, Shelton & Chinsamy (2021).[205]
  • New specimen of Lanthanostegus mohoii, providing new information on the anatomy of the skull of this dicynodont and providing the first direct correlation between the lower Abrahamskraal Formation at Jansenville on the eastern side of the Karoo Basin and the southwestern part of this basin, is described by Rubidge, Day & Benoit (2021).[206]
  • New burrow casts containing skeletons of Diictodon, including associated remains of adult and infant specimens, are described by Smith et al. (2021), who consider it likely that portions of burrows produced Diictodon by were facultatively used as brood chambers.[207]
  • A study on the histology of mandibles and maxillae of Endothiodon bathystoma, and on the development and evolution of multiple tooth rows in this dicynodont, is published by Olroyd et al. (2021).[208]
  • Redescription and a study on the phylogenetic relationships of Kunpania scopulusa is published by Angielczyk, Liu & Yang (2021).[209]
  • A study on the bone histology and likely life history of specimens of Lystrosaurus from the Lower Triassic Turpan Basin (Xinjiang, China), comparing them with specimens from South Africa, is published by Han, Zhao & Liu (2021).[210]
  • A study on the bone histology in a size range of Lystrosaurus skeletal elements from the Jiucaiyuan Formation (China), and on its implications for the knowledge whether members of the genus Lystrosaurus from northern Pangaea had differing life histories than their southern Pangean relatives, is published by Kulik et al. (2021).[211]
  • A new postcranial specimen of a stahleckeriid dicynodont, possibly of Stahleckeria, is described from the Chañares Formation, representing the oldest record of stahleckeriine dicynodonts from the Ischigualasto-Villa Unión Basin in Argentina.[212]
  • A study on the evolution of dicynodont tusks is published by Whitney et al. (2021).[213]
  • A study on the quality of the early cynodont fossil record in time and space, and on its implications for the understanding of the group's evolutionary history, is published by Varnham, Mannion & Kammerer (2021).[214]
  • A study on the anatomy and variation of the stapes in Thrinaxodon and Galesaurus is published by Gaetano & Abdala (2021).[215]
  • A study on the anatomy of the skull of Bolotridon frerensis, and on the phylogenetic relationships of this species, is published by Pusch, Kammerer & Fröbisch (2021).[216]
  • A study on the morphology of the nasal cavity of Exaeretodon riograndensis and Siriusgnathus niemeyerorum is published by Franco et al. (2021).[217]
  • A study on the morphology of the endocast of a specimen of Riograndia guaibensis from the Linha São Luiz site (Candelária Sequence of the Santa Maria Supersequence, Brazil) is published by Kerber et al. (2021).[218]
  • Description of a new specimen of Irajatherium hernandezi from the Linha São Luiz site (Candelária Sequence, Brazil), providing new information on the skeletal anatomy of this cynodont, and a study on the phylogenetic relationships of tritheledontids is published by Kerber et al. (2021).[219]
  • Description of five partially preserved petrosals of early mammaliaforms from the Middle Jurassic sediments of the Berezovsk coal mine (Krasnoyarsk Krai, Russia), and a study on the implications of these fossils for the knowledge of the evolution of the inner ear anatomy in early mammaliaforms, is published by Schultz et al. (2021).[220]
  • New specimen of the Middle Jurassic haramiyidan Vilevolodon diplomylos with well-preserved malleus, incus and ectotympanic is described by Wang et al. (2021).[221]
  • Description of two partial postcranial skeletons of Borealestes from the Kilmaluag Formation (Scotland, United Kingdom), and a study on the phylogenetic relationships of this docodont, is published by Panciroli et al. (2021).[222]

Mammals

[edit]

Other animals

[edit]

New taxa

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Aculeiconchus[223]

Gen. et sp. nov

Valid

Zatoń et al.

Devonian (Givetian)

Maywood Formation

 United States
( Wyoming)

A microconchid. Genus includes new species A. sandbergi.

Anabarites dalirense[224]

Sp. nov

Valid

Devaere et al.

Early Cambrian

Soltanieh Formation

 Iran

An anabaritid.

Andalucilites[225]

Gen. et sp. nov

Valid

Gutiérrez-Marco, Marek & Malinky

Ordovician (Darriwilian)

 Spain

A member of Hyolitha. Genus includes new species A. parvulus.

Anulitubus[226]

Gen. et sp. nov

Valid

Moczydłowska in Moczydłowska et al.

Ediacaran

Stáhpogieddi Formation

 Norway

A member of Eumetazoa of uncertain phylogenetic placement. The type species is A. formosus.

Arienigraptus balticus[227]

Sp. nov

Valid

Maletz & Ahlberg

Ordovician (Darriwilian)

 Sweden

A graptolite.

Arienigraptus delicatus[227]

Sp. nov

Valid

Maletz & Ahlberg

Ordovician (Darriwilian)

 Sweden

A graptolite.

Arienigraptus robustus[227]

Sp. nov

Valid

Maletz & Ahlberg

Ordovician (Dapingian)

 Sweden

A graptolite.

Arrakiscolex[228]

Gen. et sp. nov

Valid

Leibach et al.

Cambrian (Drumian)

Marjum Formation

 United States
( Utah)

A palaeoscolecid. Genus includes new species A. aasei.

Aulozoon[229]

Gen. et sp. nov

In press

Gehling & Runnegar

Ediacaran

 Australia

An annelid. The type species is A. soliorum.

Blastochaetetes reitneri[230]

Sp. nov

In press

Sánchez-Beristain & García-Barrera in Sánchez-Beristain, García-Barrera & Juárez-Aguilar

Late Cretaceous

Tamasopo Formation

 Mexico

A chaetetid demosponge.

Cardiograptus altaicus[231]

Sp. nov

Valid

Lykova & Sennikov

Ordovician (Dapingian)

 Russia

A graptolite belonging to the family Isograptidae.

Choiaella hexactinophora[232]

Sp. nov

Valid

Botting

Ordovician (Darriwilian)

Gilwern Volcanic Formation

 United Kingdom

A sponge.

Coniculus[226]

Gen. et sp. nov

Valid

Moczydłowska in Moczydłowska et al.

Ediacaran

Stáhpogieddi Formation

 Norway

A member of Eumetazoa of uncertain phylogenetic placement. The type species is C. elegantis.

Cornulites spinosus[233]

Sp. nov

Valid

Vinn & Eyzenga

Late Ordovician

 Netherlands

A cornulitid tubeworm.

Ctenorhabdotus campanelliformis[234]

Sp. nov

Valid

Parry et al.

Cambrian (probably Drumian)

Probably Marjum Formation

 United States
( Utah)

A member of Ctenophora.

Daihuoides[235]

Gen. et sp. nov

Valid

Klug et al.

Devonian (Frasnian)

Escuminac Formation

 Canada
( Quebec)

A stem-ctenophore. The type species is D. jakobvintheri.

Dailyatia icari[236]

Sp. nov

Valid

Claybourn et al.

Cambrian Series 2

Antarctica

A camenellan tommotiid.

Ekstroemograptus[237]

Gen. et sp. nov

Valid

Maletz & Ahlberg

Ordovician (Darriwilian)

 Sweden

A graptolite. Genus includes new species E. inexpectatus.

Finkoella[238]

Gen. et 2 sp. nov

Valid

Martyshyn in Martyshyn & Uchman

Ediacaran

Mogilev Formation

 Ukraine

A possible tunicate described on the basis of sack-like body fossils. The type species is F. ukrainica; genus also includes F. oblonga.

Hoffmanigraptus[239]

Gen. et sp. et comb. nov

Valid

Kozłowska

Silurian

 Czech Republic
 Poland

A graptolite. The type species is H. varsoviensis; genus also includes "Plectograptus" ovatus Kozłowska-Dawidziuk, Lenz & Štorch (2001) and "Plectograptus" karlsteinensis Kozłowska-Dawidziuk, Lenz & Štorch (2001).

Labechia zhuzhainus[240]

Sp. nov

Valid

Jeon in Jeon et al.

Ordovician (Katian)

Xiazhen Formation

 China

A stromatoporoid.

Labechiella beluatus[240]

Sp. nov

Valid

Jeon in Jeon et al.

Ordovician (Katian)

Xiazhen Formation

 China

A stromatoporoid.

Leolites malinkyi[225]

Sp. nov

Valid

Marek & Gutiérrez-Marco in Gutiérrez-Marco, Marek & Malinky

Ordovician (Darriwilian)

 Spain

A member of Hyolitha.

Lepidocoleus caliburnus[241]

Sp. nov

Valid

Jacquet et al.

Devonian (Pragian)

Garra Formation

 Australia

A lepidocoleid annelid.

Lepidocoleus shurikenus[241]

Sp. nov

Valid

Jacquet et al.

Devonian (Pragian)

Garra Formation

 Australia

A lepidocoleid annelid.

Neuropora gigantea[242]

Sp. nov

Valid

Pleș & Schlagintweit in Pleș et al.

Late Jurassic (Kimmeridgian-Tithonian)

Giuvala Formation

 Romania

A sponge.

Novakotheca weifangensis[243]

Sp. nov

Valid

Sun, Sun & Zhao

Cambrian (Wuliuan)

Mantou Formation

 China

A member of Hyolitha belonging to the group Hyolithida.

Oncograptus hastatus[231]

Sp. nov

Valid

Lykova & Sennikov

Ordovician (Dapingian)

 Russia

A graptolite belonging to the family Isograptidae.

Palaeocorvospongilla[244]

Gen. et sp. nov

In press

Samant et al.

Late Cretaceous (Maastrichtian)

Deccan Intertrappean Beds

 India

A sponge belonging to the family Palaeospongillidae. Genus includes new species P. cretacea.

Palaeoparasitylenchus balticus[245]

Sp. nov

Valid

Poinar & Brown

Eocene

Baltic amber

Europe (Baltic Sea region)

A nematode belonging to the family Parasitylenchidae.

Palaeosaccus minus[246]

Sp. nov

Valid

Luo et al.

Cambrian

Shuijingtuo Formation

 China

A sponge.

Palaeoscoloplos[247]

Gen. et sp. nov

Valid

Knaust

Middle Triassic

Muschelkalk

 Germany

An annelid, possibly a member of the family Orbiniidae. Genus includes new species P. triassicus.

Papiliograptus retimarginatus[248]

Sp. nov

Valid

Kozłowska & Bates

Silurian (Homerian)

 Germany
 Poland

A graptolite belonging to the family Retiolitidae.

Paraclimacograptus crameri[249]

Sp. nov

Valid

Loydell & Abouelresh

Silurian (Aeronian)

Qusaiba Shale Formation

 Saudi Arabia

A graptolite.

Paradoryphoribius[250]

Gen et sp. nov

Mapalo et al.

Miocene

Dominican amber

 Dominican Republic

A tardigrade. The type species is P. chronocaribbeus.

Paramackenzia[251]

Gen. et sp. nov

Valid

Zhao et al.

Early Cambrian

 China

A member of the family Mackenziidae (organisms of uncertain phylogenetic placement, possibly stem eumetazoans). Genus includes new species P. canalifera.

Paratetilla milanek[252]

Sp. nov

Valid

Łukowiak in Łukowiak et al.

Middle Eocene

 Ukraine

A sponge belonging to the family Tetillidae.

Pauxillites desolatus[225]

Sp. nov

Valid

Gutiérrez-Marco, Marek & Malinky

Ordovician (Darriwilian)

 Spain

A member of Hyolitha.

Pharyngomorpha[238]

Gen. et sp. nov

Valid

Martyshyn & Uchman

Ediacaran

Mogilev Formation

 Ukraine

Possibly a fragment of the pharyngeal basket of a tunicate. The type species is P. reticulata.

Pseudopelagiella[253]

Gen. et comb. nov

Valid

Landing et al.

Cambrian

Kinzers Formation

 United States
( Pennsylvania)

A polychaete, likely a member of Sabellida; a new genus for "Pelagiella" exigua Resser & Howell.

Robardetlites[225]

Gen. et sp. nov

Valid

Gutiérrez-Marco, Marek & Malinky

Ordovician (Darriwilian)

 Spain

A member of Hyolitha. Genus includes new species R. sevillanus.

Rugosusivitta[254]

Gen. et sp. nov

Valid

Tang et al.

Early Cambrian

Yuhucun Formation

 China

A ribbon-shaped, bilaterally symmetrical organism, probably a flatworm of uncertain phylogenetic placement. The type species is R. orthogonia.

Saetaspongia jianhensis[255]

Sp. nov

Valid

Ling et al.

Cambrian Stage 4

Balang Formation

 China

A sponge of uncertain phylogenetic placement, possibly with protomonaxonid affinities.

Selkirkia transita[256]

Sp. nov

Wang et al.

Cambrian Stage 3

Yu'anshan Formation

 China

A member of Priapulida belonging to the family Selkirkiidae.

Silicofistula[226][257]

Gen. et sp. nov

Valid

Moczydłowska in Moczydłowska et al.

Ediacaran

Stáhpogieddi Formation

 Norway

A member of Eumetazoa of uncertain phylogenetic placement. The type species is S. crenulata.

Sinabeatricea[240]

Gen. et sp. nov

Valid

Jeon in Jeon et al.

Ordovician (Katian)

Xiazhen Formation

 China

A stromatoporoid. Genus includes new species S. luteolus.

Stenothecoides rasettii[258]

Sp. nov

Valid

Johnston & Streng

Cambrian

Burgess Shale

 Canada
( British Columbia)

A member of Stenothecoida (a group of animals of uncertain affinities, possibly pan-brachiopods).

Stenothecoides terraglaciei[259]

Sp. nov

Valid

Peel

Cambrian (Wuliuan)

Henson Gletscher Formation

 Greenland

A member of Stenothecoida.

Thalassostaphylos[234]

Gen. et sp. nov

Valid

Parry et al.

Cambrian (Drumian)

Marjum Formation

 United States
( Utah)

A member of Ctenophora. The type species is T. elegans.

Theonella alexandriae[252]

Sp. nov

Valid

Łukowiak in Łukowiak et al.

Late Eocene

 Ukraine

A sponge belonging to the family Theonellidae.

Triticispongia giganta[246]

Sp. nov

Valid

Luo et al.

Cambrian

Shuijingtuo Formation

 China

A sponge.

Turriserpula[260]

Gen. et sp. nov

In press

Dieni & Massari

Early Cretaceous (Berriasian)

 Italy

A microserpulid. Genus includes new species T. coralliophila.

Vauxia paraleioia[261]

Sp. nov

In press

Wei et al.

Cambrian Stage 3

 China

A vauxiid sponge.

Vauxia pregracilenta[261]

Sp. nov

In press

Wei et al.

Cambrian Stage 3

 China

A vauxiid sponge.

Xinliscolex[262]

Gen. et sp. nov

In press

Zhang

Cambrian (Fortunian)

 China

An early cycloneuralian. Genus includes new species X. intermedius.

Research

[edit]
  • Turner (2021) describes vermiform-microstructured masses from approximately 890-million-year-old Little Dal reefs (Stone Knife Formation, Canada), potentially representing the oldest body fossils of sponges (and animals in general) reported to date.[263]
  • A study on the internal anatomical structure and development of Charnia masoni, based on data from specimens interpreted as reflecting different developmental stages, is published by Dunn et al. (2021), who interpret their findings as indicating that rangeomorphs were members of the stem group of Eumetazoa.[264]
  • A study aiming to identify characters of Kimberella, Ikaria, Dickinsonia and Tribrachidium controlled by conserved developmental processes, as well as genetic elements likely responsible for their expression, is published by Evans, Droser & Erwin (2021), who also attempt to determine phylogenetic positions of these taxa relative to extant animals.[265]
  • Structures interpreted as traces of motor activity of Dickinsonia are reported by Ivantsov & Zakrevskaya (2021), who interpret the studied traces as indicating that Dickinsonia was capable of both attachment and mobility.[266]
  • A study on the location of module addition during growth in Dickinsonia costata is published by Evans et al. (2021).[267]
  • A study aiming to determine the feeding mode of Arkarua adami is published by Cracknell et al. (2021).[268]
  • A fossil specimen sharing anatomical features with both archaeocyaths and vauxiids is described from the early Cambrian Guanshan Lagerstätte (South China) by Luo et al. (2021), who suggest that vauxiids were descendants of archaeocyaths rather than Cambrian representatives of horny demosponges.[269]
  • A study on the morphology and affinities of Shaanxilithes is published by Wang et al. (2021).[270]
  • A study aiming to test the hypothesis that the type and extent of calcification and morphology in Cloudina was controlled environmentally, based on data from Cloudina assemblages from localities in the Upper Omkyk Member of the Nama Group (Namibia), is published by Shore & Wood (2021).[271]
  • Taxonomic revision of the Ediacaran tubular fossils Cloudina, Sinotubulites and Conotubus is published by Yang et al. (2021).[272]
  • Shore et al. (2021) report the first three-dimensional, pyritized preservation of soft tissue in Namacalathus hermanastes from the Nama Group (Namibia), and evaluate the implications of this finding for the knowledge of the phylogenetic relationships of this animal.[273]
  • A novel type of agglutinated tube, made of silt-sized particles forming a flanged shape that was previously unknown in the fossil record, is described from the Devonian Ponta Grossa Formation (Brazil) by Becker-Kerber et al. (2021), who identify the studied tubes as belonging to the species Annulitubus mutvei, and note their similarities to tubes made by polychaetes from the family Maldanidae.[274]
  • New specimen of Protowenella flemingi is described from the Cambrian Henson Gletscher Formation (Greenland) by Peel (2021), who interprets the anatomy of this specimen as indicating that Protowenella was a hyolith rather than a mollusc.[275]
  • A new assemblage of fossil eggs, embryos attributable to the early scalidophoran Markuelia, and early post-embryonic developmental stages of camenellans is described from the Cambrian Stage 3 Salanygol Formation (Mongolia) by Steiner et al. (2021).[276]
  • Yang et al. (2021) describe fossil material from the Guanshan biota (China) providing evidence of consistent occurrence of Cambrian priapulan worms (possibly belonging to the genus Eximipriapulus) within the conical shells of hyoliths, representing the first direct evidence of the adoption of a different organism's exoskeleton in the priapulans and within the Paleozoic era.[277]
  • Description of new fossil material of Tabelliscolex hexagonus from the Cambrian Chengjiang biota (Yu'anshan Formation, China), and a study on the phylogenetic affinities of palaeoscolecids, is published by Shi & Howard et al. (2021);[278] the study is subsequently criticized by Smith & Dhungana (2021).[279]
  • Redescription of Stanleycaris hirpex, and a study on the phylogenetic relationships of this species and on the functional specialization of the frontal appendages of this and other stem euarthropods, is published by Moysiuk & Caron (2021).[280]

Other organisms

[edit]

New taxa

[edit]
Name Novelty Status Authors Age Type locality Location Notes Images

Amsassia terranovensis[281]

Sp. nov

In press

Lee, Elias & Pratt

Ordovician (Tremadocian)

Watts Bight Formation

 Canada
( Newfoundland and Labrador)

A calcareous alga, possibly representing an extinct group of green algae.

Bicellum[282][283]

Gen. et sp. nov

Strother & Wellman in Strother et al.

Torridonian

Diabaig Formation

 United Kingdom

An organism of uncertain phylogenetic placement, possibly an early member of Holozoa. Genus includes new species B. brasieri. Appears to have differentiated multicellularity.

Dictyosphaera smaugi[284]

Sp. nov

Valid

Loron et al.

Mesoproterozoic

Dismal Lakes Group

 Canada

An organic-walled microfossil.

Gigarimaneta[285]

Gen. et sp. nov

Valid

Taylor et al.

Ediacaran

Mistaken Point Formation

 Canada
( Newfoundland and Labrador)

An organism growing on the seafloor in a manner similar to Fractofusus and Beothukis. Genus includes new species G. samsoni.

Ladariella[286]

Gen. et sp. nov

Diniz & Leme in Diniz, Leme & Boggiani

Ediacaran

Tamengo Formation

 Brazil

A macroalga of uncertain phylogenetic placement, possibly related to the family Eoholyniaceae. Genus includes new species L. hidria.

Ladariophyton[286]

Gen. et sp. nov

Diniz & Leme in Diniz, Leme & Boggiani

Ediacaran

Tamengo Formation

 Brazil

A macroalga of uncertain phylogenetic placement, possibly related to the family Eoholyniaceae. Genus includes new species L. veinosa.

Lagoenaforma[287]

Gen. et sp. nov

In press

Agić et al.

Late Ediacaran

Stáhpogieddi Formation

 Canada
( Newfoundland and Labrador)
 Namibia
 Norway

A flask-shaped microfossil. Genus includes new species L. collaris.

Lanceaphyton[288]

Gen. et sp. nov

In press

Wang et al.

Ediacaran

 China

A high-level eukaryotic macroalga. Genus includes new species L. xiaojiangensis.

Ostiosphaera[289]

Gen. et sp. nov

In press

Yin et al.

Ediacaran

Doushantuo Formation

 China

An embryo-like fossil of a eukaryote of uncertain affinities, possibly a holozoan. The type species is O. rara.

Palaeohypothrix[290]

Gen. et sp. nov

Da Silva Paiva & de Souza Carvalho

Early Cretaceous (BerriasianBarremian)

Maracangalha Formation

 Brazil

A spirotrich. Genus includes new species P. bahiensis.

Quadrimurus[291]

Gen. et sp. nov

Valid

Miao, Moczydłowska & Zhu

Early Mesoproterozoic

Xiamaling Formation

 China

An organic-walled microfossil. Genus includes new species Q. clavatus.

Rhyniotaxillus minutulus[292]

Sp. nov

Valid

Krings

Early Devonian

Windyfield chert

 United Kingdom

A colonial cyanobacterium.

Rhystigonema[293]

Gen. et sp. nov

In press

Krings

Early Devonian

Rhynie chert

 United Kingdom

A filamentous cyanobacterium belonging to the family Stigonemataceae. Genus includes new species R. obscurum.

Tamengophyton[286]

Gen. et sp. nov

Diniz & Leme in Diniz, Leme & Boggiani

Ediacaran

Tamengo Formation

 Brazil

A macroalga of uncertain phylogenetic placement, possibly related to the family Eoholyniaceae. Genus includes new species T. espinosa.

Vikisphaera[294]

Gen. et sp. nov

Valid

Hints, Nõlvak & Liang

Ordovician (Darriwilian)

Loobu Formation

 Estonia
 Latvia
 Russia
 Sweden

An organic-walled microfossil of uncertain affinities, possibly representing egg capsules of marine animals. Genus includes new species V. kundana.

Research

[edit]
  • Well-preserved putative filamentous microfossils, potentially representing the oldest known indigenous subsurface microorganisms with a methane-based metabolism, are described from the ~3.42-billion-year-old subseafloor hydrothermal vein system from the Barberton Greenstone Belt by Cavalazzi et al. (2021).[295]
  • Delarue et al. (2021) describe 3.4 billion years old microfossils preserved with a tail-like structure from the Strelley Pool Formation (Australia), and interpret the tail-like appendage as likely providing early microorganisms with movement capabilities.[296]
  • A study on the preservation of ~ 1 billion years old organic matter in the Lakhanda Lagerstätte (Siberia, Russia) is published by Duda et al. (2021), who interpret this Lagerstätte as evidence of an environment dominated by anaerobic bacteria with no or very little inputs by eukaryotes.[297]
  • Tang et al. (2021) describe dark discoidal, semicircular, or ovate structures preserved on fossil of early Neoproterozoic eukaryotes Tawuia and Sinosabellidites from North China, and interpret these structures as fossils of eukaryotic epibionts that lived on the surface of and may have benefited from an association with their Tawuia and Sinosabellidites hosts.[298]
  • Well-preserved communities of large unbranched filamentous microorganisms, bearing morphological and ecological similarities with large sulfide-oxidizing bacteria such as Beggiatoa, are described from the Ediacaran Itajaí Basin (Brazil) by Becker-Kerber et al. (2021).[299]
  • Ediacaran fossils, including mouldically preserved desiccated microbial mat fossils, Arumberia-type fossils, and associated metre-scale structures, are described from the Gibbett Hill and Ferryland Head formations (Newfoundland, Canada) by McMahon et al. (2021), who interpret the metre-scale structures as fossil biofilm streamers induced by currents.[300]
  • A study on the morphology of Arumberia, based on data from findings from the lower Cambrian Port Lazo Formation (Brittany, France), is published by McMahon et al. (2021), who interpret Arumberia as recording the remains of extinct, sessile filamentous organisms (possibly microbial or algal).[301]
  • Zacaï et al. (2021) attempt to determine the potential timing of establishment of the latitudinal diversity gradient for early Paleozoic acritarchs and its evolution through time .[302]
  • A study on the affinities of archaeocyaths, interpreting them as possible consortia of siphonous green seaweeds and cyanobacteria-like microbes, is published by Kaźmierczak & Kremer (2021).[303]
  • A study on the impact of Earth's orbital eccentricity on the evolution of coccolithophores during the last 2.8 million years is published Beaufort et al. (2021).[304]

History of life in general

[edit]
  • A study on the taphonomy of eukaryotic organelles, assessing the basis of the view that organelles decay too rapidly to be fossilized and evaluating the plausibility of the claims of organelles preserved in Proterozoic fossils, is published by Carlisle et al. (2021).[305]
  • Evidence of the presence of significant populations of both red and green algae ca. 1.4 billion years ago (600 million years earlier than previously recognized) is reported from the Xiamaling Formation (China) by Zhang et al. (2021).[306]
  • A study on the micro- and ultra-structures and chemical components of embryo-like fossils from the early Ediacaran Weng'an biota (China) is published by Sun et al. (2021).[307]
  • A study on the latitudinal distribution of the macrobiota through the late Ediacaran is published by Boddy et al. (2021).[308]
  • A study on the major biotic transitions in the Phanerozoic fossil record of the benthic marine faunas is published by Rojas et al. (2021), who report evidence of three major biotic transitions (across the end-Cambrian, end-Permian, and mid-Cretaceous boundaries).[309]
  • A study on changes of diversity of skeletonized marine invertebrates in the fossil record, evaluating the impact of dead clades walking on broader trends in Phanerozoic biodiversity, is published by Barnes, Sclafani & Zaffos (2021), who identify 70 invertebrate orders that experienced major diversity losses without recovery, but note that most of these taxa had a long duration after the drop in diversity, and many drops in diversity without recovery were not associated with mass extinction events.[310]
  • A study on the relationship between changes in surface oxygenation and extinction rates of marine animals throughout the Phanerozoic is published by Stockey et al. (2021).[311]
  • A study on shifts in the dynamics of the evolution of body size in marine animals between background intervals and the "Big Five" Phanerozoic extinction events is published by Monarrez, Heim & Payne (2021).[312]
  • A study on changes of nutrient content of planktonic organic matter throughout the Phanerozoic is published by Sharoni & Halevy (2021).[313]
  • New Burgess Shale-type Cambrian paleocommunity, preserving fossil eggs and fossils of members various phyla representing early and middle ontogenetic stages, is described from Haiyan (China) by Yang et al. (2021), who interpret the deposit as either preserving one of the earliest known nurseries in the fossil record, or recording several attempted invasions.[314]
  • Geyer & Landing (2021) report a hitherto unknown Cambrian Stage 3 Lagerstätte from the Amouslek Formation (Morocco), preserving the first relatively abundant fossils with exceptional preservation from the Cambrian of Morocco (and Africa).[315]
  • A study on the relationship between climate changes and origination rates in the marine fossil taxa throughout the last 485 million years is published by Mathes, Kiessling & Steinbauer (2021).[316]
  • A study on the relationship between the rate and magnitude of climate change and the extinction rate of marine animals throughout the last 450 million years is published by Song et al. (2021).[317]
  • A study on Carboniferous and early Permian tetrapod tracks, and on their implications for the knowledge of evolutionary changes in the anatomy of the trackmakers in and locomotion style close to the origin of amniotes, is published by Buchwitz et al. (2021).[318]
  • A study aiming to determine the climatic preferences of major Permo-Triassic tetrapod groups is published by Liu, Angielczyk & Abdala (2021).[319]
  • A study on the impact of Permian mass extinctions on continental invertebrate infauna, based on data from the Iberian Basin (central Spain), is published by Buatois et al. (2021), who report evidence of a dramatic decrease in bioturbation intensity on land by the end of the Capitanian, coinciding with an increase in weathering intensity and acidic conditions, and a collapse in plant communities spanning the late Permian–Early Triassic in the Iberian Basin.[320]
  • A review of the state of research on the Capitanian mass extinction event in the Karoo Basin (South Africa) is published by Day & Rubidge (2021).[321]
  • Evidence from tetrapod fossil record from the Karoo Basin (South Africa) indicative of a protracted (~1 Ma) extinction on land during the Permian-Triassic transition is presented by Viglietti et al. (2021).[322]
  • Evidence of two pulses of extinction at the Permian–Triassic boundary caused by different environmental triggers is reported from the Liangfengya section in the South China Block by Li et al. (2021).[323]
  • Evidence of algal and bacterial blooms following forest ecosystem collapse during the Permian–Triassic extinction event is reported from the Sydney Basin (Australia) by Mays et al. (2021), who interpret their findings as indicating that the proliferation of microbial communities was both a symptom of ecosystem collapse, and a cause of its delayed recovery in the aftermath of the Permian–Triassic mass extinction.[324]
  • Smith et al. (2021) describe diverse assemblages of Early Triassic marine organisms from three new sites of the same age as the Paris Canyon exposures, and another slightly younger site, from Nevada and Idaho (United States), providing information on the recovery of marine biotas in the aftermath of the Permian–Triassic extinction event.[325]
  • A study on the recovery of marine level-bottom communities in the aftermath of the Permian–Triassic extinction event, focusing on recovery during the Middle Triassic, is published by Friesenbichler, Hautmann & Bucher (2021).[326]
  • Revision of the Triassic record of tetrapod tracks is published by Klein & Lucas (2021).[327]
  • A study on the diversity dynamics and evolution of the functional morphology of tetrapod herbivores throughout the Triassic and Early Jurassic is published by Singh et al. (2021).[328]
  • Marchetti et al. (2021) revise the tetrapod (including dinosauromorph) footprint assemblage from the Quarziti del Monte Serra Formation (Ladinian of Italy), and interpret this assemblage and other findings of Ladinian dinosauromorph footprints as evidence of wide dispersal of dinosauromorphs as early as the Middle Triassic.[329]
  • Description of a rich assemblage of marine taxa from the Carnian Polzberg Lagerstätte (Austria) is published by Lukeneder & Lukeneder (2021).[330]
  • A study aiming to determine the relationship between the development of the Jehol Biota in northeast China and the destruction of the North China Craton in the Early Cretaceous is published by Zhou et al. (2021).[331]
  • The first evidence of a Late Cretaceous terrestrial community in the Caribbean, including fossil material of a midsize pterosaur and remains of plants belonging to the families Cupressaceae and Lauraceae, is reported from three upper Campanian–lower Maastrichtian localities in Cuba by Viñola-López et al. (2021).[332]
  • A study on the timing of the recovery of the biological pump and marine plankton diversity in the aftermath of the Cretaceous–Paleogene extinction event is published by Birch et al. (2021).[333]
  • A study on the impact of tectonic evolution in the Tethyan region on the evolution and diversity patterns of Eurasian animals throughout the Cenozoic is published by Zhao, Hou & Li (2021).[334]
  • Zouhri et al. (2021) describe a diverse vertebrate fauna from the Eocene (Bartonian) Aridal Formation (Western Sahara), including 12 species of cartilaginous fishes, at least three species of turtles, at least two longirostrine crocodylian taxa, the oldest record of Pelagornis reported to date, and a proboscidean possibly belonging to the genus Barytherium.[335]
  • Garrouste et al. (2021) report the discovery of Cretaceous and Miocene fossil assemblages from New Caledonia, providing new information on the diversity of fossil plants and insects from this island.[336]
  • Synopsis of the fossil vertebrate assemblages of the Pisco Formation (Peru), and a study on their implications for the knowledge of the Humboldt Current Ecosystem during the Miocene, is published by Collareta et al. (2021).[337]
  • Rich middle Miocene rainforest biome (the Zhangpu biota) preserved in amber and associated sedimentary rocks is reported from the Fotan Group (southeastern China) by Wang et al. (2021).[338]
  • Description of non-mammal vertebrate fauna from the Miocene (Messinian) Monticino Quarry (Italy), including the oldest known records of the javelin sand boa or a related species, snakes belonging to the genus Malpolon and an unambiguous bustard reported to date, is published by Villa et al. (2021).[339]
  • A study on the age of escorias (glassy rock fragments similar to volcanic scoriae, likely products of extraterrestrial impacts) collected along the Pampean Atlantic coast from the "Irene" and Chapadmalal Formations (Argentina), and on their implications for the knowledge of the timing of late Miocene–Pliocene faunal succession in the Pampean Region, is published by Prevosti et al. (2021).[340]
  • A study on the age of the most recent Pleistocene megafaunal specimens from Cloggs Cave (Australia), and on its implications for the knowledge of the timing and causes of Late Pleistocene extinctions of Australian megafauna, is published by David et al. (2021).[341]
  • A study aiming to determine whether a significant relationship can be detected between demographic susceptibility to extinction of members of Quaternary megafauna of Sahul and their extinction chronology inferred from their fossil record is published by Bradshaw et al. (2021).[342]
  • A study aiming to determine whether the fossil record indicates that the arrival of hominins on islands in the Pleistocene was coincident with the disappearance of insular taxa is published by Louys et al. (2021).[343]
  • A study on ancient environmental DNA of plants and animals recovered from sediments from sites distributed across much of the Arctic, covering the past 50 thousand years, is published by Wang et al. (2021), who interpret their findings as indicative of a relatively homogeneous steppe–tundra flora dominating the Arctic during the Last Glacial Maximum, followed by regional divergence of vegetation during the Holocene, as well as providing evidence of the survival of the woolly rhinoceros in northeast Kolyma as late as approximately 9.8 ka and the survival of mammoths in North America and Siberia into the Early Holocene (as late as approximately 3.9 ka in the area of the Taymyr Peninsula), and providing evidence of a previously unsampled mitochondrial lineage of mammoths.[344]
  • Murchie et al. (2021) present a 30,000-year sedimentary ancient DNA record from permafrost silts in the Klondike region of Yukon (Canada), and interpret their findings as indicative of a substantial turnover in ecosystem composition between 13,500 and 10,000 calendar years ago with the replacement of the steppe-tundra ecosystem by woody shrubs, as well as indicative of persistence of North American horses and woolly mammoths for thousands of years after their supposed disappearance from the fossil record.[345]
  • A study on the chronology of Late Pleistocene shrub expansion and megafauna extinctions in eastern Beringia is published by Monteath et al. (2021), who interpret their findings as indicating that the postglacial expansion of shrub tundra preceded the regional decline of populations of large mammal grazers.[346]
  • A study on the extinction dynamics of the elephant birds and Malagasy hippos is published by Hansford et al. (2021), who interpret their findings as indicating that these animals persisted for millennia after first human arrival on Madagascar, that their communities collapsed suddenly ~1200-900 BP, and that their extinctions were closely correlated in time with intensive conversion of forests to grassland, probably resulting from human shift to agro-pastoralism.[347]
  • A study aiming to determine how observed extinctions in the geological past can be predicted from the interaction of long-term temperature trends with short-term climate change is published by Mathes et al. (2021).[348]
  • A study on the impact of the Capitanian mass extinction event, Permian–Triassic extinction event and Triassic–Jurassic extinction event on terrestrial and freshwater ecosystems, aiming to quantify community resistance during the extinction events and to determine ecological dynamics of communities before and after these extinctions, is published by Huang et al. (2021).[349]
  • A study on correlations between fossilization potential and food web features, aiming to determine how fossilization impacts inferences of ancient community structure, is published by Shaw et al. (2021).[350]
  • A study on the drilling predation pressure on sea urchins across the Mesozoic and Cenozoic is published by Petsios et al. (2021), who present evidence indicative of the Cenozoic intensification of this predation, and argue that the Mesozoic marine revolution was more likely a series of asynchronous processes with variable significance across different groups of predators and preys, rather than a single synchronized ecosystem-wide event.[351]
  • A study on the spatial biodiversity dynamics of unicellular marine plankton throughout the Cenozoic, aiming to test the generality of the "out of the tropics" hypothesis (positing that the tropics are both a cradle and source of biodiversity for extratropical regions), is published by Raja & Kiessling (2021).[352]
  • A study on the evolution of ecophysiological adaptations to life in the sea in extant and fossil marine tetrapods (excluding birds) is published by Motani & Vermeij (2021).[353]

Other research

[edit]
  • Mißbach et al. (2021) report the existence of indigenous organic molecules and gases in primary fluid inclusions in c. 3.5-billion-year-old barites from the Dresser Formation (Pilbara Craton, Australia), providing evidence of the organic composition of primordial fluids that were available for the early microbes.[354]
  • A study on the 3.4-billion-year old organic films from the Buck Reef Chert (Kaapvaal Craton, South Africa) is published by Alleon et al. (2021), who interpret their findings as indicating that early Archean organic films carry chemical information directly related to their original molecular compositions, and evaluate the implications of their finding for the knowledge of the initial chemical nature of organic microfossils found in ancient rocks.[355]
  • A study on the evolution of marine dissolved organic carbon concentrations is published by Fakhraee et al. (2021), who interpret their findings as indicating that the overall size of the marine dissolved organic carbon reservoir has likely undergone very little variation through Earth's history, casting doubt on previously hypothesized links between marine dissolved organic carbon levels and the emergence and radiation of early animals.[356]
  • A study on the age of the Ediacaran stratigraphic successions in South China, and on its implications for the knowledge of the timing of the rise and early evolution of complex macroscopic life, is published by Yang et al. (2021).[357]
  • A study on the carbon isotopic composition of marine carbonates and on the age of the Ediacaran Nama Group (Namibia) and other geological formations from the Ediacaran-Cambrian transition around the world, and on their implications for the knowledge of the early radiation of animals, is published by Bowyer et al. (2021).[358]
  • A study on the timing and sequence of events through the early Darriwilian leading to the Great Ordovician Biodiversification Event is published by Rasmussen, Thibault & Rasmussen (2021), who interpret their findings as refuting the proposed link between the Ordovician meteor event and the icehouse conditions preceding the Ordovician radiation, and indicating that the meteorite fallout postdated both the onset of glaciation and the onset of the Ordovician radiation.[359]
  • A study on the impact of volcanism-related delivery of the nutrient phosphorus to the Late Ordovician ocean on global cooling and Late Ordovician mass extinction is published by Longman et al. (2021).[360]
  • A study evaluating the validity of the Devonian bioregionalization first proposed by Boucot, Johnson & Talent (1969)[361] is published by Dowding, Ebach & Madroviev (2021).[362]
  • Evidence of prolonged and repeated oxygen stress in the Appalachian Basin associated with the Late Devonian extinctions is presented by Boyer et al. (2021).[363]
  • Rakociński et al. (2021) report very large anomalous mercury spikes from the south-western part of Tian Shan (Uzbekistan), and interpret this finding as evidence of intensive volcanic activity both predating and occurring during the Hangenberg Crisis.[364]
  • Evidence from the South China Block indicative of extensive felsic volcanic activity coincident with the Permian–Triassic extinction event is presented by Zhang et al. (2021), who interpret their findings as indicating that felsic volcanism in South China was a key contributor to the environmental deterioration that led to the Permian–Triassic extinction event.[365]
  • Evidence from the southern Karoo Basin of South Africa indicative of at least four atmospheric carbon dioxide spikes coinciding with extinctions on land and at sea from the Late Permian to the Middle Triassic is presented by Retallack (2021).[366]
  • Lu et al. (2021) present a record of volcanism and environmental changes from Carnian lake succession of the Jiyuan Basin (North China), and interpret their findings as indicative of four pulses of volcanism which were probably responsible for the global carbon isotope excursions that marked the Carnian pluvial episode and drove major environmental changes in the Jiyuan Basin.[367]
  • A study evaluating whether fuel-driven changes to fire activity during the Cretaceous period had the ability to counteract rising atmospheric oxygen at this time is published by Belcher et al. (2021), who argue that alteration of fire feedbacks driven by the rise of the flowering plants likely lowered atmospheric oxygen levels from ~30% to 25% by the end of the Cretaceous.[368]
  • White & Campione (2021) describe a workflow in which three-dimensional surface profiles of fragmentary fossils can be quantitatively compared to better-known exemplars in order to identify fragmentary fossils, and apply this workflow to megaraptorid theropod unguals from the Cretaceous of Australia.[369]
  • A study aiming to test whether histological characters can be used to assign bones to individuals within a quarry, using sauropod dinosaur material from two adjacent Morrison quarries in the Bighorn Basin (Wyoming, United States) as a case study, is published by Wiersma-Weyand et al. (2021).[370]
  • A study on diverse amniotic eggshells from the Wido Volcanics (Upper Cretaceous, South Korea), evaluating their utility for assessments of the paleothermometry of the sedimentary deposits, is published by Choi et al. (2021).[371]
  • A study on the age and duration of the Lower Cretaceous Yixian Formation (China) is published by Zhong et al. (2021).[372]
  • A study on the age of the Jiufotang Formation outcrops in the Jianchang Basin (Liaoning, China) is published by Yu et al. (2021).[373]
  • A study on the elevation and mean annual temperature of the Sihetun area (Liaoning, China) in the Early Cretaceous, when the area was inhabited by feathered dinosaurs, is published by Zhang, Yin & Wang (2021), who interpret their findings as indicative of a high altitude and cold habitat with frozen winters for the Jehol Biota in this area, and evaluate possible implications of such habitat for the evolution of the feathered characteristic of the dinosaurs.[374]
  • A study on possible impact of taphonomic biases on preservation of small-bodied dinosaurs and mammals from the Hell Creek and Lance formations, and on its implications for the knowledge of diversity and abundance of small-bodied taxa from these formations, is published by Brown et al. (2021).[375]
  • Goderis et al. (2021) report new data revealing a positive iridium anomaly within the peak-ring sequence of the Chicxulub impact structure, and interpret this finding as conclusively tying Chicxulub to the global iridium layer and Cretaceous-Paleogene boundary sections worldwide, confirming the link between crater formation and the iridium peak detected in these sections.[376]
  • DePalma et al. (2021) present data from histological and histo-isotopic analyses of fossil fish from the Tanis fossil site (North Dakota, United States), interpreted as indicating that the end-Cretaceous Chicxulub impact occurred during boreal Spring/Summer, shortly after the spawning season for fish and most continental taxa.[377]
  • A study on the taphonomy of marine vertebrate fossils from the Miocene Pisco Formation (Peru), aiming to determine possible causes of their exceptional preservation, is published by Bosio et al. (2021).[378]
  • A study on Middle Miocene microfloral assemblages from ten localities in the Madrid Basin (Spain), providing evidence of prevalence of open habitats with grass-dominated, savannah-like vegetation under a warm and semi-arid climatic regime in the Iberian Peninsula in the Middle Miocene, is published by Casas-Gallego et al. (2021).[379]
  • A study aiming to determine whether a strong link can be established between stable carbon isotopes of tooth enamel of herbivores and vegetation structure in present African ecosystems, and whether enamel stable carbon isotopes of fossil herbivores are useful for making inferences about Plio-Pleistocene vegetation structure in Africa and the environmental context of hominin evolution, is published by Robinson et al. (2021).[380]
  • A study on environmental changes in East Africa at the time of the extinction of Paranthropus boisei is published by Quinn & Lepre (2021), who report evidence of a significant reduction in C4 grasslands during Mid-Pleistocene Transition, and argue that this reduction might have escalated dietary competition amongst the abundant C4-feeders and influenced P. boisei's demise;[381] their conclusions are subsequently contested by Patterson et al. (2022).[382][383]
  • Evidence from Chitimwe Beds (northern Malawi), indicating that in the late Pleistocene early modern humans fundamentally altered local landscapes and ecology using fire, is presented by Thompson et al. (2021).[384]
  • A study on the climate and environments in the Guadix-Baza Basin (Spain) from the Pliocene to the Middle Pleistocene, aiming to reconstruct environments inhabited by some of the earliest humans who dispersed into Europe, is published by Saarinen et al. (2021).[385]
  • A study on the Early Pleistocene environment of the Nihewan Basin (China), as indicated by stable isotope data from tooth enamel of mammals from the Madigou site, is published by Xu et al. (2021).[386]
  • A study on environmental changes in Southeast Asia at the time of the Pleistocene turnovers of hominin species culminating with the arrival of Homo sapiens in the area, based on data from mammal fossils from five faunas from Vietnam and Laos whose ages ranged from MIS 6–5 to MIS 3–2, and aiming to determine how the climate changes that occurred during the Late Pleistocene might have influenced the adaptation of the first H. sapiens in the area, is published by Bacon et al. (2021).[387]
  • A study on the relationship between the severity of late Quaternary megaherbivore extinctions and fire activity in grassy ecosystems is published by Karp et al. (2021).[388]
  • Ellis et al. (2021) examine current biodiversity patterns in relation to distribution of human populations and land use over the past 12,000 years, and argue that as early as 12,000 years ago nearly three quarters of Earth's land was inhabited and shaped by human societies.[389]
  • Alleon et al. (2021) revise reports of organic molecules in animal fossils, and argue that purported signatures of organic molecules are in reality instrumental artefacts resulting from intense background luminescence;[390] their conclusions are subsequently contested by Wiemann & Briggs (2022).[391]
  • A study aiming to assess how methods used to determine diversification rate variation through time perform when applied to entirely extinct groups, applying them to ornithischian dinosaurs, is published by Černý, Madzia & Slater (2021).[392]
  • A new method for estimating dimorphism levels in fossil assemblages is presented by Sasaki et al. (2021).[393]
  • A methodological schema for investigating evolvability in the fossil record is proposed by Love et al. (2021).[394]
  • Didier & Laurin (2021) present a method to compute the distribution of the extinction time of a given set of taxa, and apply this method to the study of the extinction time of three Permo-Carboniferous synapsid taxa (Ophiacodontidae, Edaphosauridae and Sphenacodontidae).[395]
  • A study assessing whether resin impregnation of sediment blocks interferes with the retrieval of ancient DNA from sediments, and evaluating ancient mammalian DNA preservation in Pleistocene sediment blocks from 13 archaeological sites in Europe, Asia, Africa, and North America, is published by Massilani et al. (2021).[396]
  • A study exploring the causal relationship between the global distribution of fossil occurrence data and the legacy of colonialism and associated socioeconomic factors, and evaluating the implications of that relationships for the knowledge of past biodiversity, is published by Raja et al. (2021).[397]

Paleoclimate

[edit]
  • Scotese et al. (2021) estimate how global temperatures have changed during the last 540 million years.[398]
  • A high-resolution proxy record of Late Cambrian and Ordovician climate is presented by Goldberg et al. (2021).[399]
  • A study on changes in weathering intensity and temperature along a temperate to subpolar southeastern margin of Gondwana (eastern margin of present-day Australia) across the end-Permian extinction is published by Frank et al. (2021).[400]
  • A study on the atmospheric CO2 levels during the Permian–Triassic transition, based on data from fossil plant remains from sedimentary successions in southwestern China, is published by Wu et al. (2021), who present evidence of a six-fold increase of atmospheric pCO2 during the Permian–Triassic mass extinction.[401]
  • A study on the source, pace and total amount of CO2 emissions during the Permian–Triassic transition is published by Cui et al. (2021), who interpret their findings as suggesting that rapid and massive amount of largely volcanic CO2 emission was necessary to drive the observed pattern of carbon isotope excursions, the abrupt decline in surface ocean pH and global temperature increase, and was likely the main cause of the end-Permian mass extinction.[402]
  • A study on the climate of the Lufeng area (China) during the Early Jurassic, and on the relationship between the global distribution of dinosaur fossils and climate during the Jurassic, is published by Shen et al. (2021).[403]
  • A study on atmospheric carbon dioxide concentration levels during the late Albian, as indicated by stomata characteristics of conifers Pseudofrenelopsis gansuensis and Pseudofrenelopsis dalatzensis from the Dalazi Formation (China), is published by Li, Yang & Zhu (2021).[404]
  • Evidence of the presence of a terrestrial climate barrier in the Western Interior Basin of North America during the final 15 million years of the Cretaceous, dividing the Western Interior Basin into warm southern and cool northern biomes, is presented by Burgener et al. (2021), who also report evidence indicating that the biogeographical distribution of plants was heavily influenced by the presence of this temperature transition zone.[405]
  • De Winter et al. (2021) present reconstructions of monthly sea surface temperatures at around 50 °N latitude about 78 million years ago, based on data from oyster and rudist shells from the Kristianstad Basin (Sweden).[406]
  • A study on CO2 contents of early Deccan Traps lavas, aiming to determine whether early Deccan magmatism triggered the warming event during the latest Maastrichtian, is published by Hernandez Nava et al. (2021).[407]
  • Vento et al. (2021) estimate parameters of the Paleogene to Neogene climate on the basis of data from fossil leaves from the Río Turbio and Río Guillermo formations in southern South America (Argentina).[408]
  • A study aiming to evaluate the fit of molecular phylogenetic and biogeographic data from extant animals and models regarding the age of formation of the Amazon fluvial system is published by Méndez-Camacho, Leon-Alvarado & Miranda-Esquivel (2021).[409]
  • 10-million-year long proxy record of Arabian climate is developed by Böhme et al. (2021), who report evidence indicative of a sustained period of hyperaridity in the Pliocene and a number of transient periods of hyperaridity in northern Arabia during the late Miocene which were out of phase with those in North Africa, and argue that these desert dynamics had a strong control on large-scale mammalian dispersals between Africa and Eurasia.[410]
  • A study aiming to estimate the tolerance to low precipitation and aridity that would have been required for early humans to successfully exit Africa and to determine the timings of climatic windows out of Africa for humans, based on data from paleoclimate simulations of the last 300,000 years, is published by Beyer et al. (2021).[411]
  • A study on climate changes in eastern Africa over the past 200,000 years, evaluating their possible impact on the mobility and dispersal of early Homo sapiens, is published by Schaebitz et al. (2021).[412]
  • A study aiming to reconstruct summer and winter temperatures in the Late Pleistocene when Neanderthals were using the site of La Ferrassie (France), based on data from oxygen isotope measurements of bovid tooth enamel, is published by Pederzani et al. (2021).[413]
  • A study on local seasonal temperatures in the area of the Bacho Kiro cave (Bulgaria) in the Initial Upper Paleolithic, and on its implications for the knowledge whether early presence of Homo sapiens in Europe was contingent on warm climates, is published by Pederzani et al. (2021).[414]
  • Data from analyses and modelling of noble gases in groundwater, indicating that the low-altitude, low-to-mid-latitude land surface (45 degrees south to 35 degrees north) was about 6 °C cooler during the Last Glacial Maximum than during the Late Holocene, is presented by Seltzer et al. (2021).[415]
  • Osman et al. (2021) reconstruct surface temperature changes spanning the Last Glacial Maximum to present at 200-year resolution.[416]

References

[edit]
  1. ^ Gini-Newman, Garfield; Graham, Elizabeth (2001). Echoes from the past: world history to the 16th century. Toronto: McGraw-Hill Ryerson Ltd. ISBN 9780070887398. OCLC 46769716.
  2. ^ Poinar, G.; Maltier, Y.-M. (2021). "Allocordyceps baltica gen. et sp. nov. (Hypocreales: Clavicipitaceae), an ancient fungal parasite of an ant in Baltic amber". Fungal Biology. 125 (11): 886–890. Bibcode:2021FunB..125..886P. doi:10.1016/j.funbio.2021.06.002. PMID 34649675. S2CID 236252728.
  3. ^ Le Renard, L.; Stockey, R. A.; Upchurch, G. R.; Berbee, M. L. (2021). "Extending the fossil record for foliicolous Dothideomycetes: Bleximothyrium ostiolatum gen. et sp. nov., a unique fly-speck fungus from the Lower Cretaceous of Virginia, USA". American Journal of Botany. 108 (1): 129–144. doi:10.1002/ajb2.1602. PMID 33528044. S2CID 231752324.
  4. ^ Sukhomlyn, M. M.; Heluta, V. P.; Perkovsky, E. E.; Ignatov, M. S.; Vasilenko, D. V. (2021). "First record of fungus of the family Mycocaliciaceae in Rovno amber (Ukraine)". Paleontological Journal. 55 (6): 684–690. Bibcode:2021PalJ...55..684S. doi:10.1134/S0031030121060125. S2CID 245009781.
  5. ^ Perreau, M.; Haelewaters, D.; Tafforeau, P. (2021). "A parasitic coevolution since the Miocene revealed by phase-contrast synchrotron X-ray microtomography and the study of natural history collections". Scientific Reports. 11 (1): Article number 2672. Bibcode:2021NatSR..11.2672P. doi:10.1038/s41598-020-79481-x. PMC 7846571. PMID 33514784.
  6. ^ Lalica, M. A. K.; Tomescu, A. M. F. (2021). "The early fossil record of glomeromycete fungi: New data on spores associated with early tracheophytes in the Lower Devonian (Emsian; c. 400 Ma) of Gaspé (Quebec, Canada)". Review of Palaeobotany and Palynology. 298: Article 104590. doi:10.1016/j.revpalbo.2021.104590. S2CID 245631117.
  7. ^ a b McLoughlin, S.; Halamski, A. T.; Mays, C.; Kvacek, J. (2021). "Neutron tomography, fluorescence and transmitted light microscopy reveal new insect damage, fungi and plant organ associations in the Late Cretaceous floras of Sweden". GFF. 143 (2–3): 248–276. Bibcode:2021GFF...143..248M. doi:10.1080/11035897.2021.1896574.
  8. ^ Tykhonenko, Y.; Hayova, V.; Ignatov, M.; Vasilenko, D.; Perkovsky, E. E. (2021). "A new species of rust fungi from the middle Eocene Sakhalinian amber". Acta Palaeontologica Polonica. 66 (4): 921–924. doi:10.4202/app.00917.2021.
  9. ^ Krings, M.; Serbet, S. M.; Harper, C. J. (2021). "Rhizophydites matryoshkae gen. et sp. nov. (fossil Chytridiomycota) on spores of the early land plant Horneophyton lignieri from the Lower Devonian Rhynie Chert". International Journal of Plant Sciences. 182 (2): 109–122. doi:10.1086/712250. hdl:2262/96310. S2CID 231875491.
  10. ^ Le Renard, L.; Stockey, R. A.; Upchurch, G. R.; Berbee, M. L. (2021). "Cretaceous Fungal Scutella from the Lower Potomac Group Zone 1: Stomatothyrium placocentrum gen. et sp. nov., a Dothideomycete Colonizer of Conifer Stomata". International Journal of Plant Sciences. 182 (8): 712–729. doi:10.1086/715635. S2CID 237506280.
  11. ^ Xu, S.-L.; Kodrul, T. M.; Maslova, N. P.; Song, H.-Z.; Tobias, A. V.; Wu, X.-K.; Quan, C.; Jin, J.-H. (2021). "First occurrence of Nyssa endocarps and associated fungi in the Oligocene of South China: palaeogeographical and palaeoecological significance". Papers in Palaeontology. 8. doi:10.1002/spp2.1408. S2CID 244057027.
  12. ^ Tang, Q.; Pang, K.; Li, G.; Chen, L.; Yuan, X.; Sharma, M.; Xiao, S. (2021). "The Proterozoic macrofossil Tawuia as a coenocytic eukaryote and a possible macroalga". Palaeogeography, Palaeoclimatology, Palaeoecology. 576: Article 110485. Bibcode:2021PPP...57610485T. doi:10.1016/j.palaeo.2021.110485. S2CID 236258404.
  13. ^ Gan, T.; Luo, T.; Pang, K.; Zhou, C.; Zhou, G.; Wan, B.; Li, G.; Yi, Q.; Czaja, A. D.; Xiao, S. (2021). "Cryptic terrestrial fungus-like fossils of the early Ediacaran Period". Nature Communications. 12 (1): Article number 641. Bibcode:2021NatCo..12..641G. doi:10.1038/s41467-021-20975-1. PMC 7843733. PMID 33510166.
  14. ^ Walker, C.; Harper, C. J.; Brundrett, M.; Krings, M. (2021). "The Early Devonian fungus Mycokidstonia sphaerialoides from the Rhynie chert is a member of the Ambisporaceae (Glomeromycota, Archaeosporales), not an ascomycete". Review of Palaeobotany and Palynology. 287: Article 104384. Bibcode:2021RPaPa.28704384W. doi:10.1016/j.revpalbo.2021.104384. S2CID 233591744.
  15. ^ Strullu-Derrien, C.; Gèze, M.; Spencer, A. R. T.; De Franceschi, D.; Kenrick, P.; Selosse, M.-A.; Knoll, A. H. (2021). "An expanded diversity of oomycetes in Carboniferous forests: Reinterpretation of Oochytrium lepidodendri (Renault 1894) from the Esnost chert, Massif Central, France". PLOS ONE. 16 (3): e0247849. Bibcode:2021PLoSO..1647849S. doi:10.1371/journal.pone.0247849. PMC 7924773. PMID 33651837.
  16. ^ Maloney, K. M.; Halverson, G. P.; Schiffbauer, J. D.; Xiao, S.; Gibson, T. M.; Lechte, M. A.; Cumming, V. M.; Millikin, A. E. G.; Murphy, J. G.; Wallace, M. W.; Selby, D.; Laflamme, M. (2021). "New multicellular marine macroalgae from the early Tonian of northwestern Canada" (PDF). Geology. 49 (6): 743–747. Bibcode:2021Geo....49..743M. doi:10.1130/G48508.1. hdl:11343/281555. S2CID 233694599.
  17. ^ Wang, X.; Wu, M.; Wan, B.; Niu, C.; Zheng, W.; Guan, C.; Pang, K.; Chen, Z.; Yuan, X. (2021). "Evolution of Holdfast Diversity and Attachment Strategies of Ediacaran Benthic Macroalgae". Frontiers in Earth Science. 9: Article 783427. Bibcode:2021FrEaS...9.1229W. doi:10.3389/feart.2021.783427.
  18. ^ a b c d e f g h i j k l m n o p McLean, R. A. (2021). "Devonian cystiphyllid rugose corals from western Canada and eastern Australia". Palaeontographica Canadiana. 38: 1–161. ISBN 978-1-897095-92-8.
  19. ^ a b Chwieduk, E. (2023). "Lower Carboniferous solitary rugose corals from the Flett Formation of the Liard Basin, northwestern Canada vs. European and Asian Rugosa of the same geological age". Acta Geologica Polonica. in press: 33–88. doi:10.24425/agp.2021.137713. S2CID 260035568.
  20. ^ a b c d e f g h i j k l m n o p q r s t u Vasseur, R.; Lathuilière, B. (2021). "Pliensbachian corals from the Western Tethys". Geodiversitas. 43 (22): 1187–1291. doi:10.5252/geodiversitas2021v43a22. S2CID 244731683.
  21. ^ a b Baron-Szabo, R. C. (2021). "Scleractinian corals of the Albian (uppermost Lower Cretaceous)—overview, revision, evaluation". Proceedings of the Biological Society of Washington. 134 (1): 363–406. doi:10.2988/0006-324X-134.1.363. S2CID 244447587.
  22. ^ Bugrova, I. Yu. (2021). "A new genus Balkhanomeandra (Scleractinia) from the Lower Cretaceous of Turkmenistan and Azerbaijan". Paleontological Journal. 55 (4): 362–371. Bibcode:2021PalJ...55..362B. doi:10.1134/S0031030121040043. S2CID 237377409.
  23. ^ a b c d e f McLean, R. A.; Wright, A. J. (2021). "The rugose coral Phillipsastrea D'Orbigny and other plocoid genera in the late Silurian to Early Devonian of eastern Australia: revision of previously assigned species and new records". Australasian Palaeontological Memoirs. 55: 1–88.
  24. ^ Carrera, M. G.; Voldman, G. G.; Mango, M. J.; Nestell, G. P. (2021). "Ordovician enigmatic sclerite-type elements from western Argentina: possible oldest axial components of alcyonacean octocorals". Acta Palaeontologica Polonica. 66 (3): 535–544. doi:10.4202/app.00869.2020.
  25. ^ Niko, S. (2021). "Cladochonus nagatoensis, a new Early Carboniferous species of auloporid tabulate coral from the Akiyoshi Limestone Group, Yamaguchi Prefecture". Bulletin of the Akiyoshi-dai Museum of Natural History. 56: 1–3.
  26. ^ Baron-Szabo, R. C. (2021). "Upper Barremian–lower Aptian scleractinian corals of central Europe (Schrattenkalk Fm., Helvetic Zone, Austria, Germany, Switzerland)". Zootaxa. 4960 (1): zootaxa.4960.1.1. doi:10.11646/zootaxa.4960.1.1. PMID 33903577. S2CID 233410789.
  27. ^ a b c Löser, H.; Nieto, L. M.; Castro, J. M.; Reolid, M. (2021). "A Lower Valanginian coral fauna from the South Iberian Palaeomargin (Internal Prebetic, SE Spain)". Palaeontologia Electronica. 24 (1): Article number 24.1.a06. doi:10.26879/1030.
  28. ^ Fedorowski, J.; Bamber, E. W.; Richards, B. C. (2021). "Mississippian colonial tabulate and rugose corals from the Flett Formation, Liard Basin, northwest Canada". Acta Palaeontologica Polonica. 66 (3): 679–704. doi:10.4202/app.00817.2020. S2CID 239063702.
  29. ^ Ohar, V.; Denayer, J. (2021). "Lower Viséan (Lower Carboniferous) rugose corals from the Donets Basin (Ukraine)". Revista Brasileira de Paleontologia. 24 (4): 281–310. doi:10.4072/rbp.2021.4.01.
  30. ^ Guo, J.; Han, J.; Van Iten, H.; Song, Z.; Qiang, Y.; Wang, W.; Zhang, Z.; Li, G. (2021). "A ten-faced hexangulaconulariid from Cambrian Stage 2 of South China". Journal of Paleontology. 95 (5): 957–964. Bibcode:2021JPal...95..957G. doi:10.1017/jpa.2021.25. S2CID 233636780.
  31. ^ Niko, S.; Suzuki, S. (2021). "Favia misakiensis, a new Miocene species of scleractinian coral from the Katsuta Group in the Misaki area, Okayama Prefecture, Southwest Japan". Bulletin of the Akiyoshi-dai Museum of Natural History. 56: 5–8.
  32. ^ a b c Saint Martin, J.-P.; Chaix, C.; Cahuzac, B.; Moissette, P.; André, J.-P. (2021). "The coral fauna from the Oligocene of Malta: Biodiversity and paleoenvironment". Annales de Paléontologie. 107 (3): Article 102508. doi:10.1016/j.annpal.2021.102508. S2CID 242981668.
  33. ^ a b Niko, S.; Badpa, M. (2021). "Tabulate corals from the Middle and Upper Permian formations in the Julfa area, Northwest Iran" (PDF). Bulletin of the National Museum of Nature and Science, Series C. 47: 41–51. doi:10.50826/bnmnsgeopaleo.47.0_41.
  34. ^ Kołodziej, B.; Marian, V. A. (2021). "Simplified, wall-based morphology of a new Aptian coral and discussion of contrasting opinions on the taxonomy of similar corals". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 300 (2): 201–213. doi:10.1127/njgpa/2021/0985. S2CID 236414180.
  35. ^ Ou, Q.; Shu, D.; Zhang, Z.; Han, J.; Van Iten, H.; Cheng, M.; Sun, J.; Yao, X.; Wang, R.; Mayer, G. (2021). "Dawn of complex animal food webs: A new predatory anthozoan (Cnidaria) from Cambrian". The Innovation. 3 (1): Article 100195. doi:10.1016/j.xinn.2021.100195. PMC 8717384. PMID 35005675.
  36. ^ Song, X.; Ruthensteiner, B.; Lyu, M.; Liu, X.; Wang, J.; Han, J. (2021). "Advanced Cambrian hydroid fossils (Cnidaria: Hydrozoa) extend the medusozoan evolutionary history". Proceedings of the Royal Society B: Biological Sciences. 288 (1944): Article ID 20202939. doi:10.1098/rspb.2020.2939. PMC 7893222. PMID 33529559.
  37. ^ Min, H.; Wang, X.-L.; Wang, H.; Guo, G.-F. (2022). "A new Permian species of Paraconularia from Abaga Banner, Inner Mongolia". Palaeoworld. 31 (3): 419–427. doi:10.1016/j.palwor.2021.10.002. S2CID 243947952.
  38. ^ Löser, H.; Angel Fernández-Mendiola, P.; Pérez-Malo, J.; Domínguez Pascual, S.; Cahuzac, B. (2021). "Redefinition of the family Rhizangiidae (Scleractinia; Cretaceous to Recent) and description of a new genus from the Early Cretaceous of Spain". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 299 (3): 259–274. doi:10.1127/njgpa/2021/0968. S2CID 233611858.
  39. ^ Park, T.-Y. S.; Jung, J.; Lee, M.; Lee, S.; Zhen, Y. Y.; Hua, H.; Warren, L. V.; Hughes, N. C. (2021). "Enduring evolutionary embellishment of cloudinids in the Cambrian". Royal Society Open Science. 8 (12): Article ID 210829. Bibcode:2021RSOS....810829P. doi:10.1098/rsos.210829. PMC 8652264. PMID 34909213.
  40. ^ Zhao, D.; Yin, Z.; Chen, J.; Li, G. (2021). "The embryonic development of the early Cambrian Quadrapyrgites and its phylogenetic implication". Acta Palaeontologica Sinica. 60 (1): 124–137. doi:10.19800/j.cnki.aps.2020058.
  41. ^ Sendino, C.; Bochmann, M. M. (2021). "An exceptionally preserved conulariid from Ordovician erratics of Northern European Lowlands". PalZ. 95 (1): 71–84. Bibcode:2021PalZ...95...71S. doi:10.1007/s12542-020-00534-7.
  42. ^ Kröger, B.; Vinn, O.; Toom, U.; Corfe, I. J.; Kuva, J.; Zatoń, M. (2021). "On the enigma of Palaenigma wrangeli (Schmidt), a conulariid with a partly non-mineralized skeleton". PeerJ. 9: e12374. doi:10.7717/peerj.12374. PMC 8570166. PMID 34760382.
  43. ^ Berkowski, B.; Zapalski, M. K.; Jarochowska, E.; Alderslade, P. (2021). "Early development and coloniality in Oligophylloides from the Devonian of Morocco—Are Heterocorallia Palaeozoic octocorals?". PLOS ONE. 16 (9): e0257523. Bibcode:2021PLoSO..1657523B. doi:10.1371/journal.pone.0257523. PMC 8480748. PMID 34587221.
  44. ^ a b Koromyslova, A. V.; Taylor, P. D.; Pakhnevich, A. V. (2021). "Early Maastrichtian erect bryozoans from western Kazakhstan, with descriptions of two new species and the comparative internal morphology of some cheilostome genera". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 302 (3): 235–262. doi:10.1127/njgpa/2021/1030. S2CID 245073186.
  45. ^ a b c d e f g Flórez, P.; Di Martino, E.; Ramalho, L. V (2021). "Early Miocene coral reef-associated bryozoans from Colombia. Part I: Cyclostomata, "Anasca" and Cribrilinoidea Cheilostomata". Journal of Paleontology. 95 (4): 694–719. Bibcode:2021JPal...95..694F. doi:10.1017/jpa.2021.5. hdl:10481/69588.
  46. ^ Taylor, P. D.; Rogers, R. R. (2021). "A new cheilostome bryozoan from a dinosaur site in the Upper Cretaceous (Campanian) Judith River Formation of Montana". Journal of Paleontology. 95 (5): 965–973. Bibcode:2021JPal...95..965T. doi:10.1017/jpa.2021.34. S2CID 235552373.
  47. ^ a b c Flórez, P.; Di Martino, E.; Ramalho, L. V (2021). "Early Miocene coral reef-associated bryozoans from Colombia. Part II: "Ascophora" Cheilostomatida". Journal of Paleontology. 96 (2): 274–303. doi:10.1017/jpa.2021.94. hdl:10481/71786.
  48. ^ a b c López-Gappa, J.; Pérez, L. M.; Almeida, A. C. S.; Gordon, D. P.; Vieira, L. M. (2021). "Three new cribrimorph bryozoans (order Cheilostomatida) from the early Miocene of Argentina, with a discussion on spinocystal shield morphologies". Journal of Paleontology. 95 (3): 568–582. Bibcode:2021JPal...95..568L. doi:10.1017/jpa.2020.108. S2CID 233301956.
  49. ^ Zhang, Zhiliang; Zhang, Zhifei; Ma, J.; Taylor, P. D.; Strotz, L. C.; Jacquet, S. M.; Skovsted, C. B.; Chen, F.; Han, J.; Brock, G. A. (2021). "Fossil evidence unveils an early Cambrian origin for Bryozoa". Nature. 599 (7884): 251–255. Bibcode:2021Natur.599..251Z. doi:10.1038/s41586-021-04033-w. PMC 8580826. PMID 34707285. S2CID 240073948.
  50. ^ Lidgard, S.; Di Martino, E.; Zágoršek, K.; Liow, L. H. (2021). "When fossil clades 'compete': local dominance, global diversification dynamics and causation". Proceedings of the Royal Society B: Biological Sciences. 288 (1959): Article ID 20211632. doi:10.1098/rspb.2021.1632. PMC 8456135. PMID 34547910.
  51. ^ a b Waterhouse, J. B.; Campbell, H. J. (2021). "Early Permian brachiopods and molluscs from the Dunton Range, west Otago". Some Permian brachiopods and molluscs from New Zealand (PDF). Earthwise. Vol. 18. pp. 5–64.
  52. ^ a b c d e Baarli, B. G. (2021). "The smooth, spire-bearing brachiopods after the terminal Ordovician extinction through lower Llandovery in the central Oslo region, Norway". Journal of Paleontology. 96: 81–111. doi:10.1017/jpa.2021.72. S2CID 238707360.
  53. ^ a b Popov, L. E.; Nikitina, O. I.; Pirogova, T. E.; Ergaliev, G. Kh. (2021). "Cambrian brachiopods from the area of the former Semipalatinsk nuclear-testing site, Chingiz Ranges, Kazakhstan". PalZ. 95 (2): 275–290. Bibcode:2021PalZ...95..275P. doi:10.1007/s12542-020-00540-9. S2CID 231877532.
  54. ^ Blodgett, R. B.; Santucci, V. L.; Baranov, V. V.; Hodges, M. S. (2021). "The gypidulid brachiopod genus Carinagypa in late Emsian (latest Early Devonian) strata of the Shellabarger Pass area (Farewell Terrane), Denali National Park & Preserve, south-central Alaska" (PDF). New Mexico Museum of Natural History and Science Bulletin. 82: 19–28. Archived (PDF) from the original on 2021-02-21. Retrieved 2021-01-04.
  55. ^ Serobyan, V.; Danelian, T.; Crônier, C.; Grigoryan, A.; Mottequin, B. (2021). "Lower Famennian (Upper Devonian) rhynchonellide and athyride brachiopods from the South Armenian Block" (PDF). Journal of Paleontology. 95 (3): 527–552. Bibcode:2021JPal...95..527S. doi:10.1017/jpa.2020.114. S2CID 233301954.
  56. ^ a b Lavié, F. J.; Mestre, A. I.; Carrera, M. G. (2021). "Middle Ordovician linguliformean microbrachiopods from western Argentina: new data and biogeographic implications". Journal of Paleontology. 95 (4): 720–732. Bibcode:2021JPal...95..720L. doi:10.1017/jpa.2021.19. S2CID 233691909.
  57. ^ García-Alcalde, J. L. (2021). "Devonian brachiopods of the Cantabrian Mountains (Northern Spain). 12) Ferronirhynchia new genus, an Upper Emsian rhynchonellid (Trigonirhynchiidae)". Spanish Journal of Palaeontology. 36 (2). doi:10.7203/sjp.36.2.20574. S2CID 237874969.
  58. ^ Waterhouse, J. B.; Campbell, H. J. (2021). "Grebneffia divaricata, a new dielasmid genus and species from the upper Takitimu Group of Southland, New Zealand". Some Permian brachiopods and molluscs from New Zealand (PDF). Earthwise. Vol. 18. pp. 65–77.
  59. ^ a b c d Waterhouse, J. B. (2021). "Permian brachiopods and bivalves from the Lakes Creek Formation, Queensland". Macro-faunal biozones from the early marine Permian of East Australia and New Zealand, with description of some Australian faunas (PDF). Earthwise. Vol. 19. pp. 105–164.
  60. ^ a b c Popov, L. E.; Zaman, S.; Baranov, V.; Ghobadi Pour, M.; Holmer, L. E. (2021). "Silurian (Aeronian) rhynchonelliform brachiopods of Shabdjereh, south-west Central Iran and their significance for early spiriferide evolution". Journal of Systematic Palaeontology. 19 (3): 191–219. Bibcode:2021JSPal..19..191P. doi:10.1080/14772019.2021.1891148. S2CID 233402571.
  61. ^ Wang, D.-Z.; Zhao, F.-C.; Zeng, H.; Li, G.-X.; Zhu, M.-Y. (2022). "A new rhynchonelliform brachiopod Longtancunella with soft-part preservation from the Hongjingshao Formation (Cambrian Stage 3) in Yunnan, South China". Palaeoworld. 31 (4): 570–581. doi:10.1016/j.palwor.2021.12.002. S2CID 245283187.
  62. ^ Masunaga, M.; Shiino, Y. (2021). "Death or Living Assemblage? The Middle Permian Discinid Brachiopods in the Kamiyasse Area, Southern Kitakami Mountains, Northeastern Japan". Paleontological Research. 25 (3): 258–278. doi:10.2517/2020PR023. S2CID 235729215.
  63. ^ Smirnova, T. N.; Zhegallo, E. A. (2021). "Finds of Upper Devonian linguloids of the genus Paterula Barrande (family Paterulidae Cooper) in the Volga-Ural and Timan-Pechora regions". Paleontological Journal. 55 (4): 384–390. Bibcode:2021PalJ...55..384S. doi:10.1134/S0031030121040134. S2CID 237378374.
  64. ^ a b Waterhouse, J. B. (2021). "New species of Pseudostrophalosia and Terrakea from the upper Mangarewa Formation, Wairaki Downs, New Zealand". Some Permian brachiopods and molluscs from New Zealand (PDF). Earthwise. Vol. 18. pp. 123–142.
  65. ^ Rezende, J.M.P.; Isaacson, P.E. (2021). "Schellwienella clarkei (Orthotetida, Brachiopoda): a new species from the Devonian of the Paraná Basin, Brazil". Journal of Paleontology. 95 (4): 733–747. Bibcode:2021JPal...95..733D. doi:10.1017/jpa.2020.113. S2CID 233625795.
  66. ^ Radulović, B. V. (2022). "New Pliensbachian rhynchonellide (Brachiopoda) from Livari, (Rumija Mountain, Montenegro): the taxonomic implications of microstructure to disentangle cases of homeomorphism". Historical Biology. 34 (12): 2304–2314. Bibcode:2022HBio...34.2304R. doi:10.1080/08912963.2021.2014480. S2CID 245471745.
  67. ^ García-Alcalde, J. L. (2021). "Xanastur (Brachiopoda, Stringocephalacea) nomen novum pro Xana García-Alcalde, 1972 (non Xana Kurdjumov, 1917, Hymenoptera, Hexapoda)". Spanish Journal of Palaeontology. 36 (1): 77–78. doi:10.7203/sjp.36.1.20308. ISSN 2255-0550. S2CID 233702745.
  68. ^ Guo, Z.; Chen, Z.-Q.; Liao, Z. (2021). "Early Carboniferous brachiopod fauna from the Altai Mountains, northern Xinjiang, Central Asia: Systematics, and palaeobiogeographic and palaeogeographical implications". Geological Journal. 56 (12): 6000–6021. Bibcode:2021GeolJ..56.6000G. doi:10.1002/gj.4118. S2CID 233809894.
  69. ^ Cocks, L. R. M.; Popov, L. E. (2021). "The identity and significance of the high-latitude Early Ordovician Mediterranean brachiopod Province". Geological Magazine. 158 (12): 2187–2208. Bibcode:2021GeoM..158.2187C. doi:10.1017/S001675682100073X. S2CID 243320827.
  70. ^ Congreve, C. R.; Patzkowsky, M. E.; Wagner, P. J. (2021). "An early burst in brachiopod evolution corresponding with significant climatic shifts during the Great Ordovician Biodiversification Event". Proceedings of the Royal Society B: Biological Sciences. 288 (1958): Article ID 20211450. doi:10.1098/rspb.2021.1450. PMC 8437024. PMID 34465239.
  71. ^ Pier, J. Q.; Brisson, S. K.; Beard, J. A.; Hren, M. T.; Bush, A. M. (2021). "Accelerated mass extinction in an isolated biota during Late Devonian climate changes". Scientific Reports. 11 (1): Article number 24366. Bibcode:2021NatSR..1124366P. doi:10.1038/s41598-021-03510-6. PMC 8692332. PMID 34934059.
  72. ^ Guo, Z.; Chen, Z.-Q.; Harper, D. A. T.; Huang, Y. (2021). "Permian–Triassic phylogenetic and morphologic evolution of rhynchonellide brachiopods". Paleobiology. 48: 99–119. doi:10.1017/pab.2021.25. S2CID 238700897.
  73. ^ Ausich, W. I.; Koenig, S. C.; Goldstein, A.; Monreal, G. (2021). "Evolutionary and taphonomic implications of a new species of Amphoracrinus from the early Viséan of Kentucky". Journal of Paleontology. 95 (6): 1273–1283. Bibcode:2021JPal...95.1273A. doi:10.1017/jpa.2021.42. S2CID 239890343.
  74. ^ Néraudeau, D.; Mouty, M. (2021). "Archiacia ramitaensis nov. sp., a new archiaciid echinoid from the Cenomanian of Syria" (PDF). Annales de Paléontologie. 107 (1): Article 102469. doi:10.1016/j.annpal.2021.102469. ISSN 0753-3969. S2CID 234286477.
  75. ^ a b c d e f g h i j k Thuy, B.; Numberger-Thuy, L. D. (2021). "Brittlestar diversity at the dawn of the Jenkyns Event (early Toarcian Oceanic Anoxic Event): new microfossils from the Dudelange drill core, Luxembourg". In M. Reolid; L. V. Duarte; E. Mattioli; W. Ruebsam (eds.). Carbon Cycle and Ecosystem Response to the Jenkyns Event in the Early Toarcian (Jurassic). Vol. 514. The Geological Society of London. pp. 83–119. doi:10.1144/SP514-2021-3. S2CID 234842742. {{cite book}}: |journal= ignored (help)
  76. ^ a b Loba, M.; Radwańska, U. (2023). "Asteroidea from the lower Kimmeridgian of Wapienno/Bielawy, Kuyavia region, north-central Poland". Acta Geologica Polonica. in press: 89–106. doi:10.24425/agp.2021.137711. S2CID 260042014.
  77. ^ a b c d e f Gale, A. S. (2021). "Taxonomy and phylogeny of the 'football stars' (Asteroidea, Sphaerasteridae)". Journal of Systematic Palaeontology. 19 (10): 691–741. Bibcode:2021JSPal..19..691G. doi:10.1080/14772019.2021.1960911.
  78. ^ Gale, A.; Matrion, B. (2021). "Microcrinoids from the lower and middle Albian of the Anglo-Paris Basin (southern England, UK, Seine Maritime, Pas de Calais and Aube, France)". Cretaceous Research. 127: Article 104902. Bibcode:2021CrRes.12704902G. doi:10.1016/j.cretres.2021.104902.
  79. ^ Hunter, A. W.; Ortega-Hernández, J. (2021). "A new somasteroid from the Fezouata Lagerstätte in Morocco and the Early Ordovician origin of Asterozoa". Biology Letters. 17 (1): Article ID 20200809. doi:10.1098/rsbl.2020.0809. PMC 7876607. PMID 33465330.
  80. ^ Blake, D. B.; Hotchkiss, F. H. C. (2022). "Origin of the subphylum Asterozoa and redescription of a Moroccan Ordovician somasteroid". Geobios. 72–73: 22–36. Bibcode:2022Geobi..72...22B. doi:10.1016/j.geobios.2022.07.002. S2CID 250372266.
  81. ^ a b c d Roux, M.; Martinez, A.; Vizcaïno, D. (2021). "A diverse crinoid fauna (Echinodermata, Crinoidea) from the Lower Eocene of the Gulf of Languedoc (Corbières, Aude, southern France)" (PDF). Zootaxa. 4963 (2): 201–242. doi:10.11646/zootaxa.4963.2.1. PMID 33903550. S2CID 233410662.
  82. ^ a b Jagt, J. W. M.; Jagt-Yazykova, E. A.; Van Bakel, B. W. M.; Fraaije, R. H. B. (2021). "Notes on some Late Cretaceous goniasterid starfish (Echinodermata, Asteroidea) from Belgium and Germany". Boletín de la Sociedad Geológica Mexicana. 73 (3): A030321. doi:10.18268/BSGM2021v73n3a030321. S2CID 245095034.
  83. ^ a b c d e Gale, A. S.; Jagt, J. W. M. (2021). "The fossil record of the family Benthopectinidae (Echinodermata, Asteroidea), a reappraisal". European Journal of Taxonomy (755): 149–190. doi:10.5852/ejt.2021.755.1405. S2CID 237900178.
  84. ^ a b c d Gale, A. S. (2021). "The stratigraphy of the upper Campanian Chalk of the southern English coast (Isle of Wight, Dorset), United Kingdom". Cretaceous Research. 124: Article 104775. Bibcode:2021CrRes.12404775G. doi:10.1016/j.cretres.2021.104775. S2CID 233887648.
  85. ^ a b c Roux, M.; Philippe, M. (2021). "Early Miocene stalked crinoids (Echinodermata) from the southern Rhodanian basin (southeastern France). Paleoenvironments and taxonomy" (PDF). Zootaxa. 5052 (3): 301–331. doi:10.11646/zootaxa.5052.3.1. PMID 34810870. S2CID 244491430.
  86. ^ Waters, J. A.; Ausich, W. I. (2021), "Gennaeocrinus tariatensis, a new Emsian (Devonian) monobathrid crinoid from the Tarvagatay Terrane of Mongolia", Journal of Paleontology, 96 (3): 631–637, doi:10.1017/jpa.2021.112, S2CID 245227797
  87. ^ a b El Qot, G. M. (2021). "Aptian–Cenomanian echinoids from northern Sinai, Egypt". Cretaceous Research. 126: Article 104870. Bibcode:2021CrRes.12604870E. doi:10.1016/j.cretres.2021.104870.
  88. ^ Bohatý, J.; Ausich, W. I. (2021). "Revision of two Devonian cupressocrinitids from the Schultze collection (Museum of Comparative Zoology, Harvard University) and description of a new Halocrinites (Crinoidea, Eucladida)". Journal of Paleontology. 96: 196–212. doi:10.1017/jpa.2021.65. S2CID 238669967.
  89. ^ Salamon, M. A.; Bubík, M.; Ferré, B.; Duda, P.; Płachno, B. J. (2021). "Hrabalicrinus zitti gen. et sp. nov., and other Upper Jurassic crinoids (Echinodermata, Crinoidea) from the Brno area (Czech Republic)". Annales de Paléontologie. 107 (2): Article 102482. Bibcode:2021AnPal.10702482S. doi:10.1016/j.annpal.2021.102482. S2CID 236716629.
  90. ^ a b Jell, P. A.; Sprinkle, J. (2021). "Revision of Whitehouse's eocrinoids Peridionites and Cymbionites, with description of the associated fauna including two new echinoderm genera, lower Middle Cambrian Thorntonia Limestone, northwestern Queensland". Alcheringa: An Australasian Journal of Palaeontology. 45 (1): 1–55. Bibcode:2021Alch...45....1J. doi:10.1080/03115518.2021.1913512. S2CID 235748053.
  91. ^ a b c Rozhnov, S. V. (2021). "Two Coils in the Morphology of Myelodactylids (Crinoidea, Disparida): the Morphogenetic Basis of Their Formation and Adaptation Potential". Paleontological Journal. 55 (9): 993–1012. Bibcode:2021PalJ...55..993R. doi:10.1134/S0031030121090124. S2CID 245540071.
  92. ^ Mirantsev, G. V. (2021). "An Unusual Cladid (Crinoidea, Echinodermata) from the Pennsylvanian of the Staritsa District (Tver Region)". Paleontological Journal. 55 (9): 1013–1018. Bibcode:2021PalJ...55.1013M. doi:10.1134/S0031030121090082. S2CID 245540083.
  93. ^ Zhao, J.; Guo, J.; Selden, P. A.; Cong, P.-Y.; Li, Y.-J. (2021). "A new eocrinoid from the Guanshan Biota (Cambrian Series 2, Stage 4), with implication of the development of different attachment modes in early Cambrian". Palaeoworld. 31 (2): 185–193. doi:10.1016/j.palwor.2021.08.001. S2CID 238710192.
  94. ^ Mao, Y.; Liu, Y.; Li, Q.; Li, Y.; Zhang, J.; Kershaw, S. (2021). "Mooreocrinus liaoi sp. nov. (Crinoidea, Echinodermata) from the Pennsylvanian (Upper Carboniferous) Outangdi Formation in Zhejiang, South China Block". Geological Journal. 56 (12): 6043–6052. Bibcode:2021GeolJ..56.6043M. doi:10.1002/gj.4311. S2CID 243994472.
  95. ^ Forner i Valls, E.; Arbilla Karasatorre, J. K.; Moreno Alcalde, T. (2021). "New genus of Stegasteridae (Echinoidea) from the Coniacian deep facies of the Basque-Cantabrian basin". Nemus: Revista de l'Ateneu de Natura. 11: 187–204.
  96. ^ a b Thuy, B.; Numberger-Thuy, L. D.; Pineda-Enríquez, T. (2021). "New fossils of Jurassic ophiurid brittle stars (Ophiuroidea; Ophiurida) provide evidence for early clade evolution in the deep sea". Royal Society Open Science. 8 (8): Article ID 210643. Bibcode:2021RSOS....810643T. doi:10.1098/rsos.210643. PMC 8371378. PMID 34457344.
  97. ^ Thuy, B.; Maxwell, V.; Pruss, S. B. (2021). "A new phosphatized ophiuroid from the lower Triassic of Nevada and its position in the evolutionary history of the Ophiuroidea (Echinodermata)". Zootaxa. 5071 (3): 369–383. doi:10.11646/zootaxa.5071.3.4. ISSN 1175-5326. PMID 35390905. S2CID 244569875.
  98. ^ Lefebvre, B.; Ausich, W. I. (2021). "New Siluro-Devonian Anomalocystitids (Echinodermata, Stylophora) from Bolivia and Canada, and a Reevaluation of Skeletal Homologies in Mitrates" (PDF). Paleontological Journal. 55 (9): 932–965. Bibcode:2021PalJ...55..932L. doi:10.1134/S0031030121090070. S2CID 245540040.
  99. ^ Donovan, S. K.; Deckers, M. J. M.; Jagt, J. W. M. (2021). "A distinctive crinoid columnal, Pseudobystrowicrinus (col.) fionae gen. et sp. nov., from the mid-Palaeozoic of north-west Europe". Bulletin of the Mizunami Fossil Museum. 48: 77–88. doi:10.50897/bmfm.48.0_77.
  100. ^ Manni, R. (2022). "Eocene crinoids (Echinodermata) from Cava Boschetto near Chiampo (Veneto, north-eastern Italy)". Journal of Mediterranean Earth Sciences. 14: 27–45. doi:10.13133/2280-6148/17908.
  101. ^ Hostettler, B.; Bernasconi, G.; Erzberger, W.; Hostettler, R.; Kunz, C.; Tschäni, R.; Tschäni, H.; Menkveld-Gfeller, U. (2021). "Cidaroiden (Echinodermata, Echinoidea) der Günsberg-Formation des Nordwestschweizer Juras". Revue de Paléobiologie, Genève. 40 (1): 235–282. doi:10.5281/zenodo.5008794.
  102. ^ Borghi, E.; Bottazzi, A.; Caporiondo, F. (2021). "A new species of Scolechinus (Echinoidea) from the Eocene of Italy". Studi e Ricerche - Associazione Amici del Museo - Museo Civico "G. Zannato" Montecchio Maggiore (Vicenza). 28: 13–19.
  103. ^ Donovan, S. K.; Fearnhead, F. E. (2021). "The British Devonian Crinoidea. Part 2, addendum to Part 1, Cladida, Disparida and columnals". Monographs of the Palaeontographical Society. 174 (658): 57–148. doi:10.1080/02693445.2020.1853380. S2CID 234750666.
  104. ^ Manni, R.; Di Nardo, R. (2021). "A possible crawling paracomatulid crinoid from the Lower Jurassic of central Italy". Carnets de Géologie. 21 (19): 523–532. doi:10.2110/carnets.2021.2119. hdl:11573/1602101.
  105. ^ Semenov, N. K.; Terentyev, S. S.; Mirantsev, G. V.; Rozhnov, S. V. (2021). "A new hybocrinid genus (Echinodermata, Crinoidea) from the Middle Ordovician of Ladoga Glint on the Volkhov River". Paleontological Journal. 55 (1): 54–63. Bibcode:2021PalJ...55...54S. doi:10.1134/S0031030121010123. S2CID 232070936. Archived from the original on 2021-01-14. Retrieved 2021-01-12.
  106. ^ Palópolo, E. E.; Brezina, S. S.; Casadio, S.; Griffin, M.; Santillana, S. (2021). "A new zoroasterid asteroid from the Eocene of Seymour Island, Antarctica". Acta Palaeontologica Polonica. 66 (2): 301–318. doi:10.4202/app.00714.2019. hdl:11336/183786. S2CID 236701733.
  107. ^ Nohejlová, M.; Lefebvre, B (2021). "Late Ordovician solutan echinoderms from the Western Tafilalt, Morocco". In A. W. Hunter; J. J. Álvaro; B. Lefebvre; P. van Roy; S. Zamora (eds.). The Great Ordovician Biodiversification Event: Insights from the Tafilalt Biota, Morocco (PDF). Vol. 485. The Geological Society of London. pp. 523–539. doi:10.1144/SP485-2021-55. S2CID 241933517. {{cite book}}: |journal= ignored (help)
  108. ^ Paul, C. R. C.; Toom, U. (2021). "The diploporite blastozoan Glyptosphaerites (Echinodermata: Blastozoa) and the origin of diplopores". Estonian Journal of Earth Sciences. 70 (4): 224–239. doi:10.3176/earth.2021.15.
  109. ^ Paul, C. R. C.; Toom, U. (2021). "Cystoblastus and the origin of the Hemicosmitoida (Echinodermata: Blastozoa)". Estonian Journal of Earth Sciences. 70 (3): 165–181. doi:10.3176/earth.2021.13.
  110. ^ Paul, C.R.C. (2021). "The functional and evolutionary significance of blastoid hydrospires". Palaeogeography, Palaeoclimatology, Palaeoecology. 576: Article 110482. Bibcode:2021PPP...57610482P. doi:10.1016/j.palaeo.2021.110482. S2CID 236242043.
  111. ^ Cole, S. R.; Hopkins, M. J. (2021). "Selectivity and the effect of mass extinctions on disparity and functional ecology". Science Advances. 7 (19): eabf4072. Bibcode:2021SciA....7.4072C. doi:10.1126/sciadv.abf4072. PMC 8099180. PMID 33952521.
  112. ^ Carter, R. P.; Sutton, M. D.; Briggs, D. E. G.; Rahman, I. A.; Siveter, D. J.; Siveter, D. J. (2021). "A Silurian ophiuroid with soft-tissue preservation". Papers in Palaeontology. 7 (4): 2041–2047. Bibcode:2021PPal....7.2041C. doi:10.1002/spp2.1390. hdl:10044/1/90303.
  113. ^ a b c d e f g Karádi, V.; Kolar-Jurkovšek, T.; Gale, L.; Jurkovšek, B. (2021). "New Advances in Biostratigraphy of the Lower/Middle Norian Transition: Conodonts of the Dovško Section, Slovenia". Journal of Earth Science. 32 (3): 677–699. Bibcode:2021JEaSc..32..677K. doi:10.1007/s12583-020-1382-y. hdl:10831/82757. S2CID 232415236.
  114. ^ Yan, G.; Wu, R. (2021). "Silurian (late Llandovery – Wenlock) conodont fauna and biostratigraphy from the Yanbian area of Sichuan Province, south-west China". Papers in Palaeontology. 7 (4): 1793–1824. Bibcode:2021PPal....7.1793Y. doi:10.1002/spp2.1364. S2CID 235561738.
  115. ^ a b c d e f g h i j k l m n o Orchard, M. J. (2021). "North American Spathian (upper Olenekian, Lower Triassic) neogondolellin conodonts". Papers in Palaeontology. 8. doi:10.1002/spp2.1409. S2CID 245072630.
  116. ^ a b c d e f g Golding, M. L.; Orchard, M. J. (2021). "Diverse Late Paleozoic and Triassic conodont faunas from the Cache Creek Terrane, central British Columbia, Canada". Palaeontographica Canadiana. 39: 1–93. ISBN 978-1-897095-93-5.
  117. ^ a b c Barrick, J. E.; Sundgren, J. R.; McAdams, N. E. B. (2021). "Endemic earliest Lochkovian species of Caudicriodus (conodont) from southern Laurentia and the Silurian–Devonian boundary". Papers in Palaeontology. 7 (3): 1585–1600. Bibcode:2021PPal....7.1585B. doi:10.1002/spp2.1354. S2CID 234037980.
  118. ^ Golding, M. L. (2021). "Abundant conodont faunas from the Olenekian (Early Triassic) of subsurface British Columbia, Canada and diversification of the Neogondolellinae around the Smithian–Spathian boundary". Global and Planetary Change. 205: Article 103613. Bibcode:2021GPC...20503613G. doi:10.1016/j.gloplacha.2021.103613. ISSN 0921-8181.
  119. ^ Świś, P. (2021). "A new Devonian species of the enigmatic Carboniferous conodont Dollymae". Palaeoworld. 31: 86–92. doi:10.1016/j.palwor.2021.03.003. S2CID 233588842.
  120. ^ a b c Rasmussen, J. A.; Eriksson, M. E.; Lindskog, A. (2021). "Middle Ordovician Drepanoistodus (Vertebrata, Conodonta) from Baltica, with description of three new species". European Journal of Taxonomy (774): 106–134. doi:10.5852/ejt.2021.774.1533. S2CID 242836131.
  121. ^ Maekawa, T.; Jenks, J. F. (2021). "Smithian (Olenekian, Early Triassic) Conodonts from Ammonoid-Bearing Limestone Blocks at Crittenden Springs, Elko County, Nevada, USA". Paleontological Research. 25 (3): 201–245. doi:10.2517/2020PR022. S2CID 235729216.
  122. ^ a b Rosscoe, S. J.; Barrick, J. E. (2021). "Conodont faunas from the lower part of the Tinajas Member of the Atrasado Formation (Upper Pennsylvanian/Missourian), Manzanita Mountains, New Mexico". New Mexico Museum of Natural History and Science Bulletin. 84: 241–253.
  123. ^ Yuan, D.; Zhang, Y.; Qiao, F.; Xu, H.; Ju, Q.; Shen, S. (2021). "A new late Kungurian (Cisuralian, Permian) conodont and fusuline fauna from the South Qiangtang Block in Tibet and their implications for correlation and paleobiogeography". Palaeogeography, Palaeoclimatology, Palaeoecology. 589: Article 110822. doi:10.1016/j.palaeo.2021.110822. S2CID 245622721.
  124. ^ Li, H.; Wang, M.; Zhang, M.; Wignall, P. B.; Rigo, M.; Chen, Y.; Wu, X.; Ouyang, Z.; Wu, B.; Yi, Z.; Zhang, Z.; Lai, X. (2021). "First Records of Late Triassic Conodont Fauna and δ13Ccarb from the Dengdengqiao Section, Dangchang County, Gansu Province, Northwestern China". Journal of Earth Science. 32 (3): 646–656. doi:10.1007/s12583-021-1428-9. hdl:11577/3392392. ISSN 1674-487X. S2CID 233030369.
  125. ^ Golding, M. L. (2021). "Early Anisian (Middle Triassic) Conodonts from Romania and China, with Comments on Their Role in the Recognition and Correlation of the Base of the Anisian". Journal of Earth Science. 32 (3): 573–591. Bibcode:2021JEaSc..32..573G. doi:10.1007/s12583-020-1392-9. S2CID 231992742.
  126. ^ Gómez, M. J.; Mestre, A.; Corradini, C.; Heredia, S. (2021). "A new species, Ozarkodina huenickeni, from the upper Silurian - Lower Devonian in San Juan Precordillera, South America". Journal of South American Earth Sciences. 108: Article 103174. Bibcode:2021JSAES.10803174G. doi:10.1016/j.jsames.2021.103174. hdl:11336/150106. S2CID 233542446.
  127. ^ a b c Kılıç, A. M. (2021). "Anisian (Middle Triassic) Conodonts of the Kocaeli Triassic, Western Turkey". Journal of Earth Science. 32 (3): 616–632. Bibcode:2021JEaSc..32..616K. doi:10.1007/s12583-020-1384-9. S2CID 235349601.
  128. ^ Du, Y.; Onoue, T.; Karádi, V.; Williams, I. S.; Rigo, M. (2021). "Evolutionary process from Mockina bidentata to Parvigondolella andrusovi: evidence from the Pizzo Mondello Section, Sicily, Italy". Journal of Earth Science. 32 (3): 667–676. Bibcode:2021JEaSc..32..667D. doi:10.1007/s12583-020-1362-2. hdl:1885/277921. S2CID 233876429.
  129. ^ Over, D. J.; Wistort, Z.; Soar, L. K.; Bullecks, C. J.; Hagadorn, J. W. (2021). "Conodonts and the Devonian–Carboniferous transition in the Dyer Formation, Colorado". Rocky Mountain Geology. 56 (2): 51–67. Bibcode:2021RMGeo..56...51O. doi:10.24872/rmgjournal.56.2.51. S2CID 239909488.
  130. ^ Yang, Z.H.; Jing, X.C.; Zhou, H.R.; Wang, X.L.; Ren, H.; Shen, Y.; Fan, R. (2021). "Katian (Late Ordovician) conodonts on the northwestern margin of the North China Craton". Journal of Paleontology. 95 (4): 805–826. Bibcode:2021JPal...95..805Y. doi:10.1017/jpa.2021.11. S2CID 233846439.
  131. ^ Atakul-Özdemir, A.; Warren, X.; Martin, P. G.; Guizar-Sicairos, M.; Holler, M.; Marone, F.; Martínez-Pérez, C.; Donoghue, P. C. J. (2021). "X-ray nanotomography and electron backscatter diffraction demonstrate the crystalline, heterogeneous and impermeable nature of conodont white matter". Royal Society Open Science. 8 (8): Article ID 202013. Bibcode:2021RSOS....802013A. doi:10.1098/rsos.202013. PMC 8334826. PMID 34386244. S2CID 236898476.
  132. ^ Leonhard, I.; Shirley, B.; Murdock, D. J. E.; Repetski, J.; Jarochowska, E. (2021). "Growth and feeding ecology of coniform conodonts". PeerJ. 9: e12505. doi:10.7717/peerj.12505. PMC 8679908. PMID 34993015.
  133. ^ Murdock, D. J. E.; Smith, M. P. (2021). "Panderodus from the Waukesha Lagerstätte of Wisconsin, USA: a primitive macrophagous vertebrate predator". Papers in Palaeontology. 7 (4): 1977–1993. Bibcode:2021PPal....7.1977M. doi:10.1002/spp2.1389. S2CID 237769553.
  134. ^ Bai, R.; Song, H.; Benton, M. J.; Tian, L. (2021). "Phylogenetic classification and evolution of Early Triassic conodonts". Palaeogeography, Palaeoclimatology, Palaeoecology. 585: Article 110731. doi:10.1016/j.palaeo.2021.110731. S2CID 240307775.
  135. ^ Han, C.; Orchard, M. J.; Wu, S.; Zhao, L.; Chen, Z.-Q.; Golding, M. L.; Jan, I. U.; Lyu, Z.; Hashmi, S. I. (2021). "Improved taxonomic definition based on the ontogenetic series of Griesbachian-Dienerian conodonts from the Early Triassic of northwestern Pakistan". Global and Planetary Change. 208: Article 103703. doi:10.1016/j.gloplacha.2021.103703. ISSN 0921-8181. S2CID 244125853.
  136. ^ Werneburg, R.; Schneider, J. W.; Lucas, S. G. (2021). "The new dvinosaurian Bermanerpeton kinneyi (Temnospondyli), with "branchiosaurid" characters, from the Late Pennsylvanian Kinney Brick Quarry in New Mexico". New Mexico Museum of Natural History and Science Bulletin. 84: 433–451.
  137. ^ Macaluso, L.; Villa, A.; Mörs, T. (2021). "A new proteid salamander (Urodela, Proteidae) from the middle Miocene of Hambach (Germany) and implications for the evolution of the family". Palaeontology. 65. doi:10.1111/pala.12585. hdl:2318/1825718. S2CID 245471400.
  138. ^ Mann, A.; Calthorpe, A. S.; Maddin, H. C. (2021). "Joermungandr bolti, an exceptionally preserved 'microsaur' from the Mazon Creek Lagerstätte reveals patterns of integumentary evolution in Recumbirostra". Royal Society Open Science. 8 (7): Article ID 210319. Bibcode:2021RSOS....810319M. doi:10.1098/rsos.210319. PMC 8292758. PMID 34295525.
  139. ^ Liu, J.; Chen, J. (2021). "The tetrapod fauna of the upper Permian Naobaogou Formation of China: 7. Laosuchus hun sp. nov. (Chroniosuchia) and interrelationships of chroniosuchians". Journal of Systematic Palaeontology. 18 (24): 2043–2058. doi:10.1080/14772019.2021.1873435. S2CID 232116225.
  140. ^ Easton, L. J.; Tennyson, A. J. D.; Rawlence, N. J. (2021). "A new species of Leiopelma frog (Amphibia: Anura: Leiopelmatidae) from the late Pliocene of New Zealand". New Zealand Journal of Zoology. 49 (3): 215–224. doi:10.1080/03014223.2021.1979053.
  141. ^ Jia, J.; Anderson, J. S.; Gao, K.-Q. (2021). "Middle Jurassic stem hynobiids from China shed light on the evolution of basal salamanders". iScience. 24 (7): Article 102744. Bibcode:2021iSci...24j2744J. doi:10.1016/j.isci.2021.102744. PMC 8264161. PMID 34278256.
  142. ^ a b Roček, Z.; Rage, J.-C.; Venczel, M. (2021). "Fossil frogs of the genus Palaeobatrachus (Amphibia: Anura)". Abhandlungen der Senckenberg Gesellschaft für Naturforschung. 575: 1–151. ISBN 978-3-510-61420-2.
  143. ^ Hír, J.; Venczel, M; Sebe, K. (2024). "Middle Miocene (Late Badenian) microvertebrates from Hidas, SW Hungary". Geologia Croatica. 77 (1): 15–28. doi:10.4154/gc.2024.03.
  144. ^ Moura, P. H. A. G.; Costa, F. R.; Anelli, L. E.; Nunes, I. (2021). "A new genus of fossil frog (Anura) from Lower Cretaceous deposits in South America". Anais da Academia Brasileira de Ciências. 93 (Suppl. 2): e20191560. doi:10.1590/0001-3765202120201560. hdl:11449/211047. PMID 34161447. S2CID 235625863.
  145. ^ Rage, J.-C.; Adaci, M.; Bensalah, M.; Mahboubi, M.; Marivaux, L.; Mebrouk, F.; Tabuce, R. (2021). "Latest Early-early Middle Eocene deposits of Algeria (Glib Zegdou, HGL50), yield the richest and most diverse fauna of amphibians and squamate reptiles from the Palaeogene of Africa" (PDF). Palæovertebrata. 44 (1): e1. doi:10.18563/pv.44.1.e1. S2CID 233892725.
  146. ^ Schoch, R. R.; Sobral, G. (2021). "A new species of Sclerocephalus with a fully ossified endocranium gives insight into braincase evolution in temnospondyls". Journal of Paleontology. 95 (6): 1308–1320. Bibcode:2021JPal...95.1308S. doi:10.1017/jpa.2021.51. S2CID 237702837.
  147. ^ Novikov, I. V. (2021). "New data on trematosauroid labyrinthodonts of Eastern Europe: 5. Genus Thoosuchus Efremov, 1940". Paleontological Journal. 55 (4): 429–437. Bibcode:2021PalJ...55..429N. doi:10.1134/S0031030121040110. S2CID 237378317.
  148. ^ Molnar, J. L.; Hutchinson, J. R.; Diogo, R.; Clack, J. A.; Pierce, S. E. (2021). "Evolution of forelimb musculoskeletal function across the fish-to-tetrapod transition". Science Advances. 7 (4): eabd7457. Bibcode:2021SciA....7.7457M. doi:10.1126/sciadv.abd7457. PMC 10964964. PMID 33523947. S2CID 231681066.
  149. ^ Simões, T. R.; Pierce, S. E. (2021). "Sustained high rates of morphological evolution during the rise of tetrapods". Nature Ecology & Evolution. 5 (10): 1403–1414. Bibcode:2021NatEE...5.1403S. doi:10.1038/s41559-021-01532-x. PMID 34426679. S2CID 237280713.
  150. ^ Rawson, J. R. G.; Porro, L. B.; Martin-Silverstone, E.; Rayfield, E. J. (2021). "Osteology and digital reconstruction of the skull of the early tetrapod Whatcheeria deltae". Journal of Vertebrate Paleontology. 41 (2): e1927749. Bibcode:2021JVPal..41E7749R. doi:10.1080/02724634.2021.1927749. S2CID 237517972.
  151. ^ Otoo, B. K. A.; Bolt, J. R.; Lombard, R. E.; Angielczyk, K. D.; Coates, M. I. (2021). "The postcranial anatomy of Whatcheeria deltae and its implications for the family Whatcheeriidae". Zoological Journal of the Linnean Society. 193 (2): 700–745. doi:10.1093/zoolinnean/zlaa182.
  152. ^ Whitney, M. R.; Pierce, S. E. (2021). "Osteohistology of Greererpeton provides insight into the life history of an early Carboniferous tetrapod". Journal of Anatomy. 239 (6): 1256–1272. doi:10.1111/joa.13520. PMC 8602017. PMID 34310687. S2CID 236450857.
  153. ^ Lennie, K. I.; Manske, S. L.; Mansky, C. F.; Anderson, J. S. (2021). "Locomotory behaviour of early tetrapods from Blue Beach, Nova Scotia, revealed by novel microanatomical analysis". Royal Society Open Science. 8 (5): Article ID 210281. Bibcode:2021RSOS....810281L. doi:10.1098/rsos.210281. PMC 8150034. PMID 34084552.
  154. ^ Estefa, J.; Tafforeau, P.; Clement, A. M.; Klembara, J.; Niedźwiedzki, G.; Berruyer, C.; Sanchez, S. (2021). "New light shed on the early evolution of limb-bone growth plate and bone marrow". eLife. 10: e51581. doi:10.7554/eLife.51581. PMC 7924947. PMID 33648627.
  155. ^ Ó Gogáin, A.; Wyse Jackson, P. N. (2021). "Microcomputed tomography of the holotype of the early tetrapod Ichthyerpeton bradleyae (Huxley in Wright and Huxley, 1866) from the Pennsylvanian of Ireland". Journal of Paleontology. 95 (5): 1048–1060. Bibcode:2021JPal...95.1048G. doi:10.1017/jpa.2021.31. S2CID 236586637.
  156. ^ Carter, A. M.; Hsieh, S. T.; Dodson, P.; Sallan, L. (2021). "Early amphibians evolved distinct vertebrae for habitat invasions". PLOS ONE. 16 (6): e0251983. Bibcode:2021PLoSO..1651983C. doi:10.1371/journal.pone.0251983. PMC 8189462. PMID 34106947.
  157. ^ Steyer, J.-S.; Peecook, B. R.; Arbez, T.; Nesbitt, S. J.; Tolan, S.; Stocker, M. R.; Smith, R. M. H.; Angielczyk, K. D.; Sidor, C. A. (2021). "New data on the Triassic temnospondyls from the Karoo rift basins of Tanzania and Zambia". Geodiversitas. 43 (12): 365–376. doi:10.5252/geodiversitas2021v43a12. ISSN 1280-9659. S2CID 235396257.
  158. ^ Schoch, R. R. (2021). "The life cycle in late Paleozoic eryopid temnospondyls: developmental variation, plasticity and phylogeny". Fossil Record. 24 (2): 295–319. Bibcode:2021FossR..24..295S. doi:10.5194/fr-24-295-2021.
  159. ^ Schoch, R. R. (2021). "Osteology of the Permian temnospondyl amphibian Glanochthon lellbachae and its relationships". Fossil Record. 24 (1): 49–64. Bibcode:2021FossR..24...49S. doi:10.5194/fr-24-49-2021.
  160. ^ Uliakhin, A. V.; Skutschas, P. P.; Saburov, P. G. (2021). "Age variability in the histological structure of the postcranial skeleton of Platyoposaurus stuckenbergi Trautschold, 1884 (Temnospondyli, Archegosauridae) from the Middle Permian of Eastern Europe". Paleontological Journal. 55 (3): 311–322. Bibcode:2021PalJ...55..311U. doi:10.1134/S0031030121030126. S2CID 235966589.
  161. ^ Gee, B. M.; Makovicky, P. J.; Sidor, C. A. (2021). "Upside down: 'Cryobatrachus' and the lydekkerinid record from Antarctica". Journal of Paleontology. 96 (3): 658–683. doi:10.1017/jpa.2021.115. S2CID 245312022.
  162. ^ Slodownik, M. A.; Mörs, T.; Kear, B. P. (2021). "Reassessment of the Early Triassic trematosaurid temnospondyl Tertrema acuta from the Arctic island of Spitsbergen". Journal of Vertebrate Paleontology. 41 (1): e1900209. Bibcode:2021JVPal..41E0209S. doi:10.1080/02724634.2021.1900209. S2CID 235574341.
  163. ^ Gee, B. M.; Jasinski, S. E. (2021). "Description of the metoposaurid Anaschisma browni from the New Oxford Formation of Pennsylvania". Journal of Paleontology. 95 (5): 1061–1078. Bibcode:2021JPal...95.1061G. doi:10.1017/jpa.2021.30. S2CID 235546289.
  164. ^ Kufner, A. M.; Gee, B. M. (2021). "Reevaluation of the holotypes of Koskinonodon princeps Branson and Mehl, 1929, and Borborophagus wyomingensis Branson and Mehl, 1929 (Temnospondyli, Metoposauridae)". Journal of Vertebrate Paleontology. 41 (1): e1922067. Bibcode:2021JVPal..41E2067K. doi:10.1080/02724634.2021.1922067. S2CID 236285994.
  165. ^ Gruntmejer, K.; Bodzioch, A.; Konietzko-Meier, D. (2021). "Mandible histology in Metoposaurus krasiejowensis (Temnospondyli, Stereospondyli) from the Upper Triassic of Poland". PeerJ. 9: e12218. doi:10.7717/peerj.12218. PMC 8487625. PMID 34703667.
  166. ^ Marsicano, C.; Angielczyk, K. D.; Cisneros, J. C.; Richter, M.; Kammerer, C. F.; Fröbisch, J.; Smith, R. M. H. (2021). "Brazilian Permian Dvinosaurs (Amphibia, Temnospondyli): Revised Description and Phylogeny". Journal of Vertebrate Paleontology. 41 (1): e1893181. Bibcode:2021JVPal..41E3181M. doi:10.1080/02724634.2021.1893181. S2CID 235569879.
  167. ^ Schoch, R. R.; Milner, A. R. (2021). "Morphology and relationships of the temnospondyl Macrerpeton huxleyi from the Pennsylvanian of Linton, Ohio (USA)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 299 (1): 77–98. doi:10.1127/njgpa/2021/0956. S2CID 234095447.
  168. ^ Gee, B. M. (2021). "Returning to the roots: resolution, reproducibility, and robusticity in the phylogenetic inference of Dissorophidae (Amphibia: Temnospondyli)". PeerJ. 9: e12423. doi:10.7717/peerj.12423. PMC 8582317. PMID 34820181.
  169. ^ Gee, B. M.; Berman, D. S.; Henrici, A. M.; Pardo, J. D.; Huttenlocker, A. K. (2021). "New Information on the Dissorophid Conjunctio (Temnospondyli) Based on a Specimen from the Cutler Formation of Colorado, U.S.A.". Journal of Vertebrate Paleontology. 40 (6): e1877152. doi:10.1080/02724634.2020.1877152. S2CID 233622402.
  170. ^ Gee, B. M.; Sidor, C. A. (2021). "First record of the amphibamiform Micropholis stowi from the lower Fremouw Formation (Lower Triassic) of Antarctica". Journal of Vertebrate Paleontology. 41 (1): e1904251. Bibcode:2021JVPal..41E4251G. doi:10.1080/02724634.2021.1904251. S2CID 236360039.
  171. ^ Werneburg, R.; Schneider, J. W.; Lucas, S. G. (2021). "The "amphibamid" and "branchiosaurid" morphotype in the dissorophoid Milnererpeton huberi (Temnospondyli), from the Late Pennsylvanian Kinney Brick Quarry in New Mexico". New Mexico Museum of Natural History and Science Bulletin. 84: 425–432.
  172. ^ Werneburg, R. (2021). "Morphology, Ontogeny and Variation of the Branchiosaurid Apateon dracyiensis from the Rotliegend (Lower Permian) Cabarz Quarry in the Thuringian Forest basin, Germany". Semana. Naturwissenschaftliche Veröffentlichungen des Naturhistorischen Museums Schloss Bertholdsburg Schleusingen. 36: 51–86.
  173. ^ Roček, Z.; Dong, L.; Fabrezi, M.; Rong, Y.; Wang, Y. (2021). "Carpus in Mesozoic anurans: the Early Cretaceous anuran Genibatrachus from northeastern China". Cretaceous Research. 129: Article 104984. doi:10.1016/j.cretres.2021.104984. ISSN 0195-6671. S2CID 238649516.
  174. ^ Wick, S. L. (2021). "Fossil frogs from the early Campanian of West Texas, USA, with comments on Late Cretaceous anuran diversity in southern Laramidia". Palaeobiodiversity and Palaeoenvironments. 101 (4): 947–966. Bibcode:2021PdPe..101..947W. doi:10.1007/s12549-021-00481-4. S2CID 233435993.
  175. ^ Suazo Lara, F.; Gómez, R. O. (2021). "In the shadow of dinosaurs: Late Cretaceous frogs are distinct components of a widespread tetrapod assemblage across Argentinean and Chilean Patagonia". Cretaceous Research. 131: Article 105085. doi:10.1016/j.cretres.2021.105085. S2CID 243482426.
  176. ^ Báez, A. M.; Muzzopappa, P.; Araújo, O. G. S. (2021). "New remains from the Cenomanian Candeleros Formation, Neuquén Basin (Patagonia, Argentina) provide insights into the formation of the sacro-urostylic complex in early pipimorph frogs (Amphibia, Anura)". Cretaceous Research. 129: Article 105026. doi:10.1016/j.cretres.2021.105026. S2CID 240516686.
  177. ^ Venczel, M.; Szentesi, Z.; Gardner, J. D. (2021). "New material of the frog Hungarobatrachus szukacsi Szentesi & Venczel, 2010, from the Santonian of Hungary, supports its neobatrachian affinities and reveals a Gondwanan influence on the European Late Cretaceous anuran fauna". Geodiversitas. 43 (7): 187–207. doi:10.5252/geodiversitas2021v43a7. S2CID 233260388.
  178. ^ Gómez, R. O.; Turazzini, G. F. (2021). "The fossil record and phylogeny of South American horned frogs (Anura, Ceratophryidae)". Journal of Systematic Palaeontology. 19 (2): 91–130. Bibcode:2021JSPal..19...91G. doi:10.1080/14772019.2021.1892845. ISSN 1477-2019. S2CID 233194194.
  179. ^ Lemierre, A.; Folie, A.; Bailon, S.; Robin, N.; Laurin, M. (2021). "From toad to frog, a CT-based reconsideration of Bufo servatus, an Eocene anuran mummy from Quercy (France)". Journal of Vertebrate Paleontology. 41 (3): e1989694. Bibcode:2021JVPal..41E9694L. doi:10.1080/02724634.2021.1989694. S2CID 244552296.
  180. ^ Nonsrirach, T.; Manitkoon, S.; Lauprasert, K. (2021). "First occurrence of brachyopid temnospondyls in Southeast Asia and review of the Mesozoic amphibians from Thailand". Fossil Record. 24 (1): 33–47. Bibcode:2021FossR..24...33N. doi:10.5194/fr-24-33-2021.
  181. ^ MacDougall, M. J.; Seeger, R.; Gee, B.; Ponstein, J.; Jansen, M.; Scott, D.; Bevitt, J. J.; Reisz, R. R.; Fröbisch, J. (2021). "Revised Description of the Early Permian Recumbirostran "Microsaur" Nannaroter mckinziei Based on New Fossil Material and Computed Tomographic Data". Frontiers in Ecology and Evolution. 9: Article 739316. doi:10.3389/fevo.2021.739316.
  182. ^ Zwafing, M.; Lautenschlager, S.; Demuth, O. E.; Nyakatura, J. A. (2021). "Modeling Sprawling Locomotion of the Stem Amniote Orobates: An Examination of Hindlimb Muscle Strains and Validation Using Extant Caiman". Frontiers in Ecology and Evolution. 9: Article 659039. doi:10.3389/fevo.2021.659039.
  183. ^ Klembara, J.; Ruta, M.; Hain, M.; Berman, D. S. (2021). "Braincase and Inner Ear Anatomy of the Late Carboniferous Tetrapod Limnoscelis dynatis (Diadectomorpha) Revealed by High-Resolution X-ray Microcomputed Tomography". Frontiers in Ecology and Evolution. 9: Article 709766. doi:10.3389/fevo.2021.709766.
  184. ^ a b Kammerer, C. F.; Ordoñez, M. D. (2021). "Dicynodonts (Therapsida: Anomodontia) of South America". Journal of South American Earth Sciences. 108: Article 103171. Bibcode:2021JSAES.10803171K. doi:10.1016/j.jsames.2021.103171. S2CID 233565963.
  185. ^ a b Panciroli, E.; Benson, R. B. J.; Fernandez, V.; Butler, R. J.; Fraser, N. C.; Luo, Z.-X.; Walsh, S. (2021). "New species of mammaliaform and the cranium of Borealestes (Mammaliformes: Docodonta) from the Middle Jurassic of the British Isles". Zoological Journal of the Linnean Society. 192 (4): 1323–1362. doi:10.1093/zoolinnean/zlaa144.
  186. ^ Mao, F.; Zhang, C.; Liu, C.; Meng, J. (2021). "Fossoriality and evolutionary development in two Cretaceous mammaliamorphs". Nature. 592 (7855): 577–582. Bibcode:2021Natur.592..577M. doi:10.1038/s41586-021-03433-2. PMID 33828300. S2CID 233183060.
  187. ^ Tolchard, F.; Kammerer, C. F.; Butler, R. J.; Hendrickx, C.; Benoit, J.; Abdala, F.; Choiniere, J. N. (2021). "A new large gomphodont from the Triassic of South Africa and its implications for Gondwanan biostratigraphy". Journal of Vertebrate Paleontology. 41 (2): e1929265. Bibcode:2021JVPal..41E9265T. doi:10.1080/02724634.2021.1929265. S2CID 237517965.
  188. ^ Sidor, C. A.; Tabor, N. J.; Smith, R. M. (2021). "A new late Permian burnetiamorph from Zambia confirms exceptional levels of endemism in Burnetiamorpha (Therapsida: Biarmosuchia) and an updated paleoenvironmental interpretation of the upper Madumabisa Mudstone Formation". Frontiers in Ecology and Evolution. 9: Article 685244. doi:10.3389/fevo.2021.685244.
  189. ^ Kammerer, C. F.; Sidor, C. A. (2021). "A new burnetiid from the middle Permian of Zambia and a reanalysis of burnetiamorph relationships". Papers in Palaeontology. 7 (3): 1261–1295. Bibcode:2021PPal....7.1261K. doi:10.1002/spp2.1341. S2CID 232063704.
  190. ^ Huttenlocker, A. K.; Singh, S. A.; Henrici, A. C.; Sumida, S. S. (2021). "A Carboniferous synapsid with caniniform teeth and a reappraisal of mandibular size-shape heterodonty in the origin of mammals". Royal Society Open Science. 8 (12): Article ID 211237. Bibcode:2021RSOS....811237H. doi:10.1098/rsos.211237. PMC 8672069. PMID 34925870.
  191. ^ Liu, J. (2021). "The tetrapod fauna of the upper Permian Naobaogou Formation of China: 6. Turfanodon jiufengensis sp. nov. (Dicynodontia)". PeerJ. 9 (e10854): e10854. doi:10.7717/peerj.10854. PMC 7896508. PMID 33643709.
  192. ^ Brocklehurst, N. (2021). "The First Age of Reptiles? Comparing Reptile and Synapsid Diversity, and the Influence of Lagerstätten, During the Carboniferous and Early Permian". Frontiers in Ecology and Evolution. 9: Article 669765. doi:10.3389/fevo.2021.669765.
  193. ^ Jones, K. E.; Dickson, B. V.; Angielczyk, K. D.; Pierce, S. E. (2021). "Adaptive landscapes challenge the "lateral-to-sagittal" paradigm for mammalian vertebral evolution". Current Biology. 31 (9): 1883–1892.e7. Bibcode:2021CBio...31E1883J. doi:10.1016/j.cub.2021.02.009. ISSN 0960-9822. PMID 33657406. S2CID 232093918.
  194. ^ Lungmus, J. K.; Angielczyk, K. D. (2021). "Phylogeny, function and ecology in the deep evolutionary history of the mammalian forelimb". Proceedings of the Royal Society B: Biological Sciences. 288 (1949): Article ID 20210494. doi:10.1098/rspb.2021.0494. PMC 8059613. PMID 33878918.
  195. ^ Brocklehurst, R. J.; Fahn-Lai, P.; Regnault, S.; Pierce, S. E. (2021). "Musculoskeletal modeling of sprawling and parasagittal forelimbs provides insight into synapsid postural transition". iScience. 25 (1): Article 103578. doi:10.1016/j.isci.2021.103578. PMC 10441569. PMID 37609446. S2CID 245040521.
  196. ^ Knaus, P. L.; van Heteren, A. H.; Lungmus, J. K.; Sander, P. M. (2021). "High Blood Flow Into the Femur Indicates Elevated Aerobic Capacity in Synapsids Since the Synapsida-Sauropsida Split". Frontiers in Ecology and Evolution. 9: Article 751238. doi:10.3389/fevo.2021.751238.
  197. ^ Matamales-Andreu, R.; Mujal, E.; Galobart, À.; Fortuny, J. (2021). "Insights on the evolution of synapsid locomotion based on tetrapod tracks from the lower Permian of Mallorca (Balearic Islands, western Mediterranean)". Palaeogeography, Palaeoclimatology, Palaeoecology. 579: Article 110589. Bibcode:2021PPP...57910589M. doi:10.1016/j.palaeo.2021.110589.
  198. ^ Benoit, J.; Ford, D. P.; Miyamae, J. A.; Ruf, I. (2021). "Can maxillary canal morphology inform varanopid phylogenetic affinities?". Acta Palaeontologica Polonica. 66 (2): 389–393. doi:10.4202/app.00816.2020. S2CID 237333701.
  199. ^ Bazzana, K. D.; Evans, D. C.; Bevitt, J. J.; Reisz, R. R. (2021). "Neurosensory anatomy of Varanopidae and its implications for early synapsid evolution". Journal of Anatomy. 240 (5): 833–849. doi:10.1111/joa.13593. PMC 9005680. PMID 34775594. S2CID 244116303.
  200. ^ Duhamel, A.; Benoit, J.; Rubidge, B. S.; Liu, J. (2021). "A re-assessment of the oldest therapsid Raranimus confirms its status as a basal member of the clade and fills Olson's gap". The Science of Nature. 108 (4): Article number 26. Bibcode:2021SciNa.108...26D. doi:10.1007/s00114-021-01736-y. PMID 34115204. S2CID 235403632.
  201. ^ Duhamel, A.; Benoit, J.; Day, M.; Rubidge, B.; Fernandez, V. (2021). "Computed Tomography elucidates ontogeny within the basal therapsid clade Biarmosuchia". PeerJ. 9: e11866. doi:10.7717/peerj.11866. PMC 8403480. PMID 34527434.
  202. ^ Benoit, J.; Kruger, A.; Jirah, S.; Fernandez, V.; Rubidge, B. S. (2021). "Palaeoneurology and palaeobiology of the dinocephalian therapsid Anteosaurus magnificus". Acta Palaeontologica Polonica. 66 (1): 29–39. doi:10.4202/app.00800.2020.
  203. ^ Bhat, M. S.; Shelton, C. D.; Chinsamy, A. (2021). "Inter-element variation in the bone histology of Anteosaurus (Dinocephalia, Anteosauridae) from the Tapinocephalus Assemblage Zone of the Karoo Basin of South Africa". PeerJ. 9: e12082. doi:10.7717/peerj.12082. PMC 8434808. PMID 34589298.
  204. ^ Bhat, M. S.; Shelton, C. D.; Chinsamy, A. (2021). "Bone histology of the graviportal dinocephalian therapsid Jonkeria from the middle Permian Tapinocephalus Assemblage Zone of the Karoo Basin of South Africa". Acta Palaeontologica Polonica. 66 (4): 705–721. doi:10.4202/app.00872.2021. S2CID 244631179.
  205. ^ Bhat, M. S.; Shelton, C. D.; Chinsamy, A. (2021). "Bone histology of dinocephalians (Therapsida, Dinocephalia): palaeobiological and palaeoecological inferences". Papers in Palaeontology. 8. doi:10.1002/spp2.1411. S2CID 242073814.
  206. ^ Rubidge, B. S.; Day, M. O.; Benoit, J. (2021). "New Specimen of the Enigmatic Dicynodont Lanthanostegus mohoii (Therapsida, Anomodontia) from the Southwestern Karoo Basin of South Africa, and its Implications for Middle Permian Biostratigraphy". Frontiers in Earth Science. 9: Article 668143. Bibcode:2021FrEaS...9..414R. doi:10.3389/feart.2021.668143. S2CID 235258937.
  207. ^ Smith, R. M. H.; Angielczyk, K. D.; Benoit, J.; Fernandez, V. (2021). "Neonate aggregation in the Permian dicynodont Diictodon (Therapsida, Anomodontia): Evidence for a reproductive function for burrows?". Palaeogeography, Palaeoclimatology, Palaeoecology. 569: Article 110311. Bibcode:2021PPP...56910311S. doi:10.1016/j.palaeo.2021.110311. S2CID 233585323.
  208. ^ Olroyd, S. L.; LeBlanc, A. R. H.; Araújo, R.; Angielczyk, K. D.; Duhamel, A.; Benoit, J.; Amaral, M. (2021). "Histology and μCT reveal the unique evolution and development of multiple tooth rows in the synapsid Endothiodon". Scientific Reports. 11 (1): Article number 16875. Bibcode:2021NatSR..1116875O. doi:10.1038/s41598-021-95993-6. PMC 8377087. PMID 34413357.
  209. ^ Angielczyk, K. D.; Liu, J.; Yang, W. (2021). "A Redescription of Kunpania scopulusa, a Bidentalian Dicynodont (Therapsida, Anomodontia) from the ?Guadalupian of Northwestern China". Journal of Vertebrate Paleontology. 41 (1): e1922428. Bibcode:2021JVPal..41E2428A. doi:10.1080/02724634.2021.1922428. S2CID 236406006.
  210. ^ Han, F.; Zhao, Q.; Liu, J. (2021). "Preliminary bone histological analysis of Lystrosaurus (Therapsida: Dicynodontia) from the Lower Triassic of North China, and its implication for lifestyle and environments after the end-Permian extinction". PLOS ONE. 16 (3): e0248681. Bibcode:2021PLoSO..1648681H. doi:10.1371/journal.pone.0248681. PMC 7971864. PMID 33735263.
  211. ^ Kulik, Z. T.; Lungmus, J. K.; Angielczyk, K. D.; Sidor, C. A. (2021). "Living fast in the Triassic: New data on life history in Lystrosaurus (Therapsida: Dicynodontia) from northeastern Pangea". PLOS ONE. 16 (11): e0259369. Bibcode:2021PLoSO..1659369K. doi:10.1371/journal.pone.0259369. PMC 8570511. PMID 34739492.
  212. ^ Escobar, J. A.; Martinelli, A. G.; Ezcurra, M. D.; Fiorelli, L. E.; Desojo, J. B. (2021). "A new stahleckeriid dicynodont record from the late Ladinian-?early Carnian levels of the Chañares Formation (Ischigualasto-Villa Unión Basin) of northwestern Argentina". Journal of South American Earth Sciences. 109: Article 103275. Bibcode:2021JSAES.10903275E. doi:10.1016/j.jsames.2021.103275. hdl:11336/143765. S2CID 233679068.
  213. ^ Whitney, M. R.; Angielczyk, K. D.; Peecook, B. R.; Sidor, C. A. (2021). "The evolution of the synapsid tusk: insights from dicynodont therapsid tusk histology". Proceedings of the Royal Society B: Biological Sciences. 288 (1961): Article ID 20211670. doi:10.1098/rspb.2021.1670. PMC 8548784. PMID 34702071. S2CID 239890042.
  214. ^ Varnham, G. L.; Mannion, P. D.; Kammerer, C. F. (2021). "Spatiotemporal variation in completeness of the early cynodont fossil record and its implications for mammalian evolutionary history". Palaeontology. 64 (2): 307–333. Bibcode:2021Palgy..64..307V. doi:10.1111/pala.12524. ISSN 0031-0239. S2CID 233827485.
  215. ^ Gaetano, L. C.; Abdala, F. (2021). "The stapes of Thrinaxodon Seeley, 1894 and Galesaurus Owen, 1859: a case of study for intraspecific variability in basal cynodonts". Comptes Rendus Palevol. 20 (5): 57–74. doi:10.5852/cr-palevol2021v20a5. S2CID 233934038. Archived from the original on 2021-02-08. Retrieved 2021-02-08.
  216. ^ Pusch, L. C.; Kammerer, C. F.; Fröbisch, J. (2021). "Cranial anatomy of Bolotridon frerensis, an enigmatic cynodont from the Middle Triassic of South Africa, and its phylogenetic significance". PeerJ. 9: e11542. doi:10.7717/peerj.11542. PMC 8214396. PMID 34178451.
  217. ^ Franco, A. S.; Müller, R. T.; Martinelli, A. G.; Hoffmann, C. A.; Kerber, L. (2021). "The nasal cavity of two traversodontid cynodonts (Eucynodontia, Gomphodontia) from the Upper Triassic of Brazil". Journal of Paleontology. 95 (4): 845–860. Bibcode:2021JPal...95..845F. doi:10.1017/jpa.2021.6. S2CID 233637606.
  218. ^ Kerber, L.; Ferreira, J. D.; Fonseca, P. H. M.; Franco, A.; Martinelli, A. G.; Soares, M. B.; Ribeiro, A. M. (2021). "An additional brain endocast of the ictidosaur Riograndia guaibensis (Eucynodontia: Probainognathia): intraspecific variation of endocranial traits". Anais da Academia Brasileira de Ciências. 93 (Suppl. 2): e20200084. doi:10.1590/0001-3765202120200084. hdl:11336/150216. PMID 33681891. S2CID 232141162.
  219. ^ Kerber, L.; Martinelli, A. G.; Müller, R. T.; Pretto, F. A. (2022). "A new specimen provides insights into the anatomy of Irajatherium hernandezi, a poorly known probainognathian cynodont from the Late Triassic of southern Brazil". The Anatomical Record. 305 (11): 3113–3132. doi:10.1002/ar.24830. PMID 34779131. S2CID 244115467.
  220. ^ Schultz, J. A.; Ruf, I.; Averianov, A. O.; Schellhorn, R.; Lopatin, A. V.; Martin, T. (2022). "Jurassic mammaliaform petrosals from Western Siberia (Russia) and implications for early mammalian inner-ear anatomy". Zoological Journal of the Linnean Society. 196 (3): 1175–1200. doi:10.1093/zoolinnean/zlab096.
  221. ^ Wang, J.; Wible, J. R.; Guo, B.; Shelley, S. L.; Hu, H.; Bi, S. (2021). "A monotreme-like auditory apparatus in a Middle Jurassic haramiyidan". Nature. 590 (7845): 279–283. Bibcode:2021Natur.590..279W. doi:10.1038/s41586-020-03137-z. PMID 33505017. S2CID 231767021.
  222. ^ Panciroli, E.; Benson, R. B. J.; Fernandez, V.; Humpage, M.; Martín-Serra, A.; Walsh, S.; Luo, Z.-X.; Fraser, N. C. (2021). "Postcrania of Borealestes (Mammaliformes, Docodonta) and the emergence of ecomorphological diversity in early mammals" (PDF). Palaeontology. 65. doi:10.1111/pala.12577. S2CID 244822141.
  223. ^ Zatoń, M.; Hu, M.; di Pasquo, M.; Myrow, P. M. (2021). "Adaptive function and phylogenetic significance of novel skeletal features of a new Devonian microconchid tubeworm (Tentaculita) from Wyoming, USA". Journal of Paleontology. 96: 112–126. doi:10.1017/jpa.2021.71. S2CID 238711874.
  224. ^ Devaere, L.; Korn, D.; Ghaderi, A.; Struck, U.; Bavandpur, A. K. (2021). "New and revised small shelly fossil record from the lower Cambrian of northern Iran". Papers in Palaeontology. 7 (4): 2141–2181. Bibcode:2021PPal....7.2141D. doi:10.1002/spp2.1391.
  225. ^ a b c d Gutiérrez-Marco, J. C.; Marek, L.; Malinky, J. M. (2021). "New Middle Ordovician hyoliths from the Ossa Morena Zone, southwestern Spain". Journal of Paleontology. 96: 127–142. doi:10.1017/jpa.2021.68. S2CID 238692737.
  226. ^ a b c Moczydłowska, M.; Kear, B. P.; Snitting, D.; Liu, L.; Lazor, P.; Majka, J. (2021). "Ediacaran metazoan fossils with siliceous skeletons from the Digermulen Peninsula of Arctic Norway". Journal of Paleontology. 95 (3): 440–475. Bibcode:2021JPal...95..440M. doi:10.1017/jpa.2020.105. S2CID 233301935.
  227. ^ a b c Maletz, J.; Ahlberg, P. (2021). "Dapingian to lower Darriwilian (Middle Ordovician) graptolite biostratigraphy and correlation of the Krapperup drill core, Scania, Sweden". GFF. 143 (1): 16–39. Bibcode:2021GFF...143...16M. doi:10.1080/11035897.2020.1822439. S2CID 233352934.
  228. ^ Leibach, W. W.; Lerosey-Aubril, R.; Whitaker, A. F.; Schiffbauer, J. D.; Kimmig, J. (2021). "First palaeoscolecid from the Cambrian (Drumian, Miaolingian) Marjum Formation of western Utah, USA". Acta Palaeontologica Polonica. 66 (3): 663–678. doi:10.4202/app.00875.2021.
  229. ^ Gehling, J. G.; Runnegar, B. (2022). "Phyllozoon and Aulozoon: key components of a novel Ediacaran death assemblage in Bathtub Gorge, Heysen Range, South Australia". Geological Magazine. 159 (7): 1134–1147. Bibcode:2022GeoM..159.1134G. doi:10.1017/S0016756821000509.
  230. ^ Sánchez-Beristain, F.; García-Barrera, P.; Juárez-Aguilar, E. A. (2021). "Cretaceous chaetetids (Porifera: Demospongiae) from Mexico: Systematics, palaeoecology, palaeobiogeography, stratigraphy and perspectives". Journal of South American Earth Sciences. 109: Article 103258. Bibcode:2021JSAES.10903258S. doi:10.1016/j.jsames.2021.103258. S2CID 233629198.
  231. ^ a b Lykova, E. V.; Sennikov, N. V. (2021). "New Isograptinae species (Graptoloidea, Isograptidae) from the Middle Ordovician of Gorny Altai". Paleontological Journal. 55 (6): 662–670. Bibcode:2021PalJ...55..662L. doi:10.1134/S003103012106006X. S2CID 245010086.
  232. ^ Botting, J. P. (2021). "Hexactins in the 'protomonaxonid' sponge Choiaella and proposal of Ascospongiae (class nov.) as a formal replacement for the Protomonaxonida". Bulletin of Geosciences. 96 (3): 265–277. doi:10.3140/bull.geosci.1823.
  233. ^ Vinn, O.; Eyzenga, J. (2021). "When did spines appear in cornulitids – a new spiny Cornulites from the Upper Ordovician of Baltica". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 299 (1): 99–105. doi:10.1127/njgpa/2021/0957. S2CID 234087571.
  234. ^ a b Parry, L. A.; Lerosey-Aubril, R.; Weaver, J. C.; Ortega-Hernández, J. (2021). "Cambrian comb jellies from Utah illuminate the early evolution of nervous and sensory systems in ctenophores". iScience. 24 (9): Article 102943. Bibcode:2021iSci...24j2943P. doi:10.1016/j.isci.2021.102943. PMC 8426560. PMID 34522849.
  235. ^ Klug, C.; Kerr, J.; Lee, M. S. Y.; Cloutier, R. (2021). "A late-surviving stem-ctenophore from the Late Devonian of Miguasha (Canada)". Scientific Reports. 11 (1): Article number 19039. Bibcode:2021NatSR..1119039K. doi:10.1038/s41598-021-98362-5. PMC 8463547. PMID 34561497.
  236. ^ Claybourn, T. M.; Skovsted, C. B.; Betts, M. J.; Holmer, L. E.; Bassett-Butt, L.; Brock, G. A. (2021). "Camenellan tommotiids from the Cambrian Series 2 of East Antarctica: Biostratigraphy, palaeobiogeography, and systematics". Acta Palaeontologica Polonica. 66 (1): 207–229. doi:10.4202/app.00758.2020.
  237. ^ Maletz, J.; Ahlberg, P. (2021). "Upper Darriwilian (Middle Ordovician) graptolite biostratigraphy and correlation of the Krapperup drill core, Scania, Sweden". GFF. 143 (4): 360–383. Bibcode:2021GFF...143..360M. doi:10.1080/11035897.2021.1936156. S2CID 240536069.
  238. ^ a b Martyshyn, A.; Uchman, A. (2021). "New Ediacaran fossils from the Ukraine, some with a putative tunicate relationship". PalZ. 95 (4): 623–639. Bibcode:2021PalZ...95..623M. doi:10.1007/s12542-021-00596-1. S2CID 244957825.
  239. ^ Kozłowska, A. (2021). "Hoffmanigraptus n. gen., a new retiolitine (Graptolithina), an early member of the Plectograptus lineage from the Silurian of Baltica, Poland". Comptes Rendus Palevol. 20 (45): 931–939. doi:10.5852/cr-palevol2021v20a45. S2CID 245199343.
  240. ^ a b c Jeon, J.; Liang, K.; Park, J.; Kershaw, S.; Zhang, Y. (2021). "Diverse labechiid stromatoporoids from the Upper Ordovician Xiazhen Formation of South China and their paleobiogeographic implications". Journal of Paleontology. 96 (3): 513–538. doi:10.1017/jpa.2021.105. S2CID 245066931.
  241. ^ a b Jacquet, S. M.; Selly, T.; Schiffbauer, J. D.; Brock, G. A. (2021). "Sclerite assembly, articulation and protective system of Lower Devonian machaeridians". Papers in Palaeontology. 8. doi:10.1002/spp2.1410. S2CID 243825597.
  242. ^ Pleș, G.; Schlagintweit, F.; Lazăr, I.; Bucur, I. I.; Săsăran, E.; Grădinaru, M. (2021). "Exceptionally preserved calcified sponge assemblages in Upper Jurassic carbonates of the eastern Getic Carbonate Platform (Southern Carpathians, Romania)". Comptes Rendus Palevol. 20 (31): 641–666. doi:10.5852/cr-palevol2021v20a31. S2CID 238812167.
  243. ^ Sun, H.; Sun, Z.; Zhao, F. (2021). "Exceptionally preserved hyolithids from the middle Cambrian of North China". Geological Magazine. 158 (11): 1951–1959. Bibcode:2021GeoM..158.1951S. doi:10.1017/S0016756821000510. S2CID 237809669.
  244. ^ Samant, B.; Pronzato, R.; Mohabey, D. M.; Kumar, D.; Dhobale, A.; Pizal, P.; Manconi, R. (2021). "Insight into the evolutionary history of freshwater sponges: a new genus and new species of Spongillida (Porifera: Demospongiae) from Upper Cretaceous (Maastrichtian) Deccan intertrappean lacustrine deposits of the Malwa Group, Central India". Cretaceous Research. 126: Article 104851. Bibcode:2021CrRes.12604851S. doi:10.1016/j.cretres.2021.104851.
  245. ^ Poinar, J.; Brown, A. E. (2021). "Palaeoparasitylenchus balticus n. sp. (Nematoda: Parasitylenchidae), a nematode parasite of a long-legged fly (Diptera: Dolichopodidae) in Baltic amber". Nematology. 23 (10): 1211–1214. doi:10.1163/15685411-bja10117. S2CID 237748701.
  246. ^ a b Luo, C.; Zhang, L.; Chang, S.; Feng, Q. (2021). "A sponge fossil fauna from the Cambrian Shuijingtuo Formation, Qiaoji-aping Village, Yichang, Hubei Province". Acta Palaeontologica Sinica. 60 (1): 69–86. doi:10.19800/j.cnki.aps.2021001.
  247. ^ Knaust, D. (2021). "A microbialite with its entombed benthic community from the Middle Triassic (Anisian-Ladinian) Muschelkalk Group of Germany". Palaeontographica Abteilung A. 320 (1–3): 1–63. Bibcode:2021PalAA.320....1K. doi:10.1127/pala/2021/0114.
  248. ^ Kozłowska, A.; Bates, D. (2021). "Papiliograptus retimarginatus n. sp., a new retiolitid (Graptolithina) from the predeubeli/deubeli Biozone (upper Homerian, Wenlock, Silurian), the recovery phase after the lundgreni Extinction Event". Comptes Rendus Palevol. 20 (12): 199–206. doi:10.5852/cr-palevol2021v20a12. S2CID 233697196.
  249. ^ Loydell, D. K.; Abouelresh, M. (2021). "Lower Aeronian (Llandovery, Silurian) graptolitic carbonate concretions from the Qusaiba Shale Formation, Tabuk Basin, Saudi Arabia, and their significance". Bulletin of Geosciences. 96 (3): 251–263. doi:10.3140/bull.geosci.1806. S2CID 237895865.
  250. ^ Mapalo, M. A.; Robin, N.; Boudinot, B. E.; Ortega-Hernández, J.; Barden, P. (2021). "A tardigrade in Dominican amber". Proceedings of the Royal Society B: Biological Sciences. 288 (1960): Article ID 20211760. doi:10.1098/rspb.2021.1760. PMC 8493197. PMID 34610770.
  251. ^ Zhao, Y.; Vinther, J.; Li, Y.-J.; Wei, F.; Hou, X.-G.; Cong, P.-Y. (2021). "An early Cambrian mackenziid reveals links to modular Ediacaran macro-organisms". Papers in Palaeontology. 8. doi:10.1002/spp2.1412. S2CID 244557513.
  252. ^ a b Łukowiak, M.; Pisera, A.; Stefanska, T.; Stefanskyi, V. (2021). "High diversity of siliceous sponges in Western Tethyan areas during the Eocene: palaeobiogeographical, ecological and taxonomic significance". Papers in Palaeontology. 8. doi:10.1002/spp2.1416. S2CID 245359946.
  253. ^ Landing, E.; Geyer, G.; Jirkov, I. A.; Schiaparelli, S. (2021). "Lophotrochozoa in the Cambrian evolutionary radiation and the Pelagiella problem". Papers in Palaeontology. 7 (4): 2227–2244. Bibcode:2021PPal....7.2227L. doi:10.1002/spp2.1396. S2CID 239642828.
  254. ^ Tang, F.; Song, S.; Zhang, G.; Chen, A.; Liu, J. (2021). "Enigmatic ribbon-like fossil from Early Cambrian of Yunnan, China". China Geology. 4 (2): 205–214. Bibcode:2021CGeo....4..205T. doi:10.31035/cg2020056. S2CID 235047029.
  255. ^ Ling, C.; Peng, J.; Zhang, H.; Wang, Y.; Shao, Y.; Sun, Q.; Wang, Q. (2021). "Saetaspongia sponges from the Cambrian (Stage 4) Balang Formation of Guizhou, China". Journal of Paleontology. 95 (5): 944–956. Bibcode:2021JPal...95..944L. doi:10.1017/jpa.2021.29. S2CID 236562197.
  256. ^ Wang, D.; Vannier, J.; Aria, C.; Sun, J.; Han, J. (2021). "Tube-dwelling in early animals exemplified by Cambrian scalidophoran worms". BMC Biology. 19 (1): Article number 243. doi:10.1186/s12915-021-01172-4. PMC 8588615. PMID 34772414.
  257. ^ Moczydłowska, M.; Kear, B. P.; Snitting, D.; Liu, L.; Lazor, P.; Majka, J. (2021). "Ediacaran metazoan fossils with siliceous skeletons from the Digermulen Peninsula of Arctic Norway – CORRIGENDUM". Journal of Paleontology. 95 (5): 1112. Bibcode:2021JPal...95.1112M. doi:10.1017/jpa.2021.44.
  258. ^ Johnston, P. A.; Streng, M. (2021). "Morphology and relationships of the enigmatic stenothecoid pan-brachiopod Stenothecoides—new data from the middle Cambrian Burgess Shale Formation". Acta Palaeontologica Polonica. 66 (4): 723–751. doi:10.4202/app.00928.2021.
  259. ^ Peel, J. S. (2021). "Ontogeny, morphology and pedicle attachment of stenothecoids from the middle Cambrian of North Greenland (Laurentia)". Bulletin of Geosciences. 96 (4): 381–399. doi:10.3140/bull.geosci.1839.
  260. ^ Dieni, I.; Massari, F. (2021). "The coral Synastrea bellula (D'ORB.) in the Berriasian of Venetian Prealps (NE Italy). A key for interpreting the palaeobathymetry of the Maiolica on the Trento plateau". Cretaceous Research. 125: Article 104871. doi:10.1016/j.cretres.2021.104871.
  261. ^ a b Wei, F.; Zhao, Y.; Chen, A.; Hou, X.; Cong, P. (2021). "New vauxiid sponges from the Chengjiang Biota and their evolutionary significance". Journal of the Geological Society. 178 (5): jgs2020-162. Bibcode:2021JGSoc.178..162W. doi:10.1144/jgs2020-162. ISSN 0016-7649. S2CID 233704024.
  262. ^ Zhang, H. (2022). "The evolutionary relationships of the earliest known cycloneuralians and a new record from the Cambrian Fortunian of South China". Palaeoworld. 31 (3): 389–401. doi:10.1016/j.palwor.2021.09.003. S2CID 240580288.
  263. ^ Turner, E. C. (2021). "Possible poriferan body fossils in early Neoproterozoic microbial reefs". Nature. 596 (7870): 87–91. Bibcode:2021Natur.596...87T. doi:10.1038/s41586-021-03773-z. PMC 8338550. PMID 34321662.
  264. ^ Dunn, F. S.; Liu, A. G.; Grazhdankin, D. V.; Vixseboxse, P.; Flannery-Sutherland, J.; Green, E.; Harris, S.; Wilby, P. R.; Donoghue, P. C. J. (2021). "The developmental biology of Charnia and the eumetazoan affinity of the Ediacaran rangeomorphs". Science Advances. 7 (30): eabe0291. Bibcode:2021SciA....7..291D. doi:10.1126/sciadv.abe0291. PMC 8302126. PMID 34301594. S2CID 236211857.
  265. ^ Evans, S. D.; Droser, M. L.; Erwin, D. H. (2021). "Developmental processes in Ediacara macrofossils". Proceedings of the Royal Society B: Biological Sciences. 288 (1945): Article ID 20203055. doi:10.1098/rspb.2020.3055. PMC 7934905. PMID 33622124.
  266. ^ Ivantsov, A.; Zakrevskaya, M. (2022). "Dickinsonia: mobile and adhered". Geological Magazine. 159 (7): 1118–1133. Bibcode:2022GeoM..159.1118I. doi:10.1017/S0016756821000194. S2CID 234891413.
  267. ^ Evans, S. D.; Gehling, J. G.; Erwin, D. H.; Droser, M. L. (2021). "Ediacara growing pains: modular addition and development in Dickinsonia costata". Paleobiology. 97: 83–98. doi:10.1017/pab.2021.31. PMC 8740542. PMID 35001986. S2CID 239129396.
  268. ^ Cracknell, K.; García-Bellido, D. C.; Gehling, J. G.; Ankor, M. J.; Darroch, S. A. F.; Rahman, I. A. (2021). "Pentaradial eukaryote suggests expansion of suspension feeding in White Sea-aged Ediacaran communities". Scientific Reports. 11 (1): Article number 4121. Bibcode:2021NatSR..11.4121C. doi:10.1038/s41598-021-83452-1. PMC 7893023. PMID 33602958.
  269. ^ Luo, C.; Yang, A.; Zhuravlev, A. Yu.; Reitner, J. (2021). "Vauxiids as descendants of archaeocyaths: a hypothesis". Lethaia. 54 (5): 700–710. Bibcode:2021Letha..54..700L. doi:10.1111/let.12433. S2CID 236279076.
  270. ^ Wang, X.; Zhang, X.; Zhang, Y.; Cui, L.; Li, L. (2021). "New materials reveal Shaanxilithes as a Cloudina-like organism of the late Ediacaran". Precambrian Research. 362: Article 106277. Bibcode:2021PreR..36206277W. doi:10.1016/j.precamres.2021.106277. S2CID 236241590.
  271. ^ Shore, A.; Wood, R. (2021). "Environmental and diagenetic controls on the morphology and calcification of the Ediacaran metazoan Cloudina". Scientific Reports. 11 (1): Article number 12341. Bibcode:2021NatSR..1112341S. doi:10.1038/s41598-021-90768-5. PMC 8195988. PMID 34117286.
  272. ^ Yang, B.; Warren, L. V.; Steiner, M.; Smith, E. F.; Liu, P. (2021). "Taxonomic revision of Ediacaran tubular fossils: Cloudina, Sinotubulites and Conotubus". Journal of Paleontology. 96 (2): 256–273. doi:10.1017/jpa.2021.95. S2CID 239783664.
  273. ^ Shore, A. J.; Wood, R. A.; Butler, I. B.; Zhuravlev, A. Yu.; McMahon, S.; Curtis, A.; Bowyer, F. T. (2021). "Ediacaran metazoan reveals lophotrochozoan affinity and deepens root of Cambrian Explosion". Science Advances. 7 (1): eabf2933. Bibcode:2021SciA....7.2933S. doi:10.1126/sciadv.abf2933. PMC 7775780. PMID 33523867.
  274. ^ Becker-Kerber, B.; Horodyski, R. S.; del Mouro, L.; Sedorko, D.; Lehn, I.; Sanchez, D. F.; Fournier, J.; Mazurier, A.; El Albani, A. (2021). "Devonian agglutinated polychaete tubes: all in all it's just another grain in the wall". Proceedings of the Royal Society B: Biological Sciences. 288 (1955): Article ID 20211143. doi:10.1098/rspb.2021.1143. PMC 8316799. PMID 34315258.
  275. ^ Peel, J. S. (2021). "In-place operculum demonstrates that the Middle Cambrian Protowenella is a hyolith and not a mollusc". Alcheringa: An Australasian Journal of Palaeontology. 45 (4): 385–394. Bibcode:2021Alch...45..385P. doi:10.1080/03115518.2021.2004225. S2CID 245101031.
  276. ^ Steiner, M.; Yang, B.; Hohl, S.; Li, D.; Donoghue, P. (2021). "Exceptionally preserved early Cambrian bilaterian developmental stages from Mongolia". Nature Communications. 12 (1): Article number 1037. Bibcode:2021NatCo..12.1037S. doi:10.1038/s41467-021-21264-7. PMC 7884407. PMID 33589612.
  277. ^ Yang, X.; Smith, M. R.; Yang, J.; Li, W.; Guo, Q.; Li, C.; Wang, Y.; Zhang, X. (2021). "A 'hermit' shell-dwelling lifestyle in a Cambrian priapulan worm". Current Biology. 31 (21): R1420 – R1421. Bibcode:2021CBio...31R1420Y. doi:10.1016/j.cub.2021.10.003. PMID 34752764. S2CID 243857143.
  278. ^ Shi, X.; Howard, R. J.; Edgecombe, G. D.; Hou, X.; Ma, X. (2021). "Tabelliscolex (Cricocosmiidae: Palaeoscolecidomorpha) from the early Cambrian Chengjiang Biota, and the evolution of seriation in Ecdysozoa". Journal of the Geological Society. 179 (2). doi:10.1144/jgs2021-060.
  279. ^ Smith, M. R.; Dhungana, A. (2021). "Discussion on 'Tabelliscolex (Cricocosmiidae: Palaeoscolecidomorpha) from the early Cambrian Chengjiang Biota and the evolution of seriation in Ecdysozoa' by Shi et al. 2021 (JGS, jgs2021-060)". Journal of the Geological Society. 179 (3). doi:10.1144/jgs2021-111. S2CID 244850491.
  280. ^ Moysiuk, J.; Caron, J.-B. (2021). "Exceptional multifunctionality in the feeding apparatus of a mid-Cambrian radiodont". Paleobiology. 47 (4): 704–724. Bibcode:2021Pbio...47..704M. doi:10.1017/pab.2021.19. S2CID 236552819.
  281. ^ Lee, D.-J.; Elias, R. J.; Pratt, B. R. (2021). "Amsassia (calcareous alga) from the Lower Ordovician (Tremadocian) of western Newfoundland, and the biologic affinity and geologic history of the genus". Journal of Paleontology. 96: 1–18. doi:10.1017/jpa.2021.89. S2CID 240527524.
  282. ^ Strother, P. K.; Brasier, M. D.; Wacey, D.; Timpe, L.; Saunders, M.; Wellman, C. H. (2021). "A possible billion-year-old holozoan with differentiated multicellularity" (PDF). Current Biology. 31 (12): 2658–2665.e2. Bibcode:2021CBio...31E2658S. doi:10.1016/j.cub.2021.03.051. PMID 33852871. S2CID 233224456.
  283. ^ Schultz, Isaac (29 April 2021). "Scientists Find Billion-Year-Old Fossil Life, 'Something Which Has Never Been Described Before'". Gizmodo. Retrieved 1 May 2021.
  284. ^ Loron, C. C.; Halverson, G. P.; Rainbird, R. H.; Skulski, T.; Turner, E. C.; Javaux, E. J. (2021). "Shale-hosted biota from the Dismal Lakes Group in Arctic Canada supports an early Mesoproterozoic diversification of eukaryotes". Journal of Paleontology. 95 (6): 1113–1137. Bibcode:2021JPal...95.1113L. doi:10.1017/jpa.2021.45. S2CID 237755237.
  285. ^ Taylor, R. S.; Matthews, J. J.; Nicholls, R.; McIlroy, D. (2021). "A re-assessment of the taxonomy, palaeobiology and taphonomy of the rangeomorph organism Hapsidophyllas flexibilis from the Ediacaran of Newfoundland, Canada". PalZ. 95 (2): 187–207. Bibcode:2021PalZ...95..187T. doi:10.1007/s12542-020-00537-4. S2CID 232377991.
  286. ^ a b c Diniz, C. Q. C.; Leme, J. M.; Boggiani, P. C. (2021). "New Species of Macroalgae from Tamengo Formation, Ediacaran, Brazil". Frontiers in Earth Science. 9: Article 748876. Bibcode:2021FrEaS...9..884D. doi:10.3389/feart.2021.748876.
  287. ^ Agić, H.; Högström, A. E. S.; Jensen, S.; Ebbestad, J. O. R.; Vickers-Rich, P.; Hall, M.; Matthews, J. J.; Meinhold, G.; Høyberget, M.; Taylor, W. L. (2022). "Late Ediacaran occurrences of the organic-walled microfossils Granomarginata and flask-shaped Lagoenaforma collaris gen. et sp. nov". Geological Magazine. 159 (7): 1071–1092. Bibcode:2022GeoM..159.1071A. doi:10.1017/S0016756821001096. hdl:10037/23056. S2CID 244285285.
  288. ^ Wang, Ye; Wang, Yue; Du, W.; Li, Y.; Liu, F.; Zhao, M. (2021). "Ediacaran pithy macroalga Lanceaphyton n. gen. from South China". Journal of Paleontology. 96 (2): 452–461. doi:10.1017/jpa.2021.98. S2CID 244162641.
  289. ^ Yin, Z.; Sun, W.; Reitner, J.; Zhu, M. (2021). "New holozoans with cellular resolution from the early Ediacaran Weng'an Biota, Southwest China". Journal of the Geological Society. in press. doi:10.1144/jgs2021-061. S2CID 245602253.
  290. ^ da Silva Paiva, T.; de Souza Carvalho, I. (2021). "A putatively extinct higher taxon of Spirotrichea (Ciliophora) from the Lower Cretaceous of Brazil". Scientific Reports. 11 (1): Article number 19110. Bibcode:2021NatSR..1119110D. doi:10.1038/s41598-021-97709-2. PMC 8476538. PMID 34580335.
  291. ^ Miao, L.; Moczydłowska, M.; Zhu, M. (2021). "A diverse organic-walled microfossil assemblage from the Mesoproterozoic Xiamaling Formation, North China". Precambrian Research. 360: Article 106235. Bibcode:2021PreR..36006235M. doi:10.1016/j.precamres.2021.106235. ISSN 0301-9268. S2CID 236235509.
  292. ^ Krings, M. (2021). "Rhyniotaxillus minutulus n. sp., a pico-sized colonial cyanobacterium from the 410-million-yr-old Windyfield chert of Scotland". Nova Hedwigia. 113 (1–2): 17–31. doi:10.1127/nova_hedwigia/2021/0638. S2CID 237688019.
  293. ^ Krings, M. (2021). "Stigonema (Nostocales, Cyanobacteria) in the Rhynie chert (Lower Devonian, Scotland)". Review of Palaeobotany and Palynology. 295: Article 104505. Bibcode:2021RPaPa.29504505K. doi:10.1016/j.revpalbo.2021.104505.
  294. ^ Hints, O.; Nõlvak, J.; Liang, Y. (2021). "Possible metazoan egg fossils from the Darriwilian (Middle Ordovician) of Baltoscandia". Estonian Journal of Earth Sciences. 70 (4): 240–252. doi:10.3176/earth.2021.16.
  295. ^ Cavalazzi, B.; Lemelle, L.; Simionovici, A.; Cady, S. L.; Russell, M. J.; Bailo, E.; Canteri, R.; Enrico, E.; Manceau, A.; Maris, A.; Salomé, M.; Thomassot, E.; Bouden, N.; Tucoulou, R.; Hofmann, A. (2021). "Cellular remains in a ~3.42-billion-year-old subseafloor hydrothermal environment". Science Advances. 7 (29): eabf3963. Bibcode:2021SciA....7.3963C. doi:10.1126/sciadv.abf3963. PMC 8279515. PMID 34261651.
  296. ^ Delarue, F.; Bernard, S.; Sugitani, K.; Robert, F.; Tartèse, R.; Albers, S.-V.; Duhamel, R.; Pont, S.; Derenne, S. (2021). "Microfossils with tail-like structures in the 3.4 Gyr old Strelley Pool Formation". Precambrian Research. 358: Article 106187. Bibcode:2021PreR..35806187D. doi:10.1016/j.precamres.2021.106187. S2CID 233560619.
  297. ^ Duda, J.-P.; König, H.; Reinhardt, M.; Shuvalova, J.; Parkhaev, P. (2021). "Molecular fossils within bitumens and kerogens from the ~ 1 Ga Lakhanda Lagerstätte (Siberia, Russia) and their significance for understanding early eukaryote evolution". PalZ. 95 (4): 577–592. Bibcode:2021PalZ...95..577D. doi:10.1007/s12542-021-00593-4. S2CID 244957707.
  298. ^ Tang, Q.; Pang, K.; Li, G.; Chen, L.; Yuan, X.; Xiao, S. (2021). "One-billion-year-old epibionts highlight symbiotic ecological interactions in early eukaryote evolution". Gondwana Research. 97: 22–33. Bibcode:2021GondR..97...22T. doi:10.1016/j.gr.2021.05.008.
  299. ^ Becker-Kerber, B.; de Barros, G. E. B.; Paim, P. S. G.; Prado, G. M. E. M.; Rosa, A. L. Z.; El Albani, A.; Laflamme, M. (2021). "In situ filamentous communities from the Ediacaran (approx. 563 Ma) of Brazil". Proceedings of the Royal Society B: Biological Sciences. 288 (1942): Article ID 20202618. doi:10.1098/rspb.2020.2618. PMC 7892400. PMID 33402067.
  300. ^ McMahon, S.; Matthews, J. J.; Brasier, A.; Still, J. (2021). "Late Ediacaran life on land: desiccated microbial mats and large biofilm streamers". Proceedings of the Royal Society B: Biological Sciences. 288 (1962): Article ID 20211875. doi:10.1098/rspb.2021.1875. PMC 8564610. PMID 34727717.
  301. ^ McMahon, W. J.; Davies, N. S.; Liu, A. G.; Went, D. J. (2021). "Enigma variations: characteristics and likely origin of the problematic surface texture Arumberia, as recognized from an exceptional bedding plane exposure and the global record". Geological Magazine. 159 (1): 1–20. doi:10.1017/S0016756821000777. S2CID 239409011.
  302. ^ Zacaï, A.; Monnet, C.; Pohl, A.; Beaugrand, G.; Mullins, G.; Kroeck, D. M.; Servais, T. (2021). "Truncated bimodal latitudinal diversity gradient in early Paleozoic phytoplankton". Science Advances. 7 (15): eabd6709. Bibcode:2021SciA....7.6709Z. doi:10.1126/sciadv.abd6709. PMC 8026127. PMID 33827811.
  303. ^ Kaźmierczak, J.; Kremer, B. (2021). "Archaeocyaths: alternatively explained as consortia of siphonous algae and cyanobacteria-like microbes in shallow Cambrian seas". Palaeoworld. 31 (2): 218–238. doi:10.1016/j.palwor.2021.08.003. S2CID 238144959.
  304. ^ Beaufort, L.; Bolton, C. T.; Sarr, A.-C.; Suchéras-Marx, B.; Rosenthal, Y.; Donnadieu, Y.; Barbarin, N.; Bova, S.; Cornuault, P.; Gally, Y.; Gray, E.; Mazur, J.-C.; Tetard, M. (2021). "Cyclic evolution of phytoplankton forced by changes in tropical seasonality" (PDF). Nature. 601 (7891): 79–84. doi:10.1038/s41586-021-04195-7. PMID 34853471. S2CID 244813460.
  305. ^ Carlisle, E. M.; Jobbins, M.; Pankhania, V.; Cunningham, J. A.; Donoghue, P. C. J. (2021). "Experimental taphonomy of organelles and the fossil record of early eukaryote evolution". Science Advances. 7 (5): eabe9487. Bibcode:2021SciA....7.9487C. doi:10.1126/sciadv.abe9487. PMC 7840124. PMID 33571133.
  306. ^ Zhang, S.; Su, J.; Ma, S.; Wang, H.; Wang, X.; He, K.; Wang, H.; Canfield, D. E. (2021). "Eukaryotic red and green algae populated the tropical ocean 1400 million years ago". Precambrian Research. 357: Article 106166. Bibcode:2021PreR..35706166Z. doi:10.1016/j.precamres.2021.106166. S2CID 233553315.
  307. ^ Sun, W.; Yin, Z.; Liu, P.; Donoghue, P. C. J.; Li, J.; Zhu, M. (2021). "Ultrastructure and in-situ chemical characterization of intracellular granules of embryo-like fossils from the early Ediacaran Weng'an biota". PalZ. 95 (4): 611–621. Bibcode:2021PalZ...95..611S. doi:10.1007/s12542-021-00597-0. hdl:1983/15f37be4-eab1-48c9-8974-cfae9349691a. S2CID 244909895.
  308. ^ Boddy, C. E.; Mitchell, E. G.; Merdith, A.; Liu, A. G. (2021). "Palaeolatitudinal distribution of the Ediacaran macrobiota". Journal of the Geological Society. 179. doi:10.1144/jgs2021-030. S2CID 238853946.
  309. ^ Rojas, A.; Calatayud, J.; Kowalewski, M.; Neuman, M.; Rosvall, M. (2021). "A multiscale view of the Phanerozoic fossil record reveals the three major biotic transitions". Communications Biology. 4 (1): Article number 309. doi:10.1038/s42003-021-01805-y. PMC 7977041. PMID 33686149.
  310. ^ Barnes, B. D.; Sclafani, J. A.; Zaffos, A. (2021). "Dead clades walking are a pervasive macroevolutionary pattern". Proceedings of the National Academy of Sciences of the United States of America. 118 (15): e2019208118. Bibcode:2021PNAS..11819208D. doi:10.1073/pnas.2019208118. PMC 8053996. PMID 33827921.
  311. ^ Stockey, R. G.; Pohl, A.; Ridgwell, A.; Finnegan, S.; Sperling, E. A. (2021). "Decreasing Phanerozoic extinction intensity as a consequence of Earth surface oxygenation and metazoan ecophysiology" (PDF). Proceedings of the National Academy of Sciences of the United States of America. 118 (41): e2101900118. Bibcode:2021PNAS..11801900S. doi:10.1073/pnas.2101900118. ISSN 0027-8424. PMC 8522273. PMID 34607946. S2CID 238357398.
  312. ^ Monarrez, P. M.; Heim, N. A.; Payne, J. L. (2021). "Mass extinctions alter extinction and origination dynamics with respect to body size". Proceedings of the Royal Society B: Biological Sciences. 288 (1960): Article ID 20211681. doi:10.1098/rspb.2021.1681. PMC 8493190. PMID 34610766. S2CID 238358313.
  313. ^ Sharoni, S.; Halevy, I. (2021). "Geologic controls on phytoplankton elemental composition". Proceedings of the National Academy of Sciences of the United States of America. 119 (1): e2113263118. doi:10.1073/pnas.2113263118. PMC 8740700. PMID 34937697. S2CID 245704873.
  314. ^ Yang, X.; Kimmig, J.; Zhai, D.; Liu, Y.; Kimmig, S. R.; Peng, S. (2021). "A juvenile-rich palaeocommunity of the lower Cambrian Chengjiang biota sheds light on palaeo-boom or palaeo-bust environments". Nature Ecology & Evolution. 5 (8): 1082–1090. Bibcode:2021NatEE...5.1082Y. doi:10.1038/s41559-021-01490-4. PMID 34183806. S2CID 235674619.
  315. ^ Geyer, G.; Landing, E. (2021). "The Souss lagerstätte of the Anti-Atlas, Morocco: discovery of the first Cambrian fossil lagerstätte from Africa". Scientific Reports. 11 (1): Article number 3107. Bibcode:2021NatSR..11.3107G. doi:10.1038/s41598-021-82546-0. PMC 7862689. PMID 33542356.
  316. ^ Mathes, G. H.; Kiessling, W.; Steinbauer, M. J. (2021). "Deep-time climate legacies affect origination rates of marine genera". Proceedings of the National Academy of Sciences of the United States of America. 118 (36): e2105769118. Bibcode:2021PNAS..11805769M. doi:10.1073/pnas.2105769118. PMC 8433510. PMID 34475215.
  317. ^ Song, H.; Kemp, D. B.; Tian, L.; Chu, D.; Song, H.; Dai, X. (2021). "Thresholds of temperature change for mass extinctions". Nature Communications. 12 (1): Article number 4694. Bibcode:2021NatCo..12.4694S. doi:10.1038/s41467-021-25019-2. PMC 8338942. PMID 34349121.
  318. ^ Buchwitz, M.; Jansen, M.; Renaudie, J.; Marchetti, L.; Voigt, S. (2021). "Evolutionary Change in Locomotion Close to the Origin of Amniotes Inferred From Trackway Data in an Ancestral State Reconstruction Approach". Frontiers in Ecology and Evolution. 9: Article 674779. doi:10.3389/fevo.2021.674779. S2CID 233874217.
  319. ^ Liu, J.; Angielczyk, K. D.; Abdala, F. (2021). "Permo-Triassic tetrapods and their climate implications". Global and Planetary Change. 205: Article 103618. Bibcode:2021GPC...20503618L. doi:10.1016/j.gloplacha.2021.103618.
  320. ^ Buatois, L. A.; Borruel-Abadía, V.; De la Horra, E.; Galán-Abellán, A. B.; López-Gómez, J.; Barrenechea, J. F.; Arche, A. (2021). "Impact of Permian mass extinctions on continental invertebrate infauna". Terra Nova. 33 (5): 455–464. Bibcode:2021TeNov..33..455B. doi:10.1111/ter.12530. S2CID 233616369.
  321. ^ Day, M. O.; Rubidge, B. S. (2021). "The Late Capitanian Mass Extinction of Terrestrial Vertebrates in the Karoo Basin of South Africa". Frontiers in Earth Science. 9: Article 631198. Bibcode:2021FrEaS...9...15D. doi:10.3389/feart.2021.631198. S2CID 231947532.
  322. ^ Viglietti, P. A.; Benson, R. B. J.; Smith, R. M. H.; Botha, J.; Kammerer, C. F.; Skosan, Z.; Butler, E.; Crean, A.; Eloff, B.; Kaal, S.; Mohoi, J.; Molehe, W.; Mtalana, N.; Mtungata, S.; Ntheri, N.; Ntsala, T.; Nyaphuli, J.; October, P.; Skinner, G.; Strong, M.; Stummer, H.; Wolvaardt, F. P.; Angielczyk, K. D. (2021). "Evidence from South Africa for a protracted end-Permian extinction on land". Proceedings of the National Academy of Sciences of the United States of America. 118 (17): e2017045118. Bibcode:2021PNAS..11817045V. doi:10.1073/pnas.2017045118. PMC 8092562. PMID 33875588.
  323. ^ Li, G.; Liao, W.; Li, S.; Wang, Y.; Lai, Z. (2021). "Different triggers for the two pulses of mass extinction across the Permian and Triassic boundary". Scientific Reports. 11 (1): Article number 6686. Bibcode:2021NatSR..11.6686L. doi:10.1038/s41598-021-86111-7. PMC 7988102. PMID 33758284.
  324. ^ Mays, C.; McLoughlin, S.; Frank, T. D.; Fielding, C. R.; Slater, S. M.; Vajda, V. (2021). "Lethal microbial blooms delayed freshwater ecosystem recovery following the end-Permian extinction". Nature Communications. 12 (1): Article number 5511. Bibcode:2021NatCo..12.5511M. doi:10.1038/s41467-021-25711-3. PMC 8448769. PMID 34535650.
  325. ^ Smith, C. P. A.; Laville, T.; Fara, E.; Escarguel, G.; Olivier, N.; Vennin, E.; Goudemand, N.; Bylund, K. G.; Jenks, J. F.; Stephen, D. A.; Hautmann, M.; Charbonnier, S.; Krumenacker, L. J.; Brayard, A. (2021). "Exceptional fossil assemblages confirm the existence of complex Early Triassic ecosystems during the early Spathian". Scientific Reports. 11 (1): Article number 19657. Bibcode:2021NatSR..1119657S. doi:10.1038/s41598-021-99056-8. PMC 8490361. PMID 34608207.
  326. ^ Friesenbichler, E.; Hautmann, M.; Bucher, H. (2021). "The main stage of recovery after the end-Permian mass extinction: taxonomic rediversification and ecologic reorganization of marine level-bottom communities during the Middle Triassic". PeerJ. 9: e11654. doi:10.7717/peerj.11654. PMC 8300500. PMID 34322318.
  327. ^ Klein, H.; Lucas, S. G. (2021). "The Triassic tetrapod footprint record". New Mexico Museum of Natural History and Science Bulletin. 83: 1–194.
  328. ^ Singh, S. A.; Elsler, A.; Stubbs, T. L.; Bond, R.; Rayfield, E. J.; Benton, M. J. (2021). "Niche partitioning shaped herbivore macroevolution through the early Mesozoic". Nature Communications. 12 (1): Article number 2796. Bibcode:2021NatCo..12.2796S. doi:10.1038/s41467-021-23169-x. PMC 8121902. PMID 33990610.
  329. ^ Marchetti, L.; Collareta, A.; Belvedere, M.; Leonardi, G. (2021). "Ichnotaxonomy, biostratigraphy and palaeoecology of the Monti Pisani tetrapod ichnoassociation (Tuscany, Italy) and new insights on Middle Triassic Dinosauromorpha". Palaeogeography, Palaeoclimatology, Palaeoecology. 567: Article 110235. Bibcode:2021PPP...56710235M. doi:10.1016/j.palaeo.2021.110235. S2CID 233530709.
  330. ^ Lukeneder, A.; Lukeneder, P. (2021). "The Upper Triassic Polzberg palaeobiota from a marine Konservat-Lagerstätte deposited during the Carnian Pluvial Episode in Austria". Scientific Reports. 11 (1): Article number 16644. Bibcode:2021NatSR..1116644L. doi:10.1038/s41598-021-96052-w. PMC 8370992. PMID 34404880.
  331. ^ Zhou, Z.; Meng, Q.; Zhu, R.; Wang, M. (2021). "Spatiotemporal evolution of the Jehol Biota: Responses to the North China craton destruction in the Early Cretaceous". Proceedings of the National Academy of Sciences of the United States of America. 118 (34): e2107859118. Bibcode:2021PNAS..11807859Z. doi:10.1073/pnas.2107859118. ISSN 0027-8424. PMC 8403929. PMID 34400505.
  332. ^ Viñola-López, L. W.; Cerda, I. A.; Correa-Narvaez, J.; Codorniú, L.; Borges-Sellén, C. R.; Arano-Ruiz, A. F.; Ceballos-Izquierdo, Y. (2021). "New fossils shed light on the Late Cretaceous terrestrial community in the Caribbean and the First American Biotic Interchange". Cretaceous Research. 130: Article 105067. doi:10.1016/j.cretres.2021.105067. S2CID 239936347.
  333. ^ Birch, H.; Schmidt, D. N.; Coxall, H. K.; Kroon, D.; Ridgwell, A. (2021). "Ecosystem function after the K/Pg extinction: decoupling of marine carbon pump and diversity". Proceedings of the Royal Society B: Biological Sciences. 288 (1953): Article ID 20210863. doi:10.1098/rspb.2021.0863. PMC 8220277. PMID 34157875.
  334. ^ Zhao, Z.; Hou, Z.-E; Li, S.-Q. (2021). "Cenozoic Tethyan changes dominated Eurasian animal evolution and diversity patterns". Zoological Research. 43 (1): 3–13. doi:10.24272/j.issn.2095-8137.2021.322. ISSN 2095-8137. PMC 8743248. PMID 34766479. S2CID 244010209.
  335. ^ Zouhri, S.; Gingerich, P. D.; Khalloufi, B.; Bourdon, E.; Adnet, S.; Jouve, S.; Elboudali, N.; Amane, A.; Rage, J.-C.; Tabuce, R.; de Lapparent de Broin, F. (2021). "Middle Eocene vertebrate fauna from the Aridal Formation, Sabkha of Gueran, southwestern Morocco". Geodiversitas. 43 (5): 121–150. doi:10.5252/geodiversitas2021v43a5. S2CID 232264080.
  336. ^ Garrouste, R.; Munzinger, J.; Leslie, A.; Fisher, J.; Folcher, N.; Locatelli, E.; Foy, W.; Chaillon, T.; Cantrill, D. J.; Maurizot, P.; Cluzel, D.; Lowry, P. P.; Crane, P.; Bahain, J.-J.; Voinchet, P.; Jourdan, H.; Grandcolas, P.; Nel, A. (2021). "New fossil discoveries illustrate the diversity of past terrestrial ecosystems in New Caledonia". Scientific Reports. 11 (1): Article number 18388. Bibcode:2021NatSR..1118388G. doi:10.1038/s41598-021-97938-5. PMC 8443626. PMID 34526644.
  337. ^ Collareta, A.; Lambert, O.; Marx, F. G.; de Muizon, C.; Varas-Malca, R.; Landini, W.; Bosio, G.; Malinverno, E.; Gariboldi, K.; Gioncada, A.; Urbina, M.; Bianucci, G. (2021). "Vertebrate Palaeoecology of the Pisco Formation (Miocene, Peru): Glimpses into the Ancient Humboldt Current Ecosystem". Journal of Marine Science and Engineering. 9 (11): Article 1188. doi:10.3390/jmse9111188. hdl:11568/1117134.
  338. ^ Wang, B.; Shi, G.; Xu, C.; Spicer, R. A.; Perrichot, V.; Schmidt, A. R.; Feldberg, K.; Heinrichs, J.; Chény, C.; Pang, H.; Liu, X.; Gao, T.; Wang, Z.; Ślipiński, A.; Solórzano-Kraemer, M. M.; Heads, S. W.; Thomas, M. J.; Sadowski, E.-M.; Szwedo, J.; Azar, D.; Nel, A.; Liu, Y.; Chen, J.; Zhang, Q.; Zhang, Q.; Luo, C.; Yu, T.; Zheng, D.; Zhang, H.; Engel, M. S. (2021). "The mid-Miocene Zhangpu biota reveals an outstandingly rich rainforest biome in East Asia". Science Advances. 7 (18): eabg0625. Bibcode:2021SciA....7..625W. doi:10.1126/sciadv.abg0625. PMC 8087408. PMID 33931457.
  339. ^ Villa, A.; Carnevale, G.; Pavia, M.; Rook, L.; Sami, M.; Szyndlar, Z.; Delfino, M. (2021). "An overview of the late Miocene vertebrates from the fissure fillings of Monticino Quarry (Brisighella, Italy), with new data on non-mammalian taxa". Rivista Italiana di Paleontologia e Stratigrafia. 127 (2): 297–354. doi:10.13130/2039-4942/15774.
  340. ^ Prevosti, F. J.; Romano, C. O.; Forasiepi, A. M.; Hemming, S.; Bonini, R.; Candela, A. M.; Cerdeño, E.; Madozzo Jaén, M. C.; Ortiz, P. E.; Pujos, F.; Rasia, L.; Schmidt, G. I.; Taglioretti, M.; MacPhee, R. D. E.; Pardiñas, U. F. J. (2021). "New radiometric 40Ar–39Ar dates and faunistic analyses refine evolutionary dynamics of Neogene vertebrate assemblages in southern South America". Scientific Reports. 11 (1): Article number 9830. Bibcode:2021NatSR..11.9830P. doi:10.1038/s41598-021-89135-1. PMC 8110973. PMID 33972595.
  341. ^ David, B.; Arnold, L. J.; Delannoy, J.-J.; Fresløv, J.; Urwin, C.; Petchey, P.; McDowell, M. C.; Mullett, R.; GunaiKurnai Land and Waters Aboriginal Corporation; Mialanes, J.; Wood, R.; Crouch, J.; Berthet, J.; Wong, V. N. L.; Green, H.; Hellstrom, J. (2021). "Late survival of megafauna refuted for Cloggs Cave, SE Australia: Implications for the Australian Late Pleistocene megafauna extinction debate". Quaternary Science Reviews. 253: Article 106781. Bibcode:2021QSRv..25306781D. doi:10.1016/j.quascirev.2020.106781. ISSN 0277-3791. S2CID 234010059.
  342. ^ Bradshaw, C. J. A.; Johnson, C. N.; Llewelyn, J.; Weisbecker, V.; Strona, G.; Saltré, F. (2021). "Relative demographic susceptibility does not explain the extinction chronology of Sahul's megafauna". eLife. 10: e63870. doi:10.7554/eLife.63870. PMC 8043753. PMID 33783356.
  343. ^ Louys, J.; Braje, T. J.; Chang, C.-H.; Cosgrove, R.; Fitzpatrick, S. M.; Fujita, M.; Hawkins, S.; Ingicco, T.; Kawamura, A.; MacPhee, R. D. E.; McDowell, M. C.; Meijer, H. J. M.; Piper, P. J.; Roberts, P.; Simmons, A. H.; van den Bergh, G.; van der Geer, A.; Kealy, S.; O'Connor, S. (2021). "No evidence for widespread island extinctions after Pleistocene hominin arrival". Proceedings of the National Academy of Sciences of the United States of America. 118 (20): e2023005118. Bibcode:2021PNAS..11823005L. doi:10.1073/pnas.2023005118. PMC 8157961. PMID 33941645.
  344. ^ Wang, Y.; Pedersen, M. W.; Alsos, I. G.; De Sanctis, B.; Racimo, F.; Prohaska, A.; Coissac, E.; Owens, H. L.; Merkel, M. K. F.; Fernandez-Guerra, A.; Rouillard, A.; Lammers, Y.; Alberti, A.; Denoeud, F.; Money, D.; Ruter, A. H.; McColl, H.; Larsen, N. K.; Cherezova, A. A.; Edwards, M. E.; Fedorov, G. B.; Haile, J.; Orlando, L.; Vinner, L.; Korneliussen, T. S.; Beilman, D. W.; Bjørk, A. A.; Cao, J.; Dockter, C.; Esdale, J.; Gusarova, G.; Kjeldsen, K. K.; Mangerud, J.; Rasic, J. T.; Skadhauge, B.; Svendsen, J. I.; Tikhonov, A.; Wincker, P.; Xing, Y.; Zhang, Y.; Froese, D. G.; Rahbek, C.; Bravo Nogues, D.; Holden, P. B.; Edwards, N. R.; Durbin, R.; Meltzer, D. J.; Kjær, K. H.; Möller, P.; Willerslev, E. (2021). "Late Quaternary dynamics of Arctic biota from ancient environmental genomics". Nature. 600 (7887): 86–92. Bibcode:2021Natur.600...86W. doi:10.1038/s41586-021-04016-x. PMC 8636272. PMID 34671161.
  345. ^ Murchie, T. J.; Monteath, A. J.; Mahony, M. E.; Long, G. S.; Cocker, S.; Sadoway, T.; Karpinski, E.; Zazula, G.; MacPhee, R. D. E.; Froese, D.; Poinar, H. N. (2021). "Collapse of the mammoth-steppe in central Yukon as revealed by ancient environmental DNA". Nature Communications. 12 (1): Article number 7120. Bibcode:2021NatCo..12.7120M. doi:10.1038/s41467-021-27439-6. PMC 8654998. PMID 34880234.
  346. ^ Monteath, A. J.; Gaglioti, B. V.; Edwards, M. E.; Froese, D. (2021). "Late Pleistocene shrub expansion preceded megafauna turnover and extinctions in eastern Beringia". Proceedings of the National Academy of Sciences of the United States of America. 118 (52): e2019208118. Bibcode:2021PNAS..11807977M. doi:10.1073/pnas.2107977118. PMC 8719869. PMID 34930836. S2CID 245367708.
  347. ^ Hansford, J. P.; Lister, A. M.; Weston, E. M.; Turvey, S. T. (2021). "Simultaneous extinction of Madagascar's megaherbivores correlates with late Holocene human-caused landscape transformation". Quaternary Science Reviews. 263: Article 106996. Bibcode:2021QSRv..26306996H. doi:10.1016/j.quascirev.2021.106996. S2CID 236313083.
  348. ^ Mathes, G. H.; van Dijk, J.; Kiessling, W.; Steinbauer, M. J. (2021). "Extinction risk controlled by interaction of long-term and short-term climate change" (PDF). Nature Ecology & Evolution. 5 (3): 304–310. Bibcode:2021NatEE...5..304M. doi:10.1038/s41559-020-01377-w. PMID 33462487. S2CID 231643543.
  349. ^ Huang, Y.; Chen, Z.-Q.; Roopnarine, P. D.; Benton, M. J.; Yang, W.; Liu, J.; Zhao, L.; Li, Z.; Guo, Z. (2021). "Ecological dynamics of terrestrial and freshwater ecosystems across three mid-Phanerozoic mass extinctions from northwest China". Proceedings of the Royal Society B: Biological Sciences. 288 (1947): Article ID 20210148. doi:10.1098/rspb.2021.0148. ISSN 0962-8452. PMC 8059510. PMID 33726593.
  350. ^ Shaw, J. O.; Coco, E.; Wootton, K.; Daems, D.; Gillreath-Brown, A.; Swain, A.; Dunne, J. A. (2021). "Disentangling ecological and taphonomic signals in ancient food webs". Paleobiology. 47 (3): 385–401. Bibcode:2021Pbio...47..385S. doi:10.1017/pab.2020.59.
  351. ^ Petsios, E.; Portell, R. W.; Farrar, L.; Tennakoon, S.; Grun, T. B.; Kowalewski, M.; Tyler, C. L. (2021). "An asynchronous Mesozoic marine revolution: the Cenozoic intensification of predation on echinoids". Proceedings of the Royal Society B: Biological Sciences. 288 (1947): Article ID 20210400. doi:10.1098/rspb.2021.0400. PMC 8059962. PMID 33784862.
  352. ^ Raja, N. B.; Kiessling, W. (2021). "Out of the extratropics: the evolution of the latitudinal diversity gradient of Cenozoic marine plankton". Proceedings of the Royal Society B: Biological Sciences. 288 (1950): Article ID 20210545. doi:10.1098/rspb.2021.0545. PMC 8113900. PMID 33975476.
  353. ^ Motani, R.; Vermeij, G. J. (2021). "Ecophysiological steps of marine adaptation in extant and extinct non-avian tetrapods". Biological Reviews. 96 (5): 1769–1798. doi:10.1111/brv.12724. PMID 33904243. S2CID 233410821.
  354. ^ Mißbach, H.; Duda, J.-P.; van den Kerkhof, A. M.; Lüders, V.; Pack, A.; Reitner, J.; Thiel, V. (2021). "Ingredients for microbial life preserved in 3.5 billion-year-old fluid inclusions". Nature Communications. 12 (1): Article number 1101. Bibcode:2021NatCo..12.1101M. doi:10.1038/s41467-021-21323-z. PMC 7889642. PMID 33597520.
  355. ^ Alleon, J.; Bernard, S.; Olivier, N.; Thomazo, T.; Marin-Carbonne, J. (2021). "Inherited geochemical diversity of 3.4 Ga organic films from the Buck Reef Chert, South Africa". Communications Earth & Environment. 2: Article number 6. doi:10.1038/s43247-020-00066-7.
  356. ^ Fakhraee, M.; Tarhan, L. G.; Planavsky, N. J.; Reinhard, C. T. (2021). "A largely invariant marine dissolved organic carbon reservoir across Earth's history". Proceedings of the National Academy of Sciences of the United States of America. 118 (40): e2103511118. Bibcode:2021PNAS..11803511F. doi:10.1073/pnas.2103511118. PMC 8501802. PMID 34580216. S2CID 238204013.
  357. ^ Yang, C.; Rooney, A. D.; Condon, D. J.; Li, X.-H.; Grazhdankin, D. V.; Bowyer, F. T.; Hu, C.; Macdonald, F. A.; Zhu, M. (2021). "The tempo of Ediacaran evolution". Science Advances. 7 (45): eabi9643. Bibcode:2021SciA....7.9643Y. doi:10.1126/sciadv.abi9643. PMC 8565906. PMID 34731004.
  358. ^ Bowyer, F. T.; Zhuravlev, A. Y.; Wood, R.; Shields, G. A.; Zhou, Y.; Curtis, A.; Poulton, S. W.; Condon, D. J.; Yang, C.; Zhu, M. (2021). "Calibrating the temporal and spatial dynamics of the Ediacaran - Cambrian radiation of animals" (PDF). Earth-Science Reviews. 225: Article 103913. doi:10.1016/j.earscirev.2021.103913. hdl:20.500.11820/85a91f55-c983-4995-a250-4cd8c1637f24. S2CID 245608665.
  359. ^ Rasmussen, J. A.; Thibault, N.; Rasmussen, C. M. Ø. (2021). "Middle Ordovician astrochronology decouples asteroid breakup from glacially-induced biotic radiations". Nature Communications. 12 (1): Article number 6430. Bibcode:2021NatCo..12.6430R. doi:10.1038/s41467-021-26396-4. PMC 8571325. PMID 34741034.
  360. ^ Longman, J.; Mills, B. J. W.; Manners, H. R.; Gernon, T. M.; Palmer, M. R. (2021). "Late Ordovician climate change and extinctions driven by elevated volcanic nutrient supply" (PDF). Nature Geoscience. 14 (12): 924–929. Bibcode:2021NatGe..14..924L. doi:10.1038/s41561-021-00855-5. S2CID 244803446.
  361. ^ Boucot, A. J.; Johnson, J. G.; Talent, J. A. (1969). "Early Devonian brachiopod zoogeography". Geological Society of America Special Papers. 119: 1–60. doi:10.1130/SPE119. ISBN 0-8137-2119-9.
  362. ^ Dowding, E. M.; Ebach, M. C.; Madroviev, E. V. (2021). "Validating marine Devonian biogeography: a study in bioregionalization". Palaeontology. 65. doi:10.1111/pala.12578. hdl:10852/93212.
  363. ^ Boyer, D. L.; Martinez, A. M.; Evans, S. D.; Cohen, P. A.; Haddad, E. E.; Pippenger, K. H.; Love, G. D.; Droser, M. L. (2021). "Living on the edge: The impact of protracted oxygen stress on life in the Late Devonian". Palaeogeography, Palaeoclimatology, Palaeoecology. 566: Article 110226. Bibcode:2021PPP...56610226B. doi:10.1016/j.palaeo.2021.110226. S2CID 233640800.
  364. ^ Rakociński, M.; Pisarzowska, A.; Corradini, C.; Narkiewicz, K.; Dubicka, Z.; Abdiyev, N. (2021). "Mercury spikes as evidence of extended arc-volcanism around the Devonian–Carboniferous boundary in the South Tian Shan (southern Uzbekistan)". Scientific Reports. 11 (1): Article number 5708. Bibcode:2021NatSR..11.5708R. doi:10.1038/s41598-021-85043-6. PMC 7970954. PMID 33707566.
  365. ^ Zhang, H.; Zhang, F.; Chen, J.-B.; Erwin, D. H.; Syverson, D. D.; Ni, P.; Rampino, M.; Chi, Z.; Cai, Y.-F.; Xiang, L.; Li, W.-Q.; Liu, S.-A.; Wang, R.-C.; Wang, X.-D.; Feng, Z.; Li, H.-M.; Zhang, T.; Cai, H.-M.; Zheng, W.; Cui, Y.; Zhu, X.-K.; Hou, Z.-Q.; Wu, F.-Y.; Xu, Y.-G.; Planavsky, N.; Shen, S.-Z. (2021). "Felsic volcanism as a factor driving the end-Permian mass extinction". Science Advances. 7 (47): eabh1390. Bibcode:2021SciA....7.1390Z. doi:10.1126/sciadv.abh1390. PMC 8597993. PMID 34788084.
  366. ^ Retallack, G. J. (2021). "Multiple Permian-Triassic life crises on land and at sea". Global and Planetary Change. 198: Article 103415. Bibcode:2021GPC...19803415R. doi:10.1016/j.gloplacha.2020.103415. S2CID 233836182.
  367. ^ Lu, J.; Zhang, P.; Dal Corso, J.; Yang, M.; Wignall, P. B.; Greene, S. E.; Shao, L.; Luy, D.; Hilton, J. (2021). "Volcanically driven lacustrine ecosystem changes during the Carnian Pluvial Episode (Late Triassic)". Proceedings of the National Academy of Sciences of the United States of America. 118 (40): e2109895118. Bibcode:2021PNAS..11809895L. doi:10.1073/pnas.2109895118. PMC 8501800. PMID 34580231.
  368. ^ Belcher, C. M.; Mills, B. J. W.; Vitali, R.; Baker, S. J.; Lenton, T. M.; Watson, A. J. (2021). "The rise of angiosperms strengthened fire feedbacks and improved the regulation of atmospheric oxygen". Nature Communications. 12 (1): Article number 503. Bibcode:2021NatCo..12..503B. doi:10.1038/s41467-020-20772-2. PMC 7820256. PMID 33479227.
  369. ^ White, M. A.; Campione, N. E. (2021). "A three-dimensional approach to visualize pairwise morphological variation and its application to fragmentary palaeontological specimens". PeerJ. 9: e10545. doi:10.7717/peerj.10545. PMC 7821773. PMID 33552712.
  370. ^ Wiersma-Weyand, K.; Canoville, A.; Siber, H.-J.; Sander, P. M. (2021). "Testing hypothesis of skeletal unity using bone histology: The case of the sauropod remains from the Howe-Stephens and Howe Scott quarries (Morrison Formation, Wyoming, USA)". Palaeontologia Electronica. 24 (1): Article number 24(1):a10. doi:10.26879/766.
  371. ^ Choi, S.; Park, Y.; Kweon, J. J.; Kim, S.; Jung, H.; Lee, S. K.; Lee, Y.-N. (2021). "Fossil eggshells of amniotes as a paleothermometry tool". Palaeogeography, Palaeoclimatology, Palaeoecology. 571: Article 110376. Bibcode:2021PPP...57110376C. doi:10.1016/j.palaeo.2021.110376. S2CID 233545857.
  372. ^ Zhong, Y.; Huyskens, M. H.; Yin, Q.-Z.; Wang, Y.; Ma, Q.; Xu, Y.-G. (2021). "High-Precision Geochronological Constraints on the Duration of 'Dinosaurs Pompeii' and the Yixian Formation". National Science Review. 8 (6): nwab063. doi:10.1093/nsr/nwab063. PMC 8288181. PMID 34691675.
  373. ^ Yu, Z.; Wang, M.; Li, Y.; Deng, C.; He, H. (2021). "New geochronological constraints for the Lower Cretaceous Jiufotang Formation in Jianchang Basin, NE China, and their implications for the late Jehol Biota". Palaeogeography, Palaeoclimatology, Palaeoecology. 583: Article 110657. Bibcode:2021PPP...58310657Y. doi:10.1016/j.palaeo.2021.110657. S2CID 239406222.
  374. ^ Zhang, L.; Yin, Y.; Wang, C. (2021). "High-altitude and cold habitat for the Early Cretaceous feathered dinosaurs at Sihetun, western Liaoning, China". Geophysical Research Letters. 48 (14): e2021GL094370. Bibcode:2021GeoRL..4894370Z. doi:10.1029/2021GL094370. S2CID 237852982.
  375. ^ Brown, C. M.; Campione, N. E.; Wilson Mantilla, G. P.; Evans, D. C. (2022). "Size-driven preservational and macroecological biases in the latest Maastrichtian terrestrial vertebrate assemblages of North America". Paleobiology. 48 (2): 210–238. Bibcode:2022Pbio...48..210B. doi:10.1017/pab.2021.35. S2CID 242096398.
  376. ^ Goderis, S.; Sato, H.; Ferrière, L.; Schmitz, B.; Burney, D.; Kaskes, P.; Vellekoop, J.; Wittmann, A.; Schulz, T.; Chernonozhkin, S. M.; Claeys, P.; de Graaff, S. J.; Déhais, T.; de Winter, N. J.; Elfman, M.; Feignon, J.-G.; Ishikawa, A.; Koeberl, C.; Kristiansson, P.; Neal, C. R.; Owens, J. D.; Schmieder, M.; Sinnesael, M.; Vanhaecke, F.; Van Malderen, S. J. M.; Bralower, T. J.; Gulick, S. P. S.; Kring, D. A.; Lowery, C. M.; Morgan, J. V.; Smit, J.; Whalen, M. T.; IODP-ICDP Expedition 364 Scientists (2021). "Globally distributed iridium layer preserved within the Chicxulub impact structure". Science Advances. 7 (9): eabe3647. Bibcode:2021SciA....7.3647G. doi:10.1126/sciadv.abe3647. PMC 7904271. PMID 33627429.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  377. ^ DePalma, R. A.; Oleinik, A. A.; Gurche, L. P.; Burnham, D. A.; Klingler, J. J.; McKinney, C. J.; Cichocki, F. P.; Larson, P. L.; Egerton, V. M.; Wogelius, R. A.; Edwards, N. P.; Bergmann, U.; Manning, P. L. (2021). "Seasonal calibration of the end-cretaceous Chicxulub impact event". Scientific Reports. 11 (1): Article number 23704. Bibcode:2021NatSR..1123704D. doi:10.1038/s41598-021-03232-9. PMC 8655067. PMID 34880389.
  378. ^ Bosio, G.; Collareta, A.; Di Celma, C.; Lambert, O.; Marx, F. G.; de Muizon, C.; Gioncada, A.; Gariboldi, K.; Malinverno, E.; Varas Malca, R.; Urbina, M.; Bianucci, G. (2021). "Taphonomy of marine vertebrates of the Pisco Formation (Miocene, Peru): Insights into the origin of an outstanding Fossil-Lagerstätte". PLOS ONE. 16 (7): e0254395. Bibcode:2021PLoSO..1654395B. doi:10.1371/journal.pone.0254395. PMC 8282071. PMID 34264979.
  379. ^ Casas-Gallego, M.; Postigo-Mijarra, J. M.; Rivas-Carballo, M. R.; Valle-Hernández, M. F.; Morín-de Pablos, J.; Barrón, E. (2021). "Early evidence of continental aridity and open-habitat grasslands in Europe as revealed by the Middle Miocene microflora of the Madrid Basin". Palaeogeography, Palaeoclimatology, Palaeoecology. 581: Article 110603. Bibcode:2021PPP...58110603C. doi:10.1016/j.palaeo.2021.110603. S2CID 238847370.
  380. ^ Robinson, J. R.; Rowan, J.; Barr, A.; Sponheimer, M. (2021). "Intrataxonomic trends in herbivore enamel δ13C are decoupled from ecosystem woody cover". Nature Ecology & Evolution. 5 (7): 995–1002. doi:10.1038/s41559-021-01455-7. PMID 33941906. S2CID 233719152.
  381. ^ Quinn, R. L.; Lepre, C. J. (2021). "Contracting eastern African C4 grasslands during the extinction of Paranthropus boisei". Scientific Reports. 11 (1): Article number 7164. Bibcode:2021NatSR..11.7164Q. doi:10.1038/s41598-021-86642-z. PMC 8009881. PMID 33785831.
  382. ^ Patterson, D. B.; Du, A.; Faith, J. T.; Rowan, J.; Uno, K.; Behrensmeyer, A. K.; Braun, D. R.; Wood, B. A. (2022). "Did vegetation change drive the extinction of Paranthropus boisei?". Journal of Human Evolution. 173: Article 103154. Bibcode:2022JHumE.17303154P. doi:10.1016/j.jhevol.2022.103154. PMID 35314089. S2CID 247580322.
  383. ^ Quinn, R. L.; Lepre, C. J. (2022). "C4 plant food loss probably influenced Paranthropus boisei's extinction: A reply to Patterson et al.'s commentary on Quinn and Lepre (2021)". Journal of Human Evolution. 173. 103269. doi:10.1016/j.jhevol.2022.103269. PMID 36270813. S2CID 253037826.
  384. ^ Thompson, J. C.; Wright, D. K.; Ivory, S. J.; Choi, J.-H.; Nightingale, S.; Mackay, A.; Schilt, F.; Otárola-Castillo, E.; Mercader, J.; Forman, S. L.; Pietsch, T.; Cohen, A. S.; Arrowsmith, J. R.; Welling, M.; Davis, J.; Schiery, B.; Kaliba, P.; Malijani, O.; Blome, M. W.; O'Driscoll, C. A.; Mentzer, S. M.; Miller, C.; Heo, S.; Choi, J.; Tembo, J.; Mapemba, F.; Simengwa, D.; Gomani-Chindebvu, E. (2021). "Early human impacts and ecosystem reorganization in southern-central Africa". Science Advances. 7 (19): eabf9776. Bibcode:2021SciA....7.9776T. doi:10.1126/sciadv.abf9776. PMC 8099189. PMID 33952528.
  385. ^ Saarinen, J.; Oksanen, O.; Žliobaitė, I.; Fortelius, M.; DeMiguel, D.; Azanza, B.; Bocherens, H.; Luzón, C.; Solano-García, J.; Yravedra, J.; Courtenay, L. A.; Blain, H.-A.; Sánchez-Bandera, C.; Serrano-Ramos, A.; Rodriguez-Alba, J. J.; Viranta, S.; Barsky, D.; Tallavaara, M.; Oms, O.; Agustí, J.; Ochando, J.; Carrión, J. S.; Jiménez-Arenas, J. M. (2021). "Pliocene to Middle Pleistocene climate history in the Guadix-Baza Basin, and the environmental conditions of early Homo dispersal in Europe". Quaternary Science Reviews. 268: Article 107132. Bibcode:2021QSRv..26807132S. doi:10.1016/j.quascirev.2021.107132. hdl:10481/70164. ISSN 0277-3791.
  386. ^ Xu, Z.; Pei, S.; Hu, Y.; de la Torre, I.; Ma, D. (2021). "Stable Isotope Analysis of Mammalian Enamel From the Early Pleistocene Site of Madigou, Nihewan Basin: Implications for Reconstructing Hominin Paleoenvironmental Adaptations in North China". Frontiers in Earth Science. 9: Article 789781. Bibcode:2021FrEaS...9.1145X. doi:10.3389/feart.2021.789781. hdl:10261/257103.
  387. ^ Bacon, A.-M.; Bourgon, N.; Welker, F.; Cappellini, E.; Fiorillo, D.; Tombret, O.; Nguyen, T. M. H.; Nguyen, A. T.; Sayavonkhamdy, T.; Souksavatdy, V.; Sichanthongtip, P.; Antoine, P.-O.; Duringer, P.; Ponche, J.-L.; Westaway, K.; Joannes-Boyau, R.; Boesch, Q.; Suzzoni, E.; Frangeul, S.; Patole-Edoumba, E.; Zachwieja, A.; Shackelford, L.; Demeter, F.; Hublin, J.-J.; Dufour, É. (2021). "A multi-proxy approach to exploring Homo sapiens' arrival, environments and adaptations in Southeast Asia". Scientific Reports. 11 (1): Article number 21080. Bibcode:2021NatSR..1121080B. doi:10.1038/s41598-021-99931-4. PMC 8548499. PMID 34702921.
  388. ^ Karp, A. T.; Faith, J. T.; Marlon, J. R.; Staver, A. C. (2021). "Global response of fire activity to late Quaternary grazer extinctions". Science. 374 (6571): 1145–1148. Bibcode:2021Sci...374.1145K. doi:10.1126/science.abj1580. PMID 34822271. S2CID 244660259.
  389. ^ Ellis, E. C.; Gauthier, N.; Klein Goldewijk, K.; Bliege Bird, R.; Boivin, N.; Díaz, S.; Fuller, D. Q.; Gill, J. L.; Kaplan, J. O.; Kingston, N.; Locke, H.; McMichael, C. N. H.; Ranco, D.; Rick, T. C.; Shaw, M. R.; Stephens, L.; Svenning, J.-C.; Watson, J. E. M. (2021). "People have shaped most of terrestrial nature for at least 12,000 years". Proceedings of the National Academy of Sciences of the United States of America. 118 (17): e2023483118. Bibcode:2021PNAS..11823483E. doi:10.1073/pnas.2023483118. PMC 8092386. PMID 33875599.
  390. ^ Alleon, J.; Montagnac, G.; Reynard, B.; Brulé, T.; Thoury, M.; Gueriau, P. (2021). "Pushing Raman spectroscopy over the edge: purported signatures of organic molecules in fossil animals are instrumental artefacts" (PDF). BioEssays. 43 (4): Article 2000295. doi:10.1002/bies.202000295. PMID 33543495. S2CID 231820486.
  391. ^ Wiemann, Jasmina; Briggs, Derek E. G. (2022). "Raman spectroscopy is a powerful tool in molecular paleobiology: An analytical response to Alleon et al. (https://doi.org/10.1002/bies.202000295)". BioEssays. 44 (2): Article 2100070. doi:10.1002/bies.202100070. ISSN 1521-1878. PMID 34993976. S2CID 245824320.
  392. ^ Černý, D.; Madzia, D.; Slater, G. J. (2021). "Empirical and Methodological Challenges to the Model-Based Inference of Diversification Rates in Extinct Clades". Systematic Biology. 71 (1): 153–171. doi:10.1093/sysbio/syab045. PMID 34110409.
  393. ^ Sasaki, T.; Semaw, S.; Rogers, M. J.; Simpson, S. W.; Beyene, Y.; Asfaw, B.; White, T. D.; Suwa, G. (2021). "Estimating sexual size dimorphism in fossil species from posterior probability densities". Proceedings of the National Academy of Sciences of the United States of America. 118 (44): e2113943118. Bibcode:2021PNAS..11813943S. doi:10.1073/pnas.2113943118. PMC 8612211. PMID 34697239. S2CID 239888798.
  394. ^ Love, A. C.; Grabowski, M.; Houle, D.; Liow, L. H.; Porto, A.; Tsuboi, M.; Voje, K. L.; Hunt, G. (2022). "Evolvability in the fossil record". Paleobiology. 48 (2): 186–209. Bibcode:2022Pbio...48..186L. doi:10.1017/pab.2021.36. hdl:10852/90945.
  395. ^ Didier, G.; Laurin, M. (2021). "Distributions of extinction times from fossil ages and tree topologies: the example of mid-Permian synapsid extinctions". PeerJ. 9: e12577. doi:10.7717/peerj.12577. PMC 8667717. PMID 34966586.
  396. ^ Massilani, D.; Morley, M. W.; Mentzer, S. M.; Aldeias, V.; Vernot, B.; Miller, C.; Stahlschmidt, M.; Kozlikin, M. B.; Shunkov, M. V.; Derevianko, A. P.; Conard, N. J.; Wurz, S.; Henshilwood, C. S.; Vasquez, J.; Essel, E.; Nagel, S.; Richter, J.; Nickel, B.; Roberts, R. G.; Pääbo, S.; Slon, V.; Goldberg, P.; Meyer, M. (2021). "Microstratigraphic preservation of ancient faunal and hominin DNA in Pleistocene cave sediments". Proceedings of the National Academy of Sciences of the United States of America. 119 (1): e2113666118. doi:10.1073/pnas.2113666118. PMC 8740756. PMID 34969841. S2CID 245594266.
  397. ^ Raja, N. B.; Dunne, E. M.; Matiwane, A.; Khan, T. M.; Nätscher, P. S.; Ghilardi, A. M.; Chattopadhyay, D. (2021). "Colonial history and global economics distort our understanding of deep-time biodiversity". Nature Ecology & Evolution. 6 (2): 145–154. Bibcode:2021NatEE...6..145R. doi:10.1038/s41559-021-01608-8. PMID 34969991. S2CID 245594300.
  398. ^ Scotese, C. R.; Song, H.; Mills, B. J. W.; van der Meer, D. G. (2021). "Phanerozoic paleotemperatures: The Earth's changing climate during the last 540 million years" (PDF). Earth-Science Reviews. 215: Article 103503. Bibcode:2021ESRv..21503503S. doi:10.1016/j.earscirev.2021.103503. S2CID 233579194.
  399. ^ Goldberg, S. L.; Present, T. M.; Finnegan, S.; Bergmann, K. D. (2021). "A high-resolution record of early Paleozoic climate". Proceedings of the National Academy of Sciences of the United States of America. 118 (6): e2013083118. Bibcode:2021PNAS..11813083G. doi:10.1073/pnas.2013083118. PMC 8017688. PMID 33526667.
  400. ^ Frank, T. D.; Fielding, C. R.; Winguth, A. M. E.; Savatic, K.; Tevyaw, A.; Winguth, C.; McLoughlin, S.; Vajda, V.; Mays, C.; Nicoll, R.; Bocking, M.; Crowley, J. L. (2021). "Pace, magnitude, and nature of terrestrial climate change through the end-Permian extinction in southeastern Gondwana". Geology. 49 (9): 1089–1095. Bibcode:2021Geo....49.1089F. doi:10.1130/G48795.1. S2CID 236381390.
  401. ^ Wu, Y.; Chu, D.; Tong, J.; Song, H.; Dal Corso, J.; Wignall, P. B.; Song, H.; Du, Y.; Cui, Y. (2021). "Six-fold increase of atmospheric pCO2 during the Permian–Triassic mass extinction". Nature Communications. 12 (1): Article number 2137. Bibcode:2021NatCo..12.2137W. doi:10.1038/s41467-021-22298-7. PMC 8035180. PMID 33837195.
  402. ^ Cui, Y.; Li, M.; van Soelen, E. E.; Peterse, F.; Kürschner, W. M. (2021). "Massive and rapid predominantly volcanic CO2 emission during the end-Permian mass extinction". Proceedings of the National Academy of Sciences of the United States of America. 118 (37): e2014701118. Bibcode:2021PNAS..11814701C. doi:10.1073/pnas.2014701118. PMC 8449420. PMID 34493684.
  403. ^ Shen, H.; Zhang, L.; Wang, C.; Amiot, R.; Wang, X.; Cui, L.; Song, P. (2021). "Early Jurassic palaeoclimate in Southwest China and its implications for dinosaur fossil distribution" (PDF). Geological Journal. 56 (12): 6245–6258. Bibcode:2021GeolJ..56.6245S. doi:10.1002/gj.4168. S2CID 236354974.
  404. ^ Li, T.; Yang, X.-J.; Zhu, Y.-B. (2021). "Estimates of Late Albian atmospheric CO2 based on stomata of Pseudofrenelopsis from Jilin Province, Northeast China". In S-C. Chang; D. Zheng (eds.). Mesozoic Biological Events and Ecosystems in East Asia. The Geological Society of London. doi:10.1144/SP521-2021-139. S2CID 244783183. {{cite book}}: |journal= ignored (help)
  405. ^ Burgener, L.; Hyland, E.; Griffith, E.; Mitášová, H.; Zanno, L. E.; Gates, T. A. (2021). "An extreme climate gradient-induced ecological regionalization in the Upper Cretaceous Western Interior Basin of North America". GSA Bulletin. 133 (9–10): 2125–2136. Bibcode:2021GSAB..133.2125B. doi:10.1130/B35904.1. S2CID 232256355.
  406. ^ de Winter, N. J.; Müller, I. A.; Kocken, I. J.; Thibault, N.; Ullmann, C. V.; Farnsworth, A.; Lunt, D. J.; Claeys, P.; Ziegler, M. (2021). "Absolute seasonal temperature estimates from clumped isotopes in bivalve shells suggest warm and variable greenhouse climate". Communications Earth & Environment. 2 (1): Article number 121. Bibcode:2021ComEE...2..121D. doi:10.1038/s43247-021-00193-9.
  407. ^ Hernandez Nava, A.; Black, B. A.; Gibson, S. A.; Bodnar, R. J.; Renne, P. R.; Vanderkluysen, L. (2021). "Reconciling early Deccan Traps CO2 outgassing and pre-KPB global climate". Proceedings of the National Academy of Sciences of the United States of America. 118 (14): e2007797118. Bibcode:2021PNAS..11807797H. doi:10.1073/pnas.2007797118. ISSN 0027-8424. PMC 8040825. PMID 33782114.
  408. ^ Vento, B.; Puebla, G. G.; Pinzón, D.; Prámparo, M. (2021). "Paleoclimate estimates for the Paleogene-Neogene in southern South America using fossil leaves as proxies". Comptes Rendus Palevol. 20 (3): 29–48. doi:10.5852/cr-palevol2021v20a3. S2CID 234071751.
  409. ^ Méndez-Camacho, K.; Leon-Alvarado, O.; Miranda-Esquivel, D. R. (2021). "Biogeographic evidence supports the Old Amazon hypothesis for the formation of the Amazon fluvial system". PeerJ. 9: e12533. doi:10.7717/peerj.12533. PMC 8627654. PMID 34900439.
  410. ^ Böhme, M.; Spassov, N.; Majidifard, M. R.; Gärtner, A.; Kirscher, U.; Marks, M.; Dietzel, C.; Uhlig, G.; El Atfy, H.; Begun, D. R.; Winklhofer, M. (2021). "Neogene hyperaridity in Arabia drove the directions of mammalian dispersal between Africa and Eurasia". Communications Earth & Environment. 2 (1): Article number 85. Bibcode:2021ComEE...2...85B. doi:10.1038/s43247-021-00158-y.
  411. ^ Beyer, R. M.; Krapp, M.; Eriksson, A.; Manica, A. (2021). "Climatic windows for human migration out of Africa in the past 300,000 years". Nature Communications. 12 (1): Article number 4889. Bibcode:2021NatCo..12.4889B. doi:10.1038/s41467-021-24779-1. PMC 8384873. PMID 34429408.
  412. ^ Schaebitz, F.; Asrat, A.; Lamb, H. F.; Cohen, A. S.; Foerster, V.; Duesing, W.; Kaboth-Bahr, S.; Opitz, S.; Viehberg, F. A.; Vogelsang, R.; Dean, J.; Leng, M. J.; Junginger, A.; Bronk Ramsey, C.; Chapot, M. S.; Deino, A.; Lane, C. S.; Roberts, H. M.; Vidal, C.; Tiedemann, R.; Trauth, M. H. (2021). "Hydroclimate changes in eastern Africa over the past 200,000 years may have influenced early human dispersal". Communications Earth & Environment. 2 (1): Article number 123. Bibcode:2021ComEE...2..123S. doi:10.1038/s43247-021-00195-7. hdl:2160/02c1c111-5827-4076-98ef-ca55976a933a.
  413. ^ Pederzani, S.; Aldeias, V.; Dibble, H. L.; Goldberg, P.; Hublin, J.-J.; Madelaine, S.; McPherron, S. P.; Sandgathe, D.; Steele, T. E.; Turq, A.; Britton, K. (2021). "Reconstructing Late Pleistocene paleoclimate at the scale of human behavior: an example from the Neandertal occupation of La Ferrassie (France)". Scientific Reports. 11 (1): Article number 1419. Bibcode:2021NatSR..11.1419P. doi:10.1038/s41598-020-80777-1. PMC 7809458. PMID 33446842.
  414. ^ Pederzani, S.; Britton, K.; Aldeias, V.; Bourgon, N.; Fewlass, H.; Lauer, T.; McPherron, S. P.; Rezek, Z.; Sirakov, N.; Smith, G. M.; Spasov, R.; Tran, N.-H.; Tsanova, T.; Hublin, J.-J. (2021). "Subarctic climate for the earliest Homo sapiens in Europe". Science Advances. 7 (39): eabi4642. Bibcode:2021SciA....7.4642P. doi:10.1126/sciadv.abi4642. PMC 8457653. PMID 34550733.
  415. ^ Seltzer, A. M.; Ng, J.; Aeschbach, W.; Kipfer, R.; Kulongoski, J. T.; Severinghaus, J. P.; Stute, M. (2021). "Widespread six degrees Celsius cooling on land during the Last Glacial Maximum". Nature. 593 (7858): 228–232. Bibcode:2021Natur.593..228S. doi:10.1038/s41586-021-03467-6. PMID 33981051. S2CID 234485970.
  416. ^ Osman, M. B.; Tierney, J. E.; Zhu, J.; Tardif, R.; Hakim, G. J.; King, J.; Poulsen, C. J. (2021). "Globally resolved surface temperatures since the Last Glacial Maximum". Nature. 599 (7884): 239–244. Bibcode:2021Natur.599..239O. doi:10.1038/s41586-021-03984-4. PMID 34759364. S2CID 243988101.