Jump to content

2019 in archosaur paleontology

From Wikipedia, the free encyclopedia

List of years in archosaur paleontology
In science
2016
2017
2018
2019
2020
2021
2022
In paleontology
2016
2017
2018
2019
2020
2021
2022
In paleobotany
2016
2017
2018
2019
2020
2021
2022
In arthropod paleontology
2016
2017
2018
2019
2020
2021
2022
In paleoentomology
2016
2017
2018
2019
2020
2021
2022
In paleomalacology
2016
2017
2018
2019
2020
2021
2022
In paleoichthyology
2016
2017
2018
2019
2020
2021
2022
In reptile paleontology
2016
2017
2018
2019
2020
2021
2022
In mammal paleontology
2016
2017
2018
2019
2020
2021
2022

This article records new taxa of fossil archosaurs of every kind that are scheduled described during the year 2019, as well as other significant discoveries and events related to paleontology of archosaurs that are scheduled to occur in the year 2019.

General research

[edit]
  • A study on patterns of evolutionary integration among regions of the archosaur skull, based on data from extant and fossil taxa, is published by Felice et al. (2019).[1]
  • A review of the biogeographic history of crocodyliforms, sauropod dinosaurs, nonavian theropod dinosaurs and mammals from the Mesozoic of Gondwana is published by Krause et al. (2019).[2]
  • A study on the biogeography of Cretaceous terrestrial tetrapods, including terrestrial crocodyliforms, non-avian dinosaurs, birds and pterosaurs, is published by Kubo (2019).[3]
  • A study on size and shape differences between brains and endocasts of extant American alligator and domestic chicken, and on its implications for inferring whether endocasts are a reliable proxy for brain morphology in archosaurs in general, is published by Watanabe et al. (2019).[4]
  • A study comparing the mechanical properties of teeth of Suchomimus tenerensis and Sarcosuchus imperator is published by Kundanati et al. (2019).[5]
  • A study on the distribution of medullary bone in the skeletons of living birds, aiming to refine the set of criteria used to evaluate purported records of medullary bone tissue in fossil avemetatarsalians, is published by Canoville, Schweitzer & Zanno (2019).[6]
  • A study comparing the anatomy of hindlimbs of cursorial birds, non-avian theropod dinosaurs and other cursorial animals, aiming to determine whether cursorial birds are good kinematic model for reconstructions of theropod dinosaur locomotion, is published by Grossi et al. (2019).[7]
  • A study on the microstructure of eggshells in birds and non-avian maniraptoran dinosaurs is published by Choi, Han & Lee (2019).[8]
  • Hu et al. (2019) reconstruct the vomer of Sapeornis and Sinovenator, and evaluate their implications for the knowledge of the evolution of the skull of paravians.[9]
  • A study on the anatomy of skull fenestrae in sauropsids, and on its implications for reconstructions of dinosaur soft tissues, is published online by Holliday et al. (2019).[10]
  • A study aiming to determine the likely karyotype of the dinosaur and the early diapsid ancestor of birds is published by Griffin, Larkin & O'Connor (2019).[11]
  • A study on the evolution of bipedality in archosaurs is published by Grinham, VanBuren & Norman (2019).[12]
  • A study on the evolution of the brain of bird-line archosaurs is published by Beyrand et al. (2019).[13]
  • A review of the progress in the field of archosaur paleohistology, focusing in particular on the study of the dinosaurs, is published by Bailleul, O'Connor & Schweitzer (2019).[14]
  • A study on the phylogenetic distribution of the hyposphene-hypantrum articulation in the vertebrae of archosaurs is published by Stefanic & Nesbitt (2019).[15]
  • A study comparing growth patterns of the American alligator, chicken and Tenontosaurus tilletti is published by Brunner et al. (2019).[16]
  • A study comparing the position, size and number of pneumatic foramina in the vertebrae of pterosaurs and birds is published by Buchmann, Avilla & Rodrigues (2019).[17]
  • A study on non-avian dinosaur and bird tracks (representing some of the oldest known bird tracks) preserved in slabs used as building stones at the Chengde Mountain Resort, originating from the Tuchengzi Formation (China) and dating to the Jurassic-Cretaceous boundary, is published online by Xing et al. (2019).[18]
  • Description of non-avian dinosaur and bird tracks from the Upper Cretaceous Chignik Formation (southwestern Alaska), evaluating their implications for the knowledge of habitat preferences of northern high-latitude dinosaurs, is published by Fiorillo et al. (2019).[19]
  • An assemblage of non-avian dinosaur and bird feathers is described from the Lower Cretaceous Koonwarra Fossil Bed (Australia) by Kundrát et al. (2019).[20]
  • A study on barb angles in birds and non-avian dinosaurs, evaluating their implications for the knowledge of feather shape evolution and the utility of barb angles for determination of flight abilities of fossil taxa, is published by Wang, Tang & Clarke (2019).[21]

Pseudosuchians

[edit]

Research

[edit]
  • A study on the bone histology of Coahomasuchus chathamensis, and on its implications for inferring ontogeny and growth strategy of this species, is published by Hoffman, Heckert & Zanno (2019).[22]
  • Tolchard et al. (2019) revise fragmentary archosaurian remains from the latest Triassic lower Elliot Formation (South Africa), interpreting them as fossils of at least two distinct taxa of "rauisuchians", thus representing the southernmost palaeolatitudes that these animals are known to have occurred, their first definitive remains from southern Africa, and some of the most recent records of members of this grade.[23]
  • A study on the anatomy of the skeleton of Poposaurus gracilis is published online by Schachner et al. (2019).[24]
  • A study on the age of sandstones of the Badong Formation preserving fossils of Lotosaurus adentus is published by Wang et al. (2019).[25]
  • Description of the anatomy of the skull of a new specimen of Prestosuchus chiniquensis from the Dinodontosaurus Assemblage Zone of the Pinheiros-Chiniquá Sequence, Santa Maria Super sequence (Brazil) is published by Mastrantonio et al. (2019), who also present the first description of a rauisuchian cranial endocast.[26]
  • A study on habitat shifts during the evolutionary history of Crocodylomorpha is published by Wilberg, Turner & Brochu (2019).[27]
  • A study on patterns of body size evolution of crocodylomorphs is published by Godoy et al. (2019).[28]
  • A study on the quality of the fossil record of non-marine crocodylomorphs is published by Mannion et al. (2019).[29]
  • A study on the evolution of skull shape in crocodylomorphs is published online by Godoy (2019).[30]
  • A study on the diversity of feeding ecologies of Mesozoic crocodyliforms is published by Melstrom & Irmis (2019).[31]
  • A study on patterns of crocodyliform snout shape, on their inferred diet and on the relationship between form and function of crocodyliform skull shape throughout the evolutionary history of this group is published online by Drumheller & Wilberg (2019).[32]
  • New fossil material (an isolated left dentary) of Orthosuchus stormbergi is described from the Upper Elliot Formation (South Africa) by Dollman, Viglietti & Choiniere (2019), who also examine the stratigraphic positions of all valid crocodylomorph specimens from the main Karoo Basin.[33]
  • Teleosaurid and metriorhynchid teeth are described from, respectively, the Middle Jurassic (Aalenian) and Upper Jurassic (Tithonian) of Slovakia by Čerňanský et al. (2019), representing the first record of members of both families from the country.[34]
  • Partial skeleton of a teleosauroid crocodylomorph, representing the most recent record of a definitive non-machimosaurin teleosauroid in Africa reported so far, is described from the Callovian of Tunisia by Dridi & Johnson (2019).[35]
  • Fossils of a member of Teleosauroidea with an estimated body length of 9.6 m, representing the most recent definitive record of Teleosauroidea reported so far, are described from the Lower Cretaceous (upper Barremian) Paja Formation (Colombia) by Cortes et al. (2019).[36]
  • Redescription of the holotype specimens of Mystriosaurus laurillardi and "Steneosaurus" brevior and a study on the taxonomic validity and phylogenetic relationships of these species is published by Sachs et al. (2019).[37]
  • A study on the anatomy and phylogenetic relationships of metriorhynchoids from the Jurassic Rosso Ammonitico Veronese Formation (Italy) is published by Cau (2019), who provides a revised diagnosis of Neptunidraco ammoniticus.[38]
  • A three-dimensionally preserved occiput of a member of the genus Torvoneustes, indicating that members of this genus reached larger body sizes than previously supposed, is described from the Upper Jurassic Kimmeridge Clay Formation (United Kingdom) by Young et al. (2019).[39]
  • A study on teeth morphology and tooth enamel microstructure in Mariliasuchus amarali is published by Augusta & Zaher (2019).[40]
  • A study on the arrangement and morphology of the osteoderms of baurusuchids is published by Montefeltro (2019).[41]
  • A study on the anatomy of the pterygoid region and skull airways of Caipirasuchus paulistanus and C. montealtensis is published online by Dias et al. (2019), who report possible anatomical evidence of vocal capacity of C. montealtensis.[42]
  • Description of fossils and possible gastroliths of a large-bodied sphagesaurid from the Upper Cretaceous Adamantina Formation (Brazil) is published online by Cunha et al. (2019).[43]
  • Description of new fossil material of Pepesuchus from the Upper Cretaceous Adamantina Formation (Brazil) and a study on the phylogenetic relationships of this taxon is published by Geroto & Bertini (2019).[44]
  • A study on the diagenesis of fossils of Montealtosuchus arrudacamposi from the Upper Cretaceous Adamantina Formation is published by Marchetti et al. (2019).[45]
  • A study on the phylogenetic relationships of members of Neosuchia and on the evolution of longirostry in this group is published online by Groh et al. (2019).[46]
  • A study on the taxonomic status and phylogenetic relationships of Sarcosuchus hartti is published online by Souza et al. (2019).[47]
  • Partial dyrosaurid skeleton discovered in the 1930s in Paleocene (Danian) strata along the Atlantic coast of Senegal is described by Martin, Sarr & Hautier (2019).[48]
  • Description of new dyrosaurid specimens from the Late Cretaceous–early Paleogene of New Jersey (United States), and a study on their implications for the validity of the species Hyposaurus rogersii, is published online by Souza et al. (2019).[49]
  • Revision of the large-sized neosuchians Kansajsuchus and "Turanosuchus" from the Late Cretaceous of Central Asia is published by Kuzmin et al. (2019), who interpret Kansajsuchus as a member of Paralligatoridae, and consider Turanosuchus aralensis to be a member of the genus Kansajsuchus belonging or related to the species K. extensus.[50]
  • A study on the inner cavities of the skull of the holotype specimen of Lohuecosuchus megadontos is published by Serrano-Martínez et al. (2019).[51]
  • Revision of the fossil material of Allodaposuchus precedens from Vălioara (Romania) is published online by Narváez et al. (2019), who emend the diagnosis for this species.[52]
  • A study on palaeodiversity of eusuchians over time is published online by De Celis, Narváez & Ortega (2019).[53]
  • A tooth of a juvenile specimen of Deinosuchus, providing new information on the ontogeny of this reptile, is described by Brownstein (2019).[54]
  • A well-preserved braincase of Diplocynodon tormis is described from the middle Eocene site of 'Teso de la Flecha' (Salamanca, Spain) by Serrano-Martínez et al. (2019).[55]
  • A study on the anatomy and phylogenetic relationships of Diplocynodon hantoniensis is published online by Rio et al. (2020).[56]
  • Chroust, Mazuch & Luján (2019) describe new fossil material of Diplocynodon from four sites in the Czech Republic dating to Eocene–Oligocene transition, and evaluate the implications of these fossils for the knowledge of the course of the Eocene–Oligocene cooling event in Central Europe.[57]
  • New crocodylian fossils, documenting the presence of four previously unrecognised alligatoroids, are described from the Lower Miocene Castillo Formation (Venezuela) by Solórzano et al. (2019).[58]
  • A taxonomic and phylogenetic revision of Necrosuchus ionensis is published online by Cidade, Fortier & Hsiou (2019).[59]
  • Ten late Miocene specimens of Mourasuchus, tentatively assigned to the species M. arendsi, are described from Bolivia and from the Solimões Formation of Brazil by Cidade et al. (2019), who also discuss the morphology of Mourasuchus and paleogeographic distribution of this genus in the Miocene of South America.[60]
  • A study on the anatomy of the holotype of Mourasuchus amazonensis and on the taxonomic status of species belonging to the genus Mourasuchus is published by Cidade et al. (2019).[61]
  • A study on the feeding habits of Mourasuchus is published by Cidade, Riff & Hsiou (2019).[62]
  • A study on the structure of the vertebral column of Purussaurus mirandai, providing evidence of a deviation from the vertebral count present in all extant crocodilians, is published by Scheyer et al. (2019).[63]
  • A study on the taxonomic status of Balanerodus logimus and Caiman venezuelensis is published by Cidade et al. (2019).[64]
  • Fossils of a specimen of Asiatosuchus depressifrons from the late Paleocene of Mont de Berru (France), representing the oldest European crocodyloid remains reported so far, are described by Delfino et al. (2019).[65]
  • A study on geographical origin, historical biogeography and evolution of traits aiding dispersal of members of the genus Crocodylus is published by Nicolaï & Matzke (2019).[66]
  • Evidence of gavialine-specific atavistic characters in the skeletons of fossil tomistomines Penghusuchus pani and Toyotamaphimeia machikanensis is presented by Iijima & Kobayashi (2019).[67]
  • Skull and mandibular elements of a tomistomine (probably belonging to the genus Maomingosuchus) are described from the late Eocene lignite seams of Krabi (Thailand) by Martin et al. (2019), providing evidence of tomistomines living in the tropics in the late Eocene.[68]
  • A revision of members of the genus Gavialis described on the basis of fossils from the Sivalik Hills of India and Pakistan is published by Martin (2019).[69]
  • A study on the systematics of crocodilians known from the Oligocene fossil locality of Monteviale (Italy) is published by Macaluso et al. (2019).[70]
  • A revision of fossil record of Cenozoic crocodilians from Sardinia (Italy) is published by Zoboli et al. (2019).[71]
  • A review of the fossil crocodylomorph fauna of the Cenozoic of South America is published by Cidade, Fortier & Hsiou (2019).[72]
  • A method for the quantification of size- and shape-heterodonty in members of Crocodylia is presented by D'Amore et al. (2019), who apply their method to extant and fossil crocodylomorphs.[73]
  • A study on the global diversification dynamics of crocodylians since the Cretaceous is published online by Solórzano et al. (2019).[74]
  • A study testing whether the bone ornamentation may play a role in terms of load-bearing capacity and mechanical strength of pseudosuchian osteoderms, based on data from five osteoderms of crocodylomorphs (representing four species: Caiman crocodilus, Osteolaemus tetraspis, Hyposaurus rogersii, Sarcosuchus imperator) and one aetosaur osteoderm (Aetosaurus sp.), is published by Clarac et al. (2019).[75]
  • A study on the utility of head width as a body size proxy in extant crocodylians, and on its implications for estimates of body size of extinct crocodyliforms, is published by O'Brien et al. (2019).[76]
  • A study comparing skull anatomy and inferred head musculature, stress distribution in skulls and feeding mechanisms in members of the genera Pelagosaurus and Gavialis, and evaluating changes in mandibular function and feeding through time in the macroevolution of Crocodylomorpha, is published by Ballell et al. (2019).[77]
  • Description of fossils of longirostrine crocodylians from the Bartonian of southern Morocco is published by Jouve, Khalloufi & Zouhri (2019), who also discuss the implications of these fossils for the knowledge of the evolution of crocodylians through the Eocene–Oligocene transition.[78]
  • A study on the diversity of Late Jurassic crocodylomorph teeth from Valmitão (Lourinhã Formation, Portugal), and on the ecological niches and feeding behaviours of crocodylomorphs from this assemblage, is published online by Guillaume et al. (2019).[79]
  • Rivera-Sylva et al. (2019) report the first crocodyliform remains from La Parrita locality (Campanian Cerro del Pueblo Formation, Coahuila, Mexico).[80]
  • Description of an isolated crocodyliform tooth from the upper Eocene Ergilin Dzo Formation (Mongolia) and a study on the implications of this fossil for the knowledge of the regional paleoclimate of the area of Mongolia during the late Eocene is published by Iijima et al. (2019).[81]
  • A study on the morphological diversity and phylogenetic affinities of crocodylomorph teeth from the Maastrichtian Tremp Formation (north-eastern Spain) is published online by Blanco et al. (2019).[82]

New taxa

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Acresuchus[83]

Gen. et sp. nov

Valid

Souza-Filho et al.

Late Miocene

Solimões Formation

 Brazil

A caiman. Genus includes new species A. pachytemporalis.

Aprosuchus[84]

Gen. et sp. nov

Valid

Venczel & Codrea

Late Cretaceous (Maastrichtian)

Hațeg Basin

 Romania

A Theriosuchus-like crocodyliform. Genus includes new species A. ghirai.

Astorgosuchus[85]

Gen. nov

Valid

Martin et al.

Oligocene

 Pakistan

A member of Crocodyloidea of uncertain phylogenetic placement. Genus includes the species A. bugtiensis.

Barrosasuchus[86]

Gen. et sp. nov

Valid

Coria et al.

Late Cretaceous (Santonian)

Bajo de la Carpa Formation

 Argentina

A peirosaurid crocodyliform. Genus includes new species B. neuquenianus. Announced in 2018; the final version of the article naming it was published in 2019.

Bathysuchus[87]

Gen. et comb. nov

Valid

Foffa et al.

Late Jurassic (Kimmeridgian)

Kimmeridge Clay Formation

 England
 France

A teleosaurid thalattosuchian. The type species is "Teleosaurus" megarhinus Hulke (1871).

Colhuehuapisuchus[88]

Gen. et sp. nov

Valid

Lamanna et al.

Late Cretaceous (Campanian–?early Maastrichtian)

Lago Colhué Huapí Formation

 Argentina

A peirosaurid crocodyliform. The type species is C. lunai.

Coloradisuchus[89]

Gen. et sp. nov

Valid

Martínez, Alcober & Pol

Late Triassic (Norian)

Los Colorados Formation

 Argentina

A protosuchid crocodyliform. Genus includes new species C. abelini.

Cricosaurus bambergensis[90]

Sp. nov

Valid

Sachs et al.

Late Jurassic (Kimmeridgian)

Torleite Formation

 Germany

A new species of the metriorhynchid Cricosaurus from southern Germany, known from a nearly complete skeleton.

Deslongchampsina[91]

Gen. et comb. nov

Valid

Johnson, Young & Brusatte

Middle Jurassic (Bathonian)

Cornbrash Formation

 United Kingdom

A relative of Steneosaurus heberti; a new genus for "Teleosaurus" larteti Eudes-Deslongchamps (1866).

Hulkepholis rori[92]

Sp. nov

Valid

Arribas et al.

Early Cretaceous (Barremian)

Camarillas Formation

 Spain

A member of the family Goniopholididae.

Indosinosuchus[93]

Gen. et sp. nov

Valid

Martin et al.

Probably Middle or Late Jurassic

Phu Kradung Formation

 Thailand

A member of the family Teleosauridae. Genus includes new species I. potamosiamensis.

Isisfordia molnari[94]

Sp. nov

Disputed

Hart et al.

Late Cretaceous (Cenomanian)

Griman Creek Formation

 Australia

Hart (2020) considered it to be likely a junior subjective synonym of the species Isisfordia selaslophensis (Etheridge, 1917), but was unable to determine this with certainty, as both taxa are currently represented by non-overlapping fossil material.[95]

I. molnari (C)

Jiangxisuchus[96]

Gen. et sp. nov

Valid

Li, Wu & Rufolo

Late Cretaceous (Maastrichtian)

Nanxiong Formation

 China

Originally described as a member of Crocodyloidea, but now treated as a member of Orientalosuchina. Genus includes new species J. nankangensis. Announced in 2018; the final version of the article naming it was published in 2019.

Opisuchus[97]

Gen. et sp. nov

Valid

Aiglstorfer, Havlik & Herrera

Middle Jurassic (Aalenian)

 Germany

A non-metriorhynchid metriorhynchoid crocodyliform. Genus includes new species O. meieri.

Orientalosuchus[98]

Gen. et sp. nov

Valid

Massonne et al.

Eocene (late Bartonian to Priabonian)

Na Duong Formation

 Vietnam

A member of the family Alligatoridae. The type species is O. naduongensis.

Scolomastax[99]

Gen. et sp. nov

Valid

Noto et al.

Late Cretaceous (Cenomanian)

Woodbine Formation

 United States
( Texas)

A crocodyliform belonging to the family Paralligatoridae. Genus includes new species S. sahlsteini.

Tarsomordeo[100]

Gen. et sp. nov

Valid

Adams

Early Cretaceous (Aptian)

Twin Mountains Formation

 United States
( Texas)

A crocodyliform belonging to the family Paralligatoridae. Genus includes new species T. winkleri.

Yvridiosuchus[91]

Gen. et comb. nov

Valid

Johnson, Young & Brusatte

Middle Jurassic (Bathonian)

Cornbrash Formation

 United Kingdom

A basal member of the tribe Machimosaurini; a new genus for "Teleosaurus" boutilieri Eudes-Deslongchamps (1868).

Non-avian dinosaurs

[edit]

Research

[edit]

General

[edit]
  • A study aiming to identify the most likely area for the geographic origin of dinosaurs is published by Lee et al. (2019).[101]
  • A study evaluating the impact of new fossil discoveries and changing phylogenetic hypotheses on biogeographical scenarios for dinosaur origins is published by Marsola et al. (2019).[102]
  • A study aiming to determine the degree of differences of dinosaur phylogenies inferred from skull and postcranial characters is published online by Li, Ruta & Wills (2019).[103]
  • A study on the chronostratigraphic position of the uppermost Cretaceous dinosaur localities from south-western Europe, and on their implications for inferring the course of the Maastrichtian dinosaur turnover, is published by Fondevilla et al. (2019).[104]
  • A study aiming to quantify the habitat of latest Cretaceous North American dinosaurs, based on data from fossil occurrences and climatic and environmental modelling, and evaluating its implications for inferring whether dinosaur diversity was in decline prior to the Cretaceous–Paleogene extinction event, is published by Chiarenza et al. (2019).[105]
  • A study on factors determining the community richness of large herbivorous dinosaurs from the Campanian Dinosaur Park Formation (Alberta, Canada) is published by Mallon (2019).[106]
  • A review of the fossil record of Late Cretaceous non-avian dinosaurs from the James Ross Basin (Antarctica) is published by Lamanna et al. (2019), who also describe fragmentary new ankylosaur and ornithopod material from the Cape Lamb Member of the Snow Hill Island Formation and the Sandwich Bluff Member of the Lopez de Bertodano Formation.[107]
  • A review and evaluation of studies on molecular data from Mesozoic dinosaur fossils is published by Schweitzer et al. (2019).[108]
  • A study on the nature of putative remains of ancient proteins, blood vessels, and cells preserved with dinosaur fossils, based on data from fossils of Centrosaurus apertus from the Dinosaur Park Formation (Alberta, Canada), is published by Saitta et al. (2019).[109]
  • A study on the olfactory bulb ratio (the size of the olfactory bulb relative to the cerebral hemisphere) in dinosaurs, and on its implication for inferring olfactory acuity of dinosaurs, is published by Hughes & Finarelli (2019).[110]
  • A study on vascular correlates in dinosaur skulls, evaluating their implications for the knowledge of thermoregulatory strategies of dinosaurs of different sizes, is published online by Porter & Witmer (2019).[111]
  • A review of the diversity of the musculature of the skulls of herbivorous dinosaurs is published online by Nabavizadeh (2019).[112]
  • A study on the evolution of different modes of herbivory in non-avian dinosaurs is published online by Button & Zanno (2019).[113]
  • A study on the structure of eggshells of eggs produced by Lufengosaurus, Massospondylus and Mussaurus, representing the oldest confirmed amniote eggshells reported so far, is published by Stein et al. (2019).[114]
  • Description of dinosaur egg fossils from the late Early Cretaceous Chaochuan Formation (Zhejiang, China) is published by Zhang et al. (2019), who name a new ootaxon Multifissoolithus chianensis.[115]
  • Dinosaurs eggs assigned to the oofamily Dendroolithidae are described from the Late Cretaceous Zhaoying Formation (China) by He et al. (2019), who name a new ootaxon Pionoolithus quyuangangensis.[116]
  • Dinosaurs eggs assigned to the oofamily Faveoloolithidae are described from the Upper Cretaceous (ConiacianSantonian) siltstones within the Daeri Andesite of the Wido Volcanics (South Korea) by Kim et al. (2019), who name a new ootaxon Propagoolithus widoensis.[117]
  • Possible dromaeosaurid eggshells are described from the Upper Cretaceous Wido Volcanics (South Korea) by Choi & Lee (2019), who name a new ootaxon Reticuloolithus acicularis.[118]
  • Description of an intact dinosaur egg from the Cretaceous Wayan Formation (Idaho, United States) assigned to the oogenus Macroelongatoolithus is published by Simon et al. (2019), who interpret this specimen as evidence of presence of a Gigantoraptor-sized oviraptorosaur in western North America.[119]
  • A study on the embryonic metabolism of Troodon formosus, Protoceratops andrewsi and Hypacrosaurus stebingeri, and on its implications for the knowledge of the incubation times for dinosaur eggs, is published by Lee (2019).[120]
  • A new dinosaur nesting site, preserving at least 15 egg clutches probably laid by a non-avian theropod dinosaur, is described from the Upper Cretaceous Javkhlant Formation (Mongolia) by Tanaka et al. (2019), who interpret the finding as evidence of colonial nesting in a non-avian dinosaur.[121]
  • A study aiming to determine possible shifts from quadrupedality to bipedality during ontogeny in dinosaurs is published online by Chapelle et al. (2019).[122]
  • A review of evidence of probable responses of dinosaurs to serious injuries is presented by Hearn & Williams (2019).[123]
  • A study on the phylogenetic placement of Chilesaurus diegosuarezi and its implications for the phylogenetic relationships of major dinosaur groups is published by Müller & Dias-da-Silva (2019).[124]

Saurischians

[edit]
Theropods
[edit]
  • A study on specimen completeness in the fossil record of non-avian theropod dinosaurs is published by Cashmore & Butler (2019).[125]
  • A study on the distribution of discrete dental characters in theropod dinosaurs, and on the taxonomic value of theropod teeth, is published by Hendrickx et al. (2019).[126]
  • A study aiming to evaluate whether the maximum body size of theropod dinosaurs increased across the Triassic-Jurassic boundary is published online by Griffin & Nesbitt (2019).[127]
  • A revision of theropod dinosaur fossils from the Late Jurassic to mid-Cretaceous of Southeast Asia is published by Samathi, Chanthasit & Sander (2019).[128]
  • Description of theropod dinosaur teeth from the Lower Cretaceous (Barremian-Aptian) Ilek Formation (West Siberia, Russia) is published by Averianov, Ivantsov & Skutschas (2019).[129]
  • A study re-assessing the evidence for evolutionary allometric trends in the forelimbs of non-avian theropod dinosaurs is published by Palma Liberona et al. (2019).[130]
  • Redescription of the holotype specimen of Chindesaurus bryansmalli and a study on the phylogenetic relationships of this species is published by Marsh et al. (2019).[131]
  • Description of two fragmentary neotheropod specimens from the Upper Triassic Bull Canyon Formation (New Mexico, United States), and a study on their implications for the knowledge of body size evolution among early theropods, is published by Griffin (2019).[132]
  • A study on the anatomy of the braincase, the skull endocast and the inner ear of Zupaysaurus rougieri is published by Paulina-Carabajal, Ezcurra & Novas (2019).[133]
  • A study on range of motion and functions of the forelimbs of Dilophosaurus wetherilli is published by Senter & Sullivan (2019).[134]
  • A study on the paleobiology of Cryolophosaurus is published by Yun (2019).[135]
  • A study on tooth formation and replacement rates in Majungasaurus, Ceratosaurus and Allosaurus is published by D'Emic et al. (2019).[136]
  • A study on the ecology of Ceratosaurus is published by Yun (2019).[137]
  • A study on the phylogenetic relationships of Afromimus tenerensis is published by Cerroni et al. (2019), who consider this taxon to be more likely an abelisauroid rather than an ornithomimosaur.[138]
  • Description of isolated neck vertebrae of abelisauroid theropods from the Cretaceous Kem Kem Beds (Morocco) and a study on the phylogenetic affinities of these fossils is published online by Smyth et al. (2019).[139]
  • Partially preserved ilium of an indeterminate abelisaur theropod is reported from the Upper Cretaceous Kem Kem Beds (Morocco) by Zitouni et al. (2019);[140] however Smyth et al. (2019) reinterpret this specimen as a fossil of Spinosaurus aegyptiacus,[139] while Samathi (2024) reinterprets this bone as a fossil of a spinosaurine spinosaurid of uncertain generic placement, possibly distinct from S. aegyptiacus.[141]
  • A study on the anatomy of the brain, braincase and inner ear of Carnotaurus sastrei is published by Cerroni & Paulina-Carabajal (2019).[142]
  • A study on the phylogenetic affinities of a tooth previously considered to be part of the holotype of Aerosteon riocoloradensis is published online by Hendrickx, Tschopp & Ezcurra (2019), who consider this fossil to be an abelisaurid tooth.[143]
  • Megalosaurid teeth resembling teeth of Torvosaurus are described from the Upper Jurassic of Uruguay and Tanzania by Soto, Toriño & Perea (2019).[144]
  • Isolated spinosaurid teeth are described from the Lower Cretaceous of Kut Island (Thailand) by Buffetaut et al. (2019).[145]
  • New spinosaurid specimens are described from the Kem Kem Beds (Morocco) by Arden et al. (2019), who interpret these specimens as providing evidence of aquatic adaptations in the skulls of spinosaurids, and name a new clade Spinosaurini;[146] the study is subsequently criticized by Hone & Holtz (2019).[147]
  • New fossil material of juvenile spinosaurids is described from the Kem Kem Beds by Lakin & Longrich (2019).[148]
  • New theropod fossils, including partial tail vertebra of a member of Megaraptora and an association of tail vertebrae and pelvic elements displaying a combination of characteristics that are present in megaraptorid and carcharodontosaurid theropods, are described from the early Late Cretaceous Griman Creek Formation at Lightning Ridge, New South Wales (Australia) by Brougham, Smith & Bell (2019).[149]
  • Partial postcranial skeleton of a probable carcharodontosaurian theropod is described from the Upper Jurassic (Tithonian) Freixial Formation (Portugal) by Malafaia et al. (2019).[150]
  • Description of the anatomy of the axial skeleton of Concavenator corcovatus is published by Cuesta, Ortega & Sanz (2019).[151]
  • A study on the anatomy of the brain and inner ear of Giganotosaurus carolinii is published online by Paulina-Carabajal & Nieto (2019).[152]
  • A study on the anatomy of Murusraptor barrosaensis, and on its implications for inferring the phylogenetic placement of megaraptorans within Theropoda, is published by Rolando, Novas & Agnolín (2019).[153]
  • New fossil material of a megaraptorid belonging or related to the species Australovenator wintonensis is described from the Lower Cretaceous (Albian) Eric the Red West site (Eumeralla Formation; Victoria, Australia) by Poropat et al. (2019).[154]
  • A study comparing different methods of assessing morphological diversity of coelurosaurian mandibles is published online by Schaeffer et al. (2019).[155]
  • A study on the anatomy of the skull of Bicentenaria argentina is published online by Aranciaga-Rolando, Cerroni & Novas (2019).[156]
  • New postcranial bones of Kileskus aristotocus, providing new information on the anatomy of this species, are described from the Middle Jurassic (Itat Formation) Itat Formation (Russia) by Averianov et al. (2019).[157]
  • A study on the agility and turning capability of tyrannosaurids and other large theropods is published by Snively et al. (2019), who argue that tyrannosaurids could turn with greater agility, thus pivoting more quickly, than other large theropods, which enhanced their ability to pursue and subdue prey.[158]
  • A study on the taxonomic identity of the tyrannosaurid specimen CMN 11315 from the lower Maastrichtian Tolman Member of the Horseshoe Canyon Formation (Alberta, Canada) is published online by Mallon et al. (2019).[159]
  • A study on the taxonomic identity of the juvenile tyrannosaurid specimen TMP 1994.143.1, formerly assigned to the genus Daspletosaurus, is published by Voris et al., who reinterpret this specimen as belonging to the species Gorgosaurus libratus, and describe a new postorbital from the Dinosaur Park Formation (Alberta, Canada) belonging to a small juvenile Daspletosaurus.[160]
  • A study on the tooth replacement patterns in tyrannosaurid theropods, as indicated by data from a juvenile specimen of Tarbosaurus bataar, is published by Hanai & Tsuihiji (2019).[161]
  • A study on teeth of Tarbosaurus bataar and its potential prey species from the Nemegt Formation (Mongolia), aiming to infer the diet of this dinosaur and seasonal climatic variations in the area of Mongolia in the early Maastrichtian on the basis of stable isotope data from tooth enamel, is published online by Owocki et al. (2019).[162]
  • A study on the complexity and modularity of the skull of Tyrannosaurus rex is published by Werneburg et al. (2019).[163]
  • Traces preserved on a tail vertebra of a hadrosaurid dinosaur from the Upper Cretaceous Hell Creek Formation (Montana, United States) are described by Peterson & Daus (2019), who interpret their finding as feeding traces produced by a late-stage juvenile Tyrannosaurus rex.[164]
  • A large specimen of Tyrannosaurus rex (RSM P2523.8) with an estimated body mass exceeding other known T. rex specimens and representatives of all other gigantic terrestrial theropods is described by Persons, Currie & Erickson (2019).[165]
  • A study testing the biomechanical performance of the skull of Tyrannosaurus rex is published online by Cost et al. (2019).[166]
  • A study on tooth replacement in a well-preserved skull of Tyrannosaurus rex from the Maastrichtian Hell Creek Formation (Montana, United States) is published online by Sattler & Schwarz (2019).[167]
  • A study aiming to determine the processes contributing to the preservation of soft tissue structures and proteins of Tyrannosaurus rex is published by Boatman et al. (2019).[168]
  • Teeth on a (probably non-tyrannosaurid) tyrannosauroid and a dromaeosaurid are described from the Maastrichtian Mount Laurel Formation (New Jersey, United States) by Brownstein (2019).[169]
  • Description of an ornithomimid specimen UALVP 16182, putatively assigned to the genus Dromiceiomimus, and a study on the validity of this genus is published by Macdonald & Currie (2019).[170]
  • A study on the morphometrics of teeth of Richardoestesia asiatica from the Upper Cretaceous Khodzhakul, Bissekty and Aitym formations of Uzbekistan is published by Averianov & Sues (2019).[171]
  • A study on the bone histology of a metatarsal bone of the holotype specimen of Xixianykus zhangi is published by Qin, Zhao & Xu (2019).[172]
  • A study on the anatomy of the skull of Beipiaosaurus inexpectus is published by Liao & Xu (2019).[173]
  • A study on form, function and evolution of skulls of members of Oviraptorosauria is published online by Ma et al. (2019).[174]
  • A study on the wing performance of Caudipteryx is published by Talori et al. (2019).[175]
  • A study on the aerodynamic capacity of feathered forelimbs of Caudipteryx is published by Talori & Zhao (2019).[176]
  • Description of an avimimid bonebed assemblage from the Iren Dabasu Formation of northern China, providing new information on the growth of avimimids, is published by Funston et al. (2019).[177]
  • Description of new caenagnathid mandibles from the Dinosaur Park Formation (Alberta, Canada) and a study on their histology is published online by Funston et al. (2019).[178]
  • A reconstruction of the architecture of the oviraptorid egg clutch, based on data from five clutches from the Upper Cretaceous Nanxiong Group (Jiangxi, China) is presented by Yang et al. (2019), who re-evaluate the hypothesis of thermoregulatory contact incubation of eggs as an explanation for the discoveries of associations of adult oviraptorosaurs with egg clutches.[179]
  • A study on the reproductive biology of oviraptorids, based on data from a partial clutch of eggs from the Upper Cretaceous Nanxiong Group, is published online by Yang et al. (2019).[180]
  • A study on the function of the enlarged "sickle claw" on the second toe of dromaeosaurid theropods is published by Bishop (2019).[181]
  • An ungual phalanx of a dromaeosaurid theropod is described from the Blagoveshchensk area (Russia) by Bolotskii, Bolotskii & Sorokin (2019).[182]
  • A study on the anatomy, taphonomy, environmental setting and phylogenetic position of Halszkaraptor escuilliei is published by Brownstein (2019);[183] the study is subsequently criticized by Cau (2020).[184]
  • A study on a fossil lizard found in the abdomen of a specimen of Microraptor zhaoianus from the Lower Cretaceous Jiufotang Formation (China), evaluating its implications for the knowledge of dromaeosaurid digestion, is published by O'Connor et al. (2019).[185]
  • Description of the anatomy of the skull of Saurornitholestes langstoni, based on data from an almost complete skeleton from the Campanian Dinosaur Park Formation (Alberta, Canada), is published online by Currie & Evans (2019).[186]
  • Histological analysis of the forelimb bones of Daliansaurus liaoningensis is presented by Shen et al. (2019).[187]
  • Evidence indicating that the pennaceous feathers of Anchiornis were composed of both feather β-keratins and α-keratins is presented by Pan et al. (2019);[188] the study is subsequently criticized by Saitta & Vinther (2019).[189]
  • Isolated theropod teeth, interpreted as most likely representing at least two species, are described from the Middle Jurassic Valtos Sandstone and Lealt Shale Formations of Skye (Scotland) by Young et al. (2019).[190]
Sauropodomorphs
[edit]
  • A study aiming to explain high diversity of early evolutionary branches of sauropodomorph dinosaurs is published online by Müller & Garcia (2019).[191]
  • A study on the anatomy and phylogenetic relationships of Pampadromaeus barberenai is published by Langer et al. (2019).[192]
  • A dinosauriform femur, possibly of a juvenile specimen of the species Pampadromaeus barberenai, is described from the Late Triassic of southern Brazil by Müller et al. (2019).[193]
  • A study on the anatomy of the braincase of Saturnalia tupiniquim is published by Bronzati, Langer & Rauhut (2019).[194]
  • Description of all available skull bones of Saturnalia tupiniquim except the braincase, evaluating the implications of this taxon for the knowledge of the early evolution of the sauropodomorph feeding behaviour, is published by Bronzati, Müller & Langer (2019).[195]
  • A study on the phylogenetic relationships of Unaysaurus tolentinoi is published online by McPhee et al. (2019).[196]
  • A study on the anatomy of the skull of Macrocollum itaquii and on the phylogenetic relationships of this species is published online by Müller (2019).[197]
  • A study on the bony labyrinth scale and geometry through ontogeny in Massospondylus carinatus, evaluating whether the putative gait change from quadrupedal juvenile to bipedal adult is reflected in labyrinth morphology, will be published by Neenan et al. (2019).[198]
  • Description of the anatomy of the postcranial skeleton of the neotype specimen of Massospondylus carinatus is published by Barrett et al. (2019).[199]
  • Redescription of the anatomy of the skull of Jingshanosaurus xinwaensis is published online by Zhang et al. (2019), who consider Chuxiongosaurus lufengensis to be a junior synonym of J. xinwaensis.[200]
  • A study on the anatomy of the axial skeleton of Xingxiulong chengi is published online by Wang et al. (2019).[201]
  • A study on changes of body mass and center of mass of Mussaurus patagonicus during its ontogeny, and on their potential relationship with the locomotor stance of this dinosaur, is published by Otero et al. (2019).[202]
  • A study on the leverage of forelimb muscles in the transition from the narrow-gauge stance of basal sauropods to a wide-gauge stance in titanosaurs is published by Klinkhamer et al. (2019).[203]
  • A study on the hind foot posture and biomechanical capabilities of Rhoetosaurus brownei is published by Jannel et al. (2019).[204]
  • A study on the age of the fossils of Rhoetosaurus brownei is published by Todd et al. (2019).[205]
  • An isolated tooth-crown of a member of Eusauropoda, possibly a member of Mamenchisauridae or Euhelopodidae, is described from the Upper Jurassic Qigu Formation (China) by Maisch & Matzke (2019), representing the first record of a eusauropod from this formation reported so far.[206]
  • A cervical vertebra of a member of the genus Omeisaurus is described from the Middle Jurassic Lower Member of the Shaximiao Formation (China) by Tan et al. (2019), providing new information on the skeletal morphology of this genus, and representing the easternmost occurrence of Omeisaurus reported so far.[207]
  • Possible mamenchisaurid teeth are described from the Middle Jurassic Itat Formation (Russia) by Averianov et al. (2019).[208]
  • A study on the age of the fossils of members of the genus Mamenchisaurus from the Suining Formation in the Sichuan Basin (China) is published by Wang et al. (2019).[209]
  • A study on the anatomy and affinities of Lapparentosaurus madagascariensis is published by Raveloson, Clark & Rasoamiaramana (2019).[210]
  • Partial vertebra of a sauropod dinosaur belonging to the group Turiasauria is described from the Lower Cretaceous Wealden Supergroup (United Kingdom) by Mannion (2019).[211]
  • Description and a study on the affinities of sauropod teeth from the Middle Jurassic (Bathonian) Sakahara Formation (Madagascar) is published online by Bindellini & Dal Sasso (2019), who report evidence of presence of Titanosauriformes in the Bathonian.[212]
  • Description of isolated sauropod vertebrae from the Oxford Clay Formation (United Kingdom), indicative of a higher sauropod biodiversity in this formation than previously recognised, is published by Holwerda, Evans & Liston (2019).[213]
  • Revision of the taxonomic diversity of sauropod dinosaurs from a historic Carnegie Museum locality (Red Fork of the Powder River Quarry B) in northern Wyoming (Morrison Formation) is published by Tschopp et al. (2019).[214]
  • A study on pneumatic structures in the vertebrae of Pilmatueia faundezi is published online by Windholz, Coria & Zurriaguz (2019).[215]
  • A study on the anatomy of the appendicular skeleton of Europasaurus holgeri and on the phylogenetic relationships of this species is published online by Carballido et al. (2019).[216]
  • Redescription of brachiosaurid fossil material from the Upper Jurassic Morrison Formation (Colorado, United States), including a mostly complete skull discovered in 1883, is published online by D'Emic & Carrano (2019).[217]
  • A study on the phylogenetic relationships of Galvesaurus herreroi is published by Pérez-Pueyo et al. (2019).[218]
  • A study on the phylogenetic relationships of the Late Jurassic sauropod dinosaurs from the Tendaguru Formation of Tanzania (Australodocus bohetii, Janenschia robusta and Tendaguria tanzaniensis) is published by Mannion et al. (2019).[219]
  • The first confirmed fossil of a sauropod dinosaur from Ethiopia (an isolated tooth) is reported from the Upper Jurassic Mugher Mudstone by Goodwin et al. (2019).[220]
  • A study on the affinities of the sauropod dinosaur known from an isolated metacarpal from the Upper Jurassic (Oxfordian) Jagua Formation (Cuba) is published online by Apesteguía, Izquierdo & Iturralde-Vinent (2019).[221]
  • A study on isolated sauropod teeth from the Early Cretaceous Teete locality (Batylykh Formation) (Yakutia, Russia), representing the northernmost sauropod record in the Northern Hemisphere reported so far, is published online by Averianov et al. (2019).[222]
  • Redescription of Jiangshanosaurus lixianensis, a study on the anatomy of Dongyangosaurus sinensis and a study on the phylogenetic relationships of these species is published by Mannion et al. (2019).[223]
  • New fossil material of titanosauriform sauropods is described from the Upper Cretaceous Daijiaping Formation (Hunan, China) by Han et al. (2019).[224]
  • A study on the long bone histology in early juvenile titanosaur sauropods, evaluating its implications for the knowledge of early stages of development of these dinosaurs, is published online by González et al. (2019).[225]
  • A study on the neurology and phylogenetic affinities of a titanosaurian braincase from the Campanian locality of Fox-Amphoux-Métisson (southeastern France) is published by Knoll et al. (2019).[226]
  • Tail vertebrae of lithostrotian titanosaurs are described from the Lower Cretaceous Ilek Formation (Krasnoyarsk Krai, Russia) by Averianov, Ivantsov & Skutschas (2019).[227]
  • A study on the anatomy of the appendicular skeleton of South American titanosaur sauropods and on its implications for the knowledge of the phylogenetic relationships of these sauropods is published by González Riga et al. (2019), who name a new clade Colossosauria.[228]
  • Description of titanosaur sauropod vertebrae from the Upper Cretaceous Lameta Formation (India) is published by Wilson et al. (2019).[229]
  • Description of the anatomy of the braincase of Malawisaurus dixeyi is published by Andrzejewski et al. (2019), who present digital reconstructions of the endocast and inner ear of this species based on CT scanning.[230]
  • A study on the anatomy and phylogenetic relationships of Uberabatitan ribeiroi is published by Silva et al. (2019).[231]
  • A study on vertebral pneumaticity in Uberabatitan ribeiroi, indicating that diagenesis can obliterate traces of bone pneumaticity, is published online by Aureliano et al. (2019).[232]
  • Fossils of a titanosaur sauropod related to Rapetosaurus and the indeterminate Italian titanosaur specimen MSNM V7157 are described from the Algora vertebrate fossil site located in the Cenomanian strata of the Arenas de Utrillas Formation (Spain) by Mocho et al. (2019).[233]
  • Description of five articulated sauropod dorsal vertebrae from the Upper Cretaceous Nemegt Formation, possibly belonging to the species Nemegtosaurus mongoliensis, is published by Averianov & Lopatin (2019), who also study the anatomy of sauropod femora from the Nemegt Formation, and argue that N. mongoliensis is likely to be distinct from Opisthocoelicaudia skarzynskii.[234]

Ornithischians

[edit]
Thyreophorans
[edit]
Cerapods
[edit]
  • A study on the age of the Kulinda locality (south-eastern Siberia, Russia) which yielded fossils of Kulindadromeus zabaikalicus is published by Cincotta et al. (2019).[251]
  • First photogrammetric models of the type locality burrow of Oryctodromeus cubicularis are presented by Wilson & Varricchio (2019).[252]
  • A study on the taphonomy of fossils of Oryctodromeus cubicularis is published by Krumenacker et al. (2019), who also report discovery of new burrows of this dinosaur.[253]
  • New fossil material of ornithopod dinosaurs is described from the Cretaceous Flat Rocks locality (Wonthaggi Formation, Australia) by Herne et al. (2019), who also revise Qantassaurus intrepidus and study the phylogenetic relationships of the Victorian ornithopods.[254]
  • Two minuscule ornithopod femora, likely belonging to individuals around the point of hatching, are described from the Cenomanian Griman Creek Formation (Australia) by Kitchener et al. (2019).[255]
  • Description of new fossil material of large ornithopod dinosaurs from the Lower Cretaceous localities in El Castellar (Maestrazgo Basin, Teruel, Spain), and a study on the implications of these fossils for the knowledge of ornithopod diversity in the Lower Cretaceous of the Iberian Peninsula, is published by Verdú et al. (2019).[256]
  • Description of the anatomy of the skeleton of Talenkauen santacrucensis is published by Rozadilla, Agnolín & Novas (2019).[257]
  • A study on the anatomy of the skeleton of Macrogryphosaurus gondwanicus is published online by Rozadilla, Cruzado-Caballero & Calvo (2019).[258]
  • Skeletal pathologies affecting a subadult specimen of Tenontosaurus tilletti from the Antlers Formation of southeastern Oklahoma are described by Hunt et al. (2019).[259]
  • A study on the anatomy and phylogenetic relationships of the ornithopod dinosaurs from the Maastrichtian of Crimea, including Riabininohadros weberae, is published by Averianov & Lopatin (2019).[260]
  • Redescription of the fossil material of Orthomerus dolloi and a study on the phylogenetic affinities of this taxon is published online by Madzia, Jagt & Mulder (2019).[261]
  • A study on patterns and processes of morphological evolution of hadrosauroid dinosaurs is published by Stubbs et al. (2019).[262]
  • A study on the nature of the fluvial systems of Laramidia during the Late Cretaceous, as indicated by data from vertebrate and invertebrate fossils from the Kaiparowits Formation of southern Utah, and on the behavior of hadrosaurid dinosaurs over these landscapes, will be published by Crystal et al. (2019).[263]
  • Evidence of three-dimensional preservation of eumelanin-bearing bodies, dermal cells and blood vessel fragments in a hadrosaur specimen YPMPU 016969 is presented by Fabbri et al. (2019).[264]
  • A study on the osteology and phylogenetic relationships of "Tanius laiyangensis" is published online by Zhang et al. (2019).[265]
  • A study on the bone histology of tibiae of Maiasaura peeblesorum, focusing on the composition, frequency and cortical extent of localized vascular changes, is published by Woodward (2019).[266]
  • A study on hadrosaurine skulls from the Dinosaur Park Formation (Alberta, Canada), aiming to assess the influence of ontogeny on skull morphology, and evaluating proposed synonymy between Gryposaurus incurvimanus and G. notabilis, is published online by Lowi-Merri & Evans (2019).[267]
  • Three juvenile specimens of Prosaurolophus maximus, providing new information on the ontogeny of this taxon, are described from the Bearpaw Formation (Alberta, Canada) by Drysdale et al. (2019).[268]
  • A study on the structure and contents of a large piece of amber attached to a jaw of a specimen of Prosaurolophus maximus from the Cretaceous Dinosaur Park Formation (Alberta, Canada), evaluating the implications of this finding for the knowledge of the habitat and taphonomy of the dinosaur, is published by McKellar et al. (2019).[269]
  • A study on the impact of bone tissue structure, early diagenetic regimes and other taphonomic variables on the preservation potential of soft tissues in vertebrate fossils, as indicated by data from fossils of Edmontosaurus annectens from the Standing Rock Hadrosaur Site (Maastrichtian Hell Creek Formation, South Dakota), is published by Ullmann, Pandya & Nellermoe (2019), who report the first recovery of osteocytes and vessels from a fossil vertebral centrum and ossified tendons.[270]
  • A femur of an early juvenile hadrosaurid, probably belonging to the species Edmontosaurus annectens, is described from the Hell Creek Formation (Montana, United States) by Farke & Yip (2019), providing new information on ontogenetic changes in the skeleton of this dinosaur.[271]
  • Skull remains of nestling-sized hadrosaurids, probably belonging to the species Edmontosaurus annectens, are described from the Hell Creek Formation (Montana, United States) by Wosik, Goodwin & Evans (2019).[272]
  • A study of three-dimensionally preserved squamous skin of a member of the genus Edmontosaurus from the Upper Cretaceous (Campanian) Wapiti Formation (Alberta, Canada) is published by Barbi et al. (2019).[273]
  • The first definitive lambeosaurine fossil (an isolated skull bone) is described from the Liscomb Bonebed of the Prince Creek Formation (Alaska, United States) by Takasaki et al. (2019).[274]
  • Fossils of a lambeosaurine related to the Eurasian Tsintaosaurini are described from the lower Maastrichtian of the Els Nerets locality (eastern Tremp Syncline, northeastern Spain) by Conti et al. (2019).[275]
  • A study on the microwear of hadrosaur teeth from the La Parrita locality (Cerro del Pueblo Formation, Mexico) and on its implications for the knowledge of jaw mechanics and feeding ecology of these hadrosaurs is published by Rivera-Sylva et al. (2019).[276]
  • A study on bone histology of Psittacosaurus lujiatunensis through its ontogeny is published by Zhao et al. (2019).[277]
  • A study on the morphological changes in the braincase of Psittacosaurus lujiatunensis through its ontogeny, based on data from three specimens from the Lower Cretaceous Yixian Formation (China), is published by Bullar et al. (2019).[278]
  • A three-dimensional virtual endocast of a member of the genus Auroraceratops is reconstructed on the basis of a well-preserved skull by Zhang et al. (2019).[279]
  • Studies on the preservation of fossils of Auroraceratops rugosus, on their stratigraphic provenance, and on the anatomy and phylogenetic relationships of this species are published by Suarez et al. (2019),[280] Suarez et al. (2019),[281] Morschhauser et al. (2019),[282] Li et al. (2019),[283] Morschhauser et al. (2019)[284] and Morschhauser et al. (2019).[285]
  • A study on the nature of the observed variation in morphology and size of skulls of Bagaceratops rozhdestvenskyi is published online by Czepiński (2019), who considers the species Gobiceratops minutus, Lamaceratops tereschenkoi, Platyceratops tatarinovi and Magnirostris dodsoni to be junior synonyms of B. rozhdestvenskyi.[286]
  • The first postcranial skeleton of Bagaceratops reported so far is described from the Upper Cretaceous Barun Goyot Formation (Mongolia) by Kim, Yun & Lee (2019).[287]
  • A study on the anatomy of the appendicular skeleton of Protoceratops andrewsi and on its implications for the knowledge of the locomotor abilities of this species throughout its ontogeny is published by Słowiak, Tereshchenko & Fostowicz-Frelik (2019).[288]
  • A study on the bone histology and skeletal growth of Avaceratops and Yehuecauhceratops is published online by Hedrick et al. (2019).[289]
  • New information on the anatomy of the skeleton of Pachyrhinosaurus perotorum is presented by Tykoski, Fiorillo & Chiba (2019), who also provide a new diagnosis of this species.[290]
  • A study on the morphological variation of the skulls of specimens of Styracosaurus albertensis is published online by Holmes et al. (2019).[291]
  • A study on the affinities of two chasmosaurine skulls from the Dinosaur Park Formation (Alberta, Canada), previously referred to the species Chasmosaurus belli, is published by Campbell et al. (2019), who transfer the species Vagaceratops irvinensis to the genus Chasmosaurus, and consider the two studied skulls to be fossils of members of the genus Chasmosaurus of uncertain specific assignment, with morphology intermediate between C. belli and C. irvinensis.[292]
  • A study on the taphonomy of hadrosaurid and ceratopsid fossils from the Scabby Butte locality (St. Mary River Formation; Alberta, Canada) is published online by Campbell, Ryan & Anderson (2019).[293]
  • A study on the taxonomic status of Teyuwasu barberenai, in which it was proposed as a second specimen of the herrerasaurid Staurikosaurus pricei rather than a separate genus and species, is published by Garcia, Müller & Dias-da-Silva (2019).[294]
  • A study on a putative sauropodomorph ilium, from Carnian rocks of the Candelária Sequence/Santa Maria Formation (Brazil), aims to discuss muscle attachment scars, in the context of ontogeny and phylogeny of basal dinosauriforms, focusing in saturnaliine sauropodomorphs is published by Garcia et al. (2019).[295]

New taxa

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Adratiklit[296]

Gen. et sp. nov

Valid

Maidment et al.

Middle Jurassic

El Mers II Formation

 Morocco

A stegosaurid thyreophoran belonging to the subfamily Dacentrurinae. Genus includes new species A. boulahfa. Announced in 2019; the final version of the article naming it was published in 2020.

Adynomosaurus[297]

Gen. et sp. nov

Valid

Prieto-Márquez et al.

Late Cretaceous

Tremp Formation

 Spain

A hadrosaurid ornithopod belonging to the subfamily Lambeosaurinae. Genus includes new species A. arcanus. Announced in 2018; the final version of the article naming it was published in 2019.

Ambopteryx[298]

Gen. et sp. nov

Valid

Wang et al.

Late Jurassic (Oxfordian)

Unnamed formation; equivalent to the Haifanggou Formation

 China

A scansoriopterygid theropod. Genus includes new species A. longibrachium.

Aquilarhinus[299]

Gen. et sp. nov

Valid

Prieto-Márquez, Wagner & Lehman

Late Cretaceous (early Campanian)

Aguja Formation

 United States
( Texas)

A member of the family Hadrosauridae. The type species is A. palimentus.

Asfaltovenator[300]

Gen. et sp. nov

Rauhut & Pol

Jurassic (late Toarcian to Bajocian)

Cañadón Asfalto Formation

 Argentina

A theropod dinosaur, probably an early member of Allosauroidea. The type species is A. vialidadi.

Bajadasaurus[301]

Gen. et sp. nov

Valid

Gallina et al.

Early Cretaceous (BerriasianValanginian)

Bajada Colorada Formation

 Argentina

A dicraeosaurid sauropod. The type species is B. pronuspinax.

Convolosaurus[302]

Gen. et sp. nov

Valid

Andrzejewski, Winkler & Jacobs

Early Cretaceous (Aptian)

Twin Mountains Formation

 United States
( Texas)

A basal ornithopod. The type species is C. marri.

Ferrisaurus[303]

Gen. et sp. nov

Valid

Arbour & Evans

Late Cretaceous (Maastrichtian)

Tango Creek Formation

 Canada
( British Columbia)

A leptoceratopsid ceratopsian. The type species is F. sustutensis.

Fostoria[304]

Gen. et sp. nov

Valid

Bell et al.

Cretaceous (Albian or Cenomanian)

Griman Creek Formation

 Australia

A non-hadrosauroid iguanodontian ornithopod. The type species is F. dhimbangunmal.

Fushanosaurus[305]

Gen. et sp. nov

Valid

Wang et al.

Late Jurassic

Shishugou Formation

 China

A titanosauriform sauropod. The type species is F. qitaiensis.

Galleonosaurus[254]

Gen. et sp. nov

Valid

Herne et al.

Early Cretaceous (Barremian)

Wonthaggi Formation

 Australia

A small-bodied ornithopod dinosaur. The type species is G. dorisae.

Gnathovorax[306]

Gen. et sp. nov

Valid

Pacheco et al.

Late Triassic (Carnian)

Santa Maria Formation

 Brazil

A member of the family Herrerasauridae. The type species is G. cabreirai.

Gobihadros[307]

Gen. et sp. nov

Valid

Tsogtbaatar et al.

Late Cretaceous (CenomanianSantonian)

Bayan Shireh Formation

 Mongolia

A non-hadrosaurid hadrosauroid ornithopod. The type species is G. mongoliensis.

Gobiraptor[308]

Gen. et sp. nov

Valid

Lee et al.

Late Cretaceous

Nemegt Formation

 Mongolia

An oviraptorid theropod. The type species is G. minutus.

Hesperornithoides[309]

Gen. et sp. nov

Valid

Hartman et al.

Late Jurassic

Morrison Formation

 United States
( Wyoming)

A troodontid theropod. The type species is H. miessleri.

Imperobator[310]

Gen. et sp. nov

Valid

Ely & Case

Late Cretaceous (Maastrichtian)

Snow Hill Island Formation

 Antarctica

A large paravian theropod. Genus includes new species I. antarcticus.

Isasicursor[311]

Gen. et sp. nov

Valid

Novas et al.

Late Cretaceous (Campanian-Maastrichtian)

Chorillo Formation

 Argentina

An elasmarian ornithopod. The type species is I. santacrucensis.

Itapeuasaurus[312]

Gen. et sp. nov

Valid

Lindoso et al.

Late Cretaceous (Cenomanian)

Alcântara Formation

 Brazil

A rebbachisaurid sauropod. The type species is I. cajapioensis.

Jinbeisaurus[313]

Gen. et sp. nov

Valid

Wu et al.

Late Cretaceous

Huiquanpu Formation

 China

A tyrannosauroid theropod. Genus includes new species J. wangi. Announced in 2019; the final version of the article naming it was published in 2020.

Kaijutitan[314]

Gen. et sp. nov

Valid

Filippi, Salgado & Garrido

Late Cretaceous (Coniacian)

Sierra Barrosa Formation

 Argentina

A basal member of Titanosauria. Genus includes new species K. maui.

Kamuysaurus[315]

Gen. et sp. nov

Valid

Kobayashi et al.

Late Cretaceous (early Maastrichtian)

Hakobuchi Formation

 Japan

A member of Hadrosauridae belonging to the tribe Edmontosaurini. The type species is K. japonicus.

Laiyangosaurus[316]

Gen. et sp. nov

Valid

Zhang et al.

Late Cretaceous

Jingangkou Formation

 China

A hadrosaurid ornithopod belonging to the subfamily Saurolophinae and the tribe Edmontosaurini. The type species is L. youngi. Announced in 2017; the final version of the article naming it was published in 2019.

Lajasvenator[317]

Gen. et sp. nov

Valid

Coria et al.

Early Cretaceous (Valanginian)

Mulichinco Formation

 Argentina

A carcharodontosaurid theropod. Genus includes new species L. ascheriae. Announced in 2019; the final version of the article naming it is scheduled to be published in 2020.

Lingyuanosaurus[318]

Gen. et sp. nov

Yao et al.

Early Cretaceous

Jehol Group (Yixian Formation or Jiufotang Formation), possibly the former

 China

An early member of Therizinosauria. The type species is L. sihedangensis.

Mahuidacursor[319]

Gen. et sp. nov

Valid

Cruzado-Caballero et al.

Late Cretaceous (Santonian)

Bajo de la Carpa Formation

 Argentina

A basal ornithopod. Genus includes new species M. lipanglef.

Moros[320]

Gen. et sp. nov

Valid

Zanno et al.

Late Cretaceous (Cenomanian)

Cedar Mountain Formation

 United States
( Utah)

A tyrannosauroid theropod. The type species is M. intrepidus.

Mnyamawamtuka[321]

Gen. et sp. nov

Valid

Gorscak & O'Connor

Cretaceous (AptianCenomanian)

Galula Formation

 Tanzania

A lithostrotian titanosaur sauropod. The type species is M. moyowamkia.

Nemegtonykus[322]

Gen. et sp. nov

Lee et al.

Late Cretaceous

Nemegt Formation

 Mongolia

An alvarezsaurid theropod. The type species is N. citus.

Ngwevu[323]

Gen. et sp. nov

Valid

Chapelle et al.

Early Jurassic (?Hettangian–?Sinemurian)

Elliot Formation

 South Africa

A basal member of Sauropodomorpha. The type species is N. intloko.

Nhandumirim[324]

Gen. et sp. nov

Valid

Marsola et al.

Late Triassic (Carnian)

Santa Maria Formation

 Brazil

An early dinosaur, possibly one of the earliest members of Theropoda. Genus includes new species N. waldsangae.

Notatesseraeraptor[325]

Gen. et sp. nov

Valid

Zahner & Brinkmann

Late Triassic (latest Norian)

Klettgau Formation

  Switzerland

An early member of Neotheropoda with affinities to Dilophosaurus and Averostra. Genus includes new species N. frickensis.

Nullotitan[311]

Gen. et sp. nov

Valid

Novas et al.

Late Cretaceous (Campanian-Maastrichtian

Chorillo Formation

 Argentina

A lithostrotian titanosaur. The type species is N. glaciaris.

Oceanotitan[326]

Gen. et sp. nov

Valid

Mocho, Royo-Torres & Ortega

Late Jurassic (late Kimmeridgian–early Tithonian)

Praia da Amoreira-Porto Novo Formation

 Portugal

A titanosauriform sauropod. Genus includes new species O. dantasi.

Pareisactus[327]

Gen. et sp. nov

Valid

Párraga & Prieto-Márquez

Late Cretaceous (Maastrichtian)

Conques Formation

 Spain

A rhabdodontid ornithopod. The type species is P. evrostos.

Phuwiangvenator[328]

Gen. et sp. nov

Valid

Samathi, Chanthasit & Sander

Early Cretaceous (probably Barremian)

Sao Khua Formation

 Thailand

A megaraptoran theropod. The type species is P. yaemniyomi.

Pilmatueia[329]

Gen. et sp. nov

Valid

Coria et al.

Early Cretaceous (Valanginian)

Mulichinco Formation

 Argentina

A dicraeosaurid sauropod. The type species is P. faundezi. Announced in 2018; the final version of the article naming it was published in 2019.

Psittacosaurus amitabha[330]

Sp. nov

Valid

Napoli et al.

Early Cretaceous (Barremian)

 Mongolia

Sanxiasaurus[331]

Gen. et sp. nov

Valid

Li et al.

Middle Jurassic

Xintiangou Formation

 China

An early member of Neornithischia. Genus includes new species S. modaoxiensis. Announced in 2019; the final version of the article naming it was published in 2021.

Sektensaurus[332]

Gen. et sp. nov

Valid

Ibiricu et al.

Late Cretaceous (Coniacian-Maastrichtian)

Lago Colhue Huapi Formation

 Argentina

A non-hadrosaurid ornithopod, probably a member of Elasmaria. Genus includes new species S. sanjuanboscoi.

Shishugounykus[333]

Gen. et sp. nov

Valid

Qin et al.

Middle-Late Jurassic

Shishugou Formation

 China

An alvarezsaurian theropod. The type species is S. inexpectus.

Siamraptor[334]

Gen. et sp. nov

Valid

Chokchaloemwong et al.

Early Cretaceous (Aptian)

Khok Kruat Formation

 Thailand

A theropod belonging to the group Carcharodontosauria. The type species is S. suwati.

Suskityrannus[335]

Gen. et sp. nov

Valid

Nesbitt et al.

Late Cretaceous (Turonian)

Moreno Hill Formation

 United States
( New Mexico)

A tyrannosauroid theropod. Genus includes new species S. hazelae.

Tralkasaurus[336]

Gen. et sp. nov

Valid

Cerroni et al.

Late Cretaceous (Cenomanian-Turonian)

Huincul Formation

 Argentina

An abelisaurid theropod. Genus includes new species T. cuyi. Announced in 2019; the final version of the article naming it was published in 2020.

Vallibonavenatrix[337]

Gen. et sp. nov

Valid

Malafaia et al.

Early Cretaceous (Barremian)

Arcillas de Morella Formation

 Spain

A spinosaurid theropod. Genus includes new species V. cani. Announced in 2019; the final version of the article naming it was published in 2020.

Vayuraptor[328]

Gen. et sp. nov

Valid

Samathi, Chanthasit & Sander

Early Cretaceous (probably Barremian)

Sao Khua Formation

 Thailand

A basal member of Coelurosauria of uncertain exact phylogenetic placement within this group. The type species is V. nongbualamphuensis.

Vespersaurus[338]

Gen. et sp. nov

Langer et al.

Late Cretaceous

Rio Paraná Formation Botucatu Formation

 Brazil

A noasaurid theropod. The type species is V. paranaensis.

Wamweracaudia[219]

Gen. et sp. nov

Valid

Mannion et al.

Late Jurassic

Tendaguru Formation

 Tanzania

A mamenchisaurid sauropod. Genus includes new species W. keranjei.

Xingtianosaurus[339]

Gen. et sp. nov

Qiu et al.

Early Cretaceous

Yixian Formation

 China

A caudipterid oviraptorosaur theropod. The type species is X. ganqi.

Xunmenglong[340]

Gen. et sp. nov

Valid

Xing et al.

Early Cretaceous

Huajiying Formation

 China

A compsognathid theropod. Genus includes new species X. yinliangis. Announced in 2019; the final version of the article naming it was in 2020.

Yamanasaurus[341]

Gen. et sp. nov

Valid

Apesteguía et al.

Late Cretaceous

Río Playas Formation

 Ecuador

A saltasaurine titanosaur. Genus includes new species Y. lojaensis. Announced in 2019; the final version of the article naming it was published in 2020.

Birds

[edit]

Research

[edit]
  • A study on early bird evolution, aiming to determine their divergence times and evolutionary rates, is published by Zhang & Wang (2019).[342]
  • A study on the impact of varying oxygen concentrations, global temperatures and air densities on the flight performance of extinct birds and on major diversification events which took place during the evolution of birds is published by Serrano et al. (2019).[343]
  • A study aiming to determine whether there is a relationship between the volume of lacunae of osteocytes derived from static osteogenesis and biological parameters such as genome size, body mass, growth rate, metabolic rate or red blood cell size in extant birds is published by Grunmeier & D'Emic (2019), who evaluate the implications of their finding for inferring physiological paraments in extinct birds, and potentially other vertebrates, on the basis of osteocyte lacunar volumes.[344]
  • A study on the expression patterns of the anterior genes Gli3 and Alx4 in limb buds of emu, chicken and zebra finch embryos, and on their implications for the knowledge of evolution of the avian digital pattern, is published by Kawahata et al. (2019).[345]
  • A study on the diversity of regulatory gene expression profiles of amniote digits, evaluating its implications for the knowledge of the origin of the avian digital pattern, is published by Stewart et al. (2019).[346]
  • A study on the total mass of the dentition of Mesozoic birds, and on the impact of the reduction and loss of teeth on total body mass of Mesozoic birds, is published by Zhou, Sullivan & Zhang (2019).[347]
  • A review of the available evidence of the diet of Mesozoic birds, especially those known from the Lower Cretaceous Jehol Lagerstätte (China), is published by O'Connor (2019).[348]
  • A study on the early evolution of the digestive system of birds, as indicated by data from paravians from the Jurassic Yanliao Biota and the Cretaceous Jehol Biota (China), is published online by O'Connor & Zhou (2019).[349]
  • A study on the early evolution of the diel activity patterns in diapsid lineages, focusing on the common ancestor branch of living birds, is published by Yu & Wang (2019).[350]
  • A study on the diversity of melanosome morphology in iridescent feathers of extant birds, and on its implications for inferring iridescence in fossil feathers in general and in Eocene birds cf. Primotrogon and Scaniacypselus in particular, is published by Nordén et al. (2019).[351]
  • A study on the morphology of melanosomes from feathers of extant birds that express non-iridescent structural colour, and on its implications for the possibility of detection of these melanosomes in the fossil record in general and in stem group roller Eocoracias in particular, is published by Babarović et al. (2019).[352]
  • Amino acids are detected in two specimens of fossil feathers from the Cretaceous amber from Myanmar and Eocene Baltic amber by McCoy et al. (2019).[353]
  • Description of new amber specimens preserving feathers from the Cretaceous of Myanmar, evaluating the implications of these feathers for the knowledge of the development of the rachis-dominated feathers of Mesozoic birds, is published by Carroll, Chiappe & Bottjer (2019).[354]
  • A study on Praeornis sharovi from the Late Jurassic of Kazakhstan is published by Agnolin, Rozadilla & Carvalho (2019), who interpret the fossil as a tail feather of a basal bird.[355]
  • A geochemical halo of the calamus of the holotype feather of Archaeopteryx lithographica, detected using Laser-Stimulated Fluorescence, is reported by Kaye et al. (2019), who also assess the implications of their findings for the identification of this feather;[356] the study is subsequently criticized by Carney, Tischlinger & Shawkey (2020).[357]
  • A study on the postcranial skeleton of the Berlin specimen of Archaeopteryx lithographica, reporting pneumatic structures visible under ultraviolet light and confirming that numerous postcranial bones of Archaeopteryx were reduced in mass via hollow interiors, is published by Schwarz et al. (2019).[358]
  • A comparative study of all named taxa referred to Confuciusornithiformes, taxonomic revision of the group and a study on the phylogenetic relationships of members of the group is published by Wang, O'Connor & Zhou (2019).[359]
  • Evidence of beak preservation in a referred specimen of Confuciusornis sanctus (originally the holotype of Jinzhouornis zhangjiyingia) is presented by Falk et al. (2019).[360]
  • A study on bone histology of Confuciusornis sanctus, and on its implications for the knowledge of the life history of this species, is published online by Chinsamy et al. (2019).[361]
  • Fully fledged feathering is reported in a hatchling enantiornithine specimen from the Early Cretaceous Las Hoyas locality in Spain (first described by Knoll et al., 2018)[362] by Kate et al. (2019).[363]
  • A remarkably well-preserved foot of an enantiornithine bird, accompanied by part of the wing plumage, is described from the Cretaceous amber from Myanmar by Xing et al. (2019).[364]
  • A foot of a bird (likely a member of Enantiornithes; made the holotype of the species Fortipesavis prehendens in a later publication),[365] revealing a morphology previously unrecognized in Mesozoic birds, and a range of feathers representing multiple morphotypes are reported for the Cretaceous amber from Myanmar by Xing et al. (2019).[366]
  • O'Connor et al. (2019) describe the integument preserved in four juvenile enantiornithine specimens from the Early Cretaceous Jehol Biota, interpreted by the authors as mid to late immature feathers.[367]
  • Description of two new specimens of Protopteryx fengningensis from the Lower Cretaceous Huajiying Formation (China), preserving most of the skeleton and plumage, and providing new information on the anatomy and flight performance of members of this species, is published online by Chiappe et al. (2019).[368]
  • A study on the bone microstructure of Yanornis, and on its implications for the knowledge of the growth strategy of this bird, is published online by Wang et al. (2019).[369]
  • A study on the evolution and function of avian predentary found in Mesozoic ornithuromorphs, based on data from a specimen of Yanornis martini, is published by Bailleul et al. (2019).[370]
  • A study comparing the hindlimb morphology of hesperornithiforms and modern foot-propelled diving birds is published by Bell, Wu & Chiappe (2019).[371]
  • A study on the paleobiogeography of hesperornithiforms, evaluating its implications for the knowledge of the paleoecology of the Late Cretaceous Western Interior Seaway, is published by Wilson (2019).[372]
  • A large bird femur referred to the species Gargantuavis philoinos, providing new information on the anatomy of this species, is described from the Maastrichtian of southern France by Buffetaut & Angst (2019), who name a new family Gargantuaviidae.[373]
  • Description of a well-preserved pelvis of Gargantuavis from the Maastrichtian Sânpetru Formation (Romania), preserving characteristics previously unknown in Gargantuavis and constituting the first record of this genus outside the area of the Late Cretaceous Ibero-Armorican Island, is published online by Mayr et al. (2019), who evaluate the implications of this finding for the knowledge of the phylogenetic relationships of Gargantuavis;[374] the study is subsequently criticized by Buffetaut & Angst (2020).[375][376]
  • A study on the evolution of body size of palaeognath birds is published by Crouch & Clarke (2019).[377]
  • A study on the hindlimb anatomy and phylogenetic relationships of Palaeotis weigelti is published by Mayr (2019).[378]
  • A study on wing anatomy, body mass, wing surface area, wing span and probable flight parameters of Calciavis grandei is published online by Torres, Norell & Clarke (2019).[379]
  • A study on changes of ostrich eggshell bead diameter throughout the Holocene, testing the proposed relationship between changes of ostrich eggshell bead diameter and the spread of herding in Africa, is published by Miller & Sawchuk (2019).[380]
  • A study on the taxonomic identification of rhea bones from four archaeological sites in the Mendoza Province (Argentina), based on genetic data, is published by Abbona et al. (2019).[381]
  • A study aiming to evaluate whether introduced deer and hares fill the same ecological niches as extinct moa birds in New Zealand, as indicated by data from pollen extracted from moa coprolites and mammal feces, is published by Wood & Wilmshurst (2019).[382]
  • A study on the anatomy of the cancellous bone in the femur, tibiotarsus and fibula of three moa species is published by Bishop, Scofield & Hocknull (2019).[383]
  • A study on population densities and on the relationship between body mass and population densities in moa birds is published online by Latham et al. (2019).[384]
  • A femur of a very large specimen of "Struthio" dmanisensis is described from the Early Pleistocene of the Crimean Peninsula by Zelenkov et al. (2019), who transfer this species to the genus Pachystruthio and estimate body mass of this species.[385]
  • A study on the microstructure of the bones of Vegavis iaai is published by Garcia Marsà, Agnolín & Novas (2019).[386]
  • Eggshells and a small ovoid-shaped egg of neognathous birds, probably members of the family Presbyornithidae, as well as a carpometacarpus of a presbyornithid are described from the Eocene of the Glib Zegdou Formation (Algeria) by Garcia et al. (2019).[387]
  • A study on the putative cariamiform femur from the Maastrichtian Sandwich Bluff Member of the Lopez de Bertodano Formation (Vega Island, Antarctica) reported by Case et al. (2006)[388] is published by West et al. (2019), who reinterpret this specimen as a fossil of an unnamed large-bodied member of the genus Vegavis.[389]
  • A study on the holotype specimen and other fossils attributed to the species Cayaoa bruneti is published by De Mendoza & Tambussi (2019), who present a revised diagnosis of this species.[390]
  • A study on the phylogenetic relationships of Cayaoa bruneti is published by De Mendoza (2019).[391]
  • A study on the Cenozoic fossil record of anatids from Eurasia is published by Zelenkov (2019).[392]
  • A study on the morphology of the postcranial skeleton of the Oligocene-Miocene galliform Palaeortyx, and on the phylogenetic relationships of this taxon, is published by Zelenkov (2019).[393]
  • A study on the phylogenetic relationships of extant and fossil members of Strisores is published by Chen et al. (2019).[394]
  • Description of new fossil material of Pellornis mikkelseni, providing new information on the anatomy of this species, and a study on the phylogenetic relationships of this species is published by Musser, Ksepka & Field (2019).[395]
  • A study on the phylogenetic relationships of the adzebills, as indicated by data from near-complete mitochondrial genome sequences, is published by Boast et al. (2019).[396]
  • A study on the phylogenetic relationships of the adzebills, as indicated by morphological and molecular data, is published by Musser & Cracraft (2019).[397]
  • A study on two humeri of rails belonging to the genus Dryolimnas from the Pleistocene of the Picard Island (Seychelles) is published by Hume & Martill (2019), who interpret these humeri as bones of a flightless rail, and consider them to be evidence of repeated evolution flightlessness in members of the genus Dryolimnas inhabiting the Aldabra Atoll – before the atoll was completely submerged in the late Pleistocene, as well as after it emerged from the ocean again.[398]
  • A study on the phylogenetic relationships and evolutionary history of living and extinct flightless lineages of the white-throated rail from the Aldabra Group is published by van de Crommenacker et al. (2019).[399]
  • A revision of extinct endemic rails of the Mascarene Islands and a study on their ecology and extinction chronologies is published by Hume (2019).[400]
  • A study on the taxonomic status of the Canary Islands oystercatcher (Haematopus meadewaldoi) is published online by Senfeld et al. (2019).[401]
  • A study on the fossil material attributed to the species Becassius charadriioides is published online by De Pietri, Mayr & Scofield (2019), who assign this species to the family Glareolidae.[402]
  • A nearly complete tarsometatarsus of the least seedsnipe (Thinocorus rumicivorus) is described from the Ensenadan of Argentina by Picasso, De Mendoza & Gelfo (2019).[403]
  • A study aiming to determine the drivers of the extinction of the great auk, based on data from mitochondrial genome sequences from across its geographic range, is published by Thomas et al. (2019).[404]
  • Pedal phalanx of a penguin affected by osteomyelitis is described from the Eocene of West Antarctica by Jadwiszczak & Rothschild (2019).[405]
  • A set of skeletal elements of a penguin attributable to the species Delphinornis larseni, providing new information on the anatomy of this species, is described from the Eocene Submeseta Formation (Seymour Island, Antarctica) by Jadwiszczak & Mörs (2019).[406]
  • The first skull reliably assigned to Anthropornis grandis is described from the Eocene (Bartonian) Submeseta Formation (Seymour Island, Antarctica) by Acosta Hospitaleche et al. (2019).[407]
  • A study on the holotype specimen of Tereingaornis moisleyi, evaluating the taxonomic validity of this species, is published online by Thomas et al. (2019).[408]
  • A fossil humerus of the Magellanic penguin or a relative of this species is described from Uruguay by Acosta Hospitaleche et al. (2019), representing the first fossil of a penguin from Uruguay reported so far.[409]
  • A study on changes in the population size of the Adélie penguin colonies and relative krill abundance in the Prydz Bay (Antarctica) during the 2nd millennium, as indicated by data from ornithogenic sediment cores from the Vestfold Hills, will be published by Gao et al. (2019).[410]
  • A vertebra of a stork similar to the maguari stork is described from the late Pleistocene of the Santa Vitória Formation (Rio Grande do Sul, Brazil) by Lopes, Pereira & Ferigolo (2019), who evaluate the implications of this finding for reconstructions of local paleoenvironment.[411]
  • Restudy of a putative bill of an ibis-like bird from the Eocene La Meseta Formation (Antarctica) described by Jadwiszczak, Gaździcki & Tatur (2008)[412] is published by Agnolin, Bogan & Rozadilla (2019), who consider this specimen to be more likely to be a dorsal spine of a chimaeroid cartilaginous fish.[413]
  • A study on the body mass evolution in the clade Telluraves, incorporating data from 76 extinct species, is published by Crouch & Mason-Gamer (2019).[414]
  • A study on the demographic history of the Andean condors in southern South America and on the causes of their survival of late Quaternary megafauna extinctions is published by Perrig et al. (2019).[415]
  • Hindlimb bones of an extinct eagle of uncertain phylogenetic placement are described from the late Quaternary of Hispaniola by Steadman, Milan & Mychajliw (2019).[416]
  • A study on the origin and evolution of the Haast's eagle and the Eyles's harrier, as indicated by complete mitochondrial genome data, is published by Knapp et al. (2019).[417]
  • Evidence from Neanderthal-associated sites in Europe indicating that Neanderthals practiced catching the golden eagles is presented by Finlayson et al. (2019).[418]
  • Evidence of Châtelperronian Neanderthals using pedal phalanges of imperial eagles for symbolic practices is reported from the Cova Foradà site (Spain) by Rodríguez-Hidalgo et al. (2019).[419]
  • A study on the impact of the climate changes of the last 35,000 years on the long-eared owls and burrowing owls, as indicated by data from fossils from the La Brea Tar Pits, is published by Madan, Prothero & Syverson (2019).[420]
  • A study on the geographical origin and evolutionary history of Coraciiformes, based on data from extant taxa and from fossils, is published by McCullough et al. (2019).[421]
  • New skull remains of Phorusrhacos longissimus are described from the Cerro de los fósiles site in the Miocene Santa Cruz Formation (Argentina) by Degrange et al. (2019).[422]
  • A study on the phylogenetic relationships of the Bahaman caracara, based on data from a nearly complete mitochondrial genome recovered from a bone of a member of this species, is published by Oswald et al. (2019).[423]
  • A study on the holotype specimen of Calcardea junnei is published by Mayr, Gingerich & Smith (2019), who reject the interpretation of this species as a heron, and claim that this bird resembled parrot-like taxon Vastanavis from the early Eocene of India.[424]
  • A study on the identity of a parakeet specimen held at National Museums Scotland, interpreted as most likely originating from Mauritius by Cheke & Jansen (2016),[425] is published by Jones et al. (2019), who consider this parakeet to be the only known skin specimen of extinct Réunion parakeet.[426]
  • Complete genomic sequence of a specimen of the Carolina parakeet is generated by Gelabert et al. (2019), who evaluate the implications of their findings for the knowledge of the phylogenetic relationships of this species, its demographic history and adaptation to a toxic diet.[427]
  • A study on the phylogenetic relationships, biogeography and diversification rates of passerine birds throughout their evolutionary history, aiming to evaluate the impact of major events in Earth history on the evolution of passerines, is published by Oliveros et al. (2019).[428]
  • Dussex et al. (2019) sequence whole genomes of the huia and the South Island kokako, and evaluate whether the loss of genomic diversity played a role in their extinction.[429]
  • A review of Cretaceous and Paleogene bird fossils from the James Ross Basin (Antarctica) is published by Acosta Hospitaleche et al. (2019).[430]
  • A study on drivers of bird distribution shifts throughout the Cenozoic is published by Saupe et al. (2019).[431]
  • A review of the bird fossil assemblage from the Paleocene locality of Menat (Puy-de-Dôme, France), including a new fossil specimen with exceptional soft tissue preservation, is published by Mayr, Hervet & Buffetaut (2019).[432]
  • New bird fossils, including the oldest European record of the Gastornithidae which is temporally well-constrained, are described from the Paleocene localities from the North Sea Basin in Belgium (Maret) and France (Templeuve and Rivecourt-Petit Pâtis) by Mayr & Smith (2019).[433]
  • A revision of bird fossils from the Eocene (Ypresian) fossil sites of the North American Okanagan Highlands, mainly in British Columbia (Canada), is published by Mayr et al. (2019), who report, among other findings, a skeleton of a possible member of the family Songziidae, and fossil wings which might constitute the earliest known record of Gaviiformes.[434]
  • An assemblage of 54 bird bones from early Eocene marine sediments of the Ampe quarry near Egem in Belgium is described by Mayr & Smith (2019).[435]
  • New Eocene bird fossils, including remains of members of Pan-Charadriiformes, a member of Pan-Mirandornithes and a member or a relative of the family Quercymegapodiidae, are described from the Bumban Member of the Naranbulag Formation (Mongolia) by Hood et al. (2019).[436]
  • Flamingo-like and anatid-like fossil bird footprints are described from the Vinchina Formation (Argentina) by Farina et al. (2019), who name new ichnotaxa Phoenicopterichnum lucioi and P. vinchinaensis.[437]
  • A study on the date of extinction of the Tristan moorhen, the Inaccessible Island finch and the Tristan albatross on the main island of the Tristan da Cunha archipelago, aiming to place these extinctions in the context of the changing island ecosystems of the nineteenth and early twentieth centuries, is published by Bond, Carlson & Burgio (2019).[438]
  • Description of a fossil bird assemblage from the early Pliocene of the Na Burguesa-1 site (Mallorca, Spain) is published by Torres-Roig et al. (2019).[439]
  • A study on the impact of Plio-Pleistocene environmental changes on the bird fauna of New Zealand is published by Rawlence et al. (2019).[440]
  • Description of Late Pleistocene and Holocene bird remains from Jerimalai and Matja Kuru 1 sites in East Timor will be published by Meijer, Louys & O'Connor (2019).[441]
  • Description of bird remains from the Grotta di Castelcivita site (Italy) and a study on their implications for the knowledge of local environment and human-bird interactions in the Paleolithic is published by Fiore et al. (2019).[442]
  • Description of bird remains from the Qesem cave (Israel) dated to between 420 and 200 ka, and a study on their implications for the knowledge of interactions of birds and humans occupying the site, is published by Blasco et al. (2019).[443]
  • A study on the phylogenetic relationships of the dodo and the great auk, as indicated by data from proteins extracted from bone material, is published by Horn et al. (2019).[444]
  • A study on bone surface modifications of Pleistocene bird fossils from Mata Menge site (Flores, Indonesia) is published by Meijer et al. (2019), who report no unambiguous evidence for exploitation of birds from Mata Menge by early hominins.[445]
  • A study on the impact of human colonization of New Zealand on the diversity dynamics of New Zealand bird fauna is published by Valente, Etienne & Garcia-R (2019).[446]

New taxa

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Alcmonavis[447]

Gen. et sp. nov

Valid

Rauhut, Tischlinger & Foth

Late Jurassic (Tithonian)

Mörnsheim Formation

 Germany

A basal member of Avialae, more closely related to extant birds than to Archaeopteryx. The type species is A. poeschli.

Aldiomedes[448]

Gen. et sp. nov

Valid

Mayr & Tennyson

Late Pliocene

Tangahoe Formation

 New Zealand

An albatross. The type species is A. angustirostris. Announced in 2019; the final version of the article naming it was published in 2020.

Antarcticavis[449]

Gen. et sp. nov

Valid

Cordes-Person et al.

Late Cretaceous (Maastrichtian)

Snow Hill Island Formation

Antarctica

A bird of uncertain phylogenetic placement, possibly a member of Ornithuromorpha belonging to the group Ornithurae. The type species is A. capelambensis. Announced in 2019; the final version of the article naming it was published in 2020.

Archaeopteryx albersdoerferi[450]

Sp. nov

Valid

Kundrát et al.

Late Jurassic (Tithonian)

Mörnsheim Formation

 Germany

Avimaia[451]

Gen. et sp. nov

Valid

Bailleul et al.

Early Cretaceous (Aptian)

Xiagou Formation

 China A member of Enantiornithes. The type species is A. schweitzerae. Noted as the first discovered fossil bird with an unlaid egg.[451]

Camptodontornis[452]

Nom. nov

Valid

Demirjian

Early Cretaceous

Jiufotang Formation

 China

A member of Enantiornithes; a replacement name for Camptodontus Li et al. (2010).

Carpathiavis[453]

Gen. et sp. nov

Valid

Mayr

Oligocene (Rupelian)

Menilite beds

 Poland

A small bird of uncertain phylogenetic placement. The type species is C. meniliticus.

Cherevychnavis[454]

Gen. et sp. nov

Valid

Bocheński et al.

Miocene (Tortonian)

 Ukraine

A member of Charadrii, approximately the size of extant Eurasian oystercatcher. The type species is C. umanskae

Conflicto[455]

Gen. et sp. nov

Valid

Tambussi et al.

Early Paleocene

López de Bertodano Formation

Antarctica

A stem-anseriform. Genus includes new species C. antarcticus.

Coturnix alabrevis[456]

Sp. nov

Valid

Rando et al.

Late Quaternary

 Madeira
(Porto Santo Island)

A species of Coturnix.

Coturnix centensis[456]

Sp. nov

Valid

Rando et al.

Late Quaternary

 Cape Verde

A species of Coturnix.

Coturnix lignorum[456]

Sp. nov

Valid

Rando et al.

Late Quaternary

 Madeira
(Madeira Island)

A species of Coturnix.

?Crossvallia waiparensis[457]

Sp. nov

Valid

Mayr et al.

Paleocene

Waipara Greensand

 New Zealand

A large-sized penguin. Announced in 2019; the final version of the article naming it was published in 2020.

Dasyornis walterbolesi[458]

Sp. nov

Valid

Nguyen

Early Miocene

Riversleigh World Heritage Area

 Australia

A bristlebird.

Dromaius arleyekweke[459]

Sp. nov

Valid

Yates & Worthy

Late Miocene

Waite Formation

 Australia

A relative of the emu.

Dryolimnas chekei[400]

Sp. nov

Valid

Hume

Holocene

Mare aux Songes

 Mauritius

A rail.

Ducula shutleri[460]

Sp. nov

Valid

Worthy & Burley

Holocene

 Tonga

An imperial pigeon.

Elektorornis[461]

Gen. et sp. nov

Valid

Xing et al.

Cretaceous (late Albian-Cenomanian)

Burmese amber

 Myanmar

A member of Enantiornithes. The type species is E. chenguangi.

Eofringillirostrum[462]

Gen. et 2 sp. nov

Valid

Ksepka, Mayr & Grande

Early Eocene

Green River Formation
Messel pit

 Germany
 United States
( Wyoming)

A member of Pan-Passeriformes related to Psittacopes. The type species is E. boudreauxi; genus also includes E. parvulum.

Eudyptes warhami[463]

Sp. nov

Valid

Cole et al.

Holocene

 New Zealand

A crested penguin.

Fukuipteryx[464]

Gen. et sp. nov

Valid

Imai et al.

Early Cretaceous (Aptian)

Kitadani Formation

 Japan

A basal member of Avialae. The type species is F. prima .

Geronticus thackerayi[465]

Sp. nov

Valid

Pavia

Plio-Pleistocene

Kromdraai fossil site

 South Africa

An ibis, a species of Geronticus.

Gretcheniao[466]

Gen. et sp. nov

Valid

Chiappe et al.

Early Cretaceous (Barremian)

Yixian Formation

 China

A member of Enantiornithes. The type species is G. sinensis.

Heracles[467]

Gen. et sp. nov

Valid

Worthy et al.

Early Miocene

Bannockburn Formation

 New Zealand

A large parrot, possibly a member of Strigopoidea. The type species is H. inexpectatus.

Hypotaenidia vavauensis[460]

Sp. nov

Valid

Worthy & Burley

Holocene

 Tonga

A rail.

Kookne[311]

Gen. et sp. nov

Valid

Novas et al.

Late Cretaceous (Campanian-Maastrichtian

Chorillo Formation

 Argentina

A member of Ornithurae of uncertain phylogenetic placement. The type species is K. yeutensis

Kupoupou[468]

Gen. et sp. nov

Valid

Blokland et al.

Late early-middle Paleocene

Takatika Grit

 New Zealand

An early penguin. The type species is K. stilwelli.

?Laurillardia smoleni[469]

Sp. nov

Valid

Mayr et al.

Early Oligocene

 Poland

A stem-upupiform.

Megadyptes antipodes richdalei[463]

Subsp. nov

Valid

Cole et al.

Holocene

 New Zealand

A subspecies of the yellow-eyed penguin.

Mengciusornis[470]

Gen. et sp. nov

Valid

Wang et al.

Early Cretaceous

Jiufotang Formation

 China

An early member of Ornithuromorpha. Genus includes new species M. dentatus.

Mirusavis[471]

Gen. et sp. nov

Valid

Wang et al.

Early Cretaceous

Yixian Formation

 China

A member of Enantiornithes. The type species is M. parvus. Announced in 2019; the final version of the article naming it was published in 2020.

Naranbulagornis[472]

Gen. et sp. nov

Valid

Zelenkov

Paleocene

 Mongolia

An early, swan-sized member of Anseriformes. Genus includes new species N. khun.

Orienantius[473]

Gen. et sp. nov

Valid

Liu et al.

Early Cretaceous

Huajiying Formation

 China

A member of Enantiornithes. Genus includes new species O. ritteri.

Proardea? deschutteri[474]

Sp. nov

Valid

Mayr et al.

Early Oligocene

Borgloon Formation

 Belgium

A heron.

Protodontopteryx[475]

Gen. et sp. nov

Valid

Mayr et al.

Early Paleocene

 New Zealand

A member of the family Pelagornithidae. Genus includes new species P. ruthae.

Shangyang[476]

Gen. et sp. nov

Valid

Wang & Zhou

Early Cretaceous

Jiufotang Formation

 China

A member of Enantiornithes. Genus includes new species S. graciles.

Sinoergilornis[477]

Gen. et sp. nov

Valid

Musser, Li & Clarke

Late Miocene

Liushu Formation

 China

A member of the family Eogruidae. The type species is S. guangheensis.

Taphophoyx[478]

Gen. et sp. nov

Valid

Steadman & Takano

Hemphillian

 United States
( Florida)

A heron. The type species is T. hodgei.

Xorazmortyx[479]

Gen. et sp. nov

Valid

Zelenkov & Panteleyev

Eocene (LutetianBartonian)

 Uzbekistan

A stem-galliform bird belonging to the family Paraortygidae. Genus includes new species X. turkestanensis.

Zygodactylus ochlurus[480]

Sp. nov

Hieronymus, Waugh & Clarke

Early Oligocene

Renova Formation

 United States
( Montana)

A member of the family Zygodactylidae.

Pterosaurs

[edit]

Research

[edit]

New taxa

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Albadraco [495]

Gen. et sp. nov

Valid

Solomon et al.

Late Cretaceous (Maastrichtian)

 Romania

An azhdarchid pterosaur. Genus includes new species A. tharmisensis. Announced in 2019; the final version of the article naming it was published in 2020.

Coloborhynchus fluviferox [496]

Sp. nov

Valid

Jacobs et al.

Cretaceous

Kem Kem Beds

 Morocco

Announced in 2018; the final version of the article naming it was published in 2019. Originally described as a species of Coloborhynchus, but subsequently transferred to the genus Nicorhynchus.[497]

Cryodrakon[498]

Gen. et sp. nov

Valid

Hone et al.

Late Cretaceous

Dinosaur Park Formation

 Canada

A large azhdarchid pterosaur comparable in size to the giant Quetzalcoatlus. The type species is C. boreas.

Ferrodraco[499]

Gen. et sp. nov

Valid

Pentland et al.

Late Cretaceous (CenomanianTuronian)

Winton Formation

 Australia

A member of the family Ornithocheiridae. The type species is F. lentoni.

Iberodactylus [500]

Gen. et sp. nov

Valid

Holgado et al.

Early Cretaceous (Barremian)

Blesa Formation

 Spain

A member of Anhangueria assigned to the new family Hamipteridae. The type species is I. andreui.

Keresdrakon[501]

Gen. et sp. nov

Valid

Kellner et al.

Cretaceous

Goio-Erê Formation

 Brazil

A basal member of Tapejaromorpha. The type species is K. vilsoni.

Mimodactylus[502]

Gen. et sp. nov

Valid

Kellner et al.

Late Cretaceous (Cenomanian)

Sannine Formation

 Lebanon

A member of Pterodactyloidea related to Haopterus. The type species is M. libanensis.

Nurhachius luei[503]

Sp. nov

Valid

Zhou et al.

Early Cretaceous (Aptian)

Jiufotang Formation

 China

A member of the family Istiodactylidae.

N. luei (E)

Seazzadactylus [504]

Gen. et sp. nov

Valid

Dalla Vecchia

Late Triassic (Norian)

Dolomia di Forni Formation

 Italy

An early non-monofenestratan pterosaur. The type species is S. venieri.

Targaryendraco[505]

Gen. et comb. nov

Valid

Pêgas et al.

Early Cretaceous (Hauterivian)

 Germany

A new genus for "Ornithocheirus" wiedenrothi Wild 1990.

Other archosaurs

[edit]

Research

[edit]

New taxa

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Aenigmaspina[516]

Gen. et sp. nov

Valid

Patrick, Whiteside & Benton

Late Triassic

 United Kingdom

An archosaur of uncertain phylogenetic placement. Genus includes new species A. pantyffynnonensis.

Kwanasaurus[517]

Gen. et sp. nov

Valid

Martz & Small

Late Triassic (Norian and/or Rhaetian)

Chinle Formation

 United States
( Colorado)

A member of the family Silesauridae. The type species is K. williamparkeri.

References

[edit]
  1. ^ R. N. Felice; A. Watanabe; A. R. Cuff; E. Noirault; D. Pol; L. M. Witmer; M. A. Norell; P. M. O'Connor; A. Goswami (2019). "Evolutionary integration and modularity in the archosaur cranium" (PDF). Integrative and Comparative Biology. 59 (2): 371–382. doi:10.1093/icb/icz052. PMID 31120528.
  2. ^ David W. Krause; Joseph J.W. Sertich; Patrick M. O'Connor; Kristina Curry Rogers; Raymond R. Rogers (2019). "The Mesozoic biogeographic history of Gondwanan terrestrial vertebrates: insights from Madagascar's fossil record". Annual Review of Earth and Planetary Sciences. 47: 519–553. Bibcode:2019AREPS..47..519K. doi:10.1146/annurev-earth-053018-060051. S2CID 135425174.
  3. ^ Tai Kubo (2019). "Biogeographical network analysis of Cretaceous terrestrial tetrapods: a phylogeny-based approach". Systematic Biology. 68 (6): 1034–1051. doi:10.1093/sysbio/syz024. PMID 31135923.
  4. ^ Akinobu Watanabe; Paul M. Gignac; Amy M. Balanoff; Todd L. Green; Nathan J. Kley; Mark A. Norell (2019). "Are endocasts good proxies for brain size and shape in archosaurs throughout ontogeny?". Journal of Anatomy. 234 (3): 291–305. doi:10.1111/joa.12918. PMC 6365484. PMID 30506962.
  5. ^ Lakshminath Kundanati; Mirco D'Incau; Massimo Bernardi; Paolo Scardi; Nicola M. Pugno (2019). "A comparative study of the mechanical properties of a dinosaur and crocodile fossil teeth". Journal of the Mechanical Behavior of Biomedical Materials. 97: 365–374. doi:10.1016/j.jmbbm.2019.05.025. hdl:11572/238271. PMID 31158580. S2CID 174806086.
  6. ^ Aurore Canoville; Mary H. Schweitzer; Lindsay E. Zanno (2019). "Systemic distribution of medullary bone in the avian skeleton: ground truthing criteria for the identification of reproductive tissues in extinct Avemetatarsalia". BMC Evolutionary Biology. 19 (1): 71. Bibcode:2019BMCEE..19...71C. doi:10.1186/s12862-019-1402-7. PMC 6407237. PMID 30845911.
  7. ^ Bruno Grossi; Patricio Loncomilla; Mauricio Canals; Javier Ruiz-Del-Solar (2019). "Are cursorial birds good kinematic models of non-avian theropods?". International Journal of Morphology. 37 (2): 620–625. doi:10.4067/S0717-95022019000200620.
  8. ^ Seung Choi; Seokyoung Han; Yuong-Nam Lee (2019). "Electron backscatter diffraction (EBSD) analysis of maniraptoran eggshells with important implications for microstructural and taphonomic interpretations". Palaeontology. 62 (5): 777–803. Bibcode:2019Palgy..62..777C. doi:10.1111/pala.12427. S2CID 182770470.
  9. ^ Han Hu; Gabriele Sansalone; Stephen Wroe; Paul G. McDonald; Jingmai K. O'Connor; Zhiheng Li; Xing Xu; Zhonghe Zhou (2019). "Evolution of the vomer and its implications for cranial kinesis in Paraves". Proceedings of the National Academy of Sciences of the United States of America. 116 (39): 19571–19578. Bibcode:2019PNAS..11619571H. doi:10.1073/pnas.1907754116. PMC 6765239. PMID 31501339.
  10. ^ Casey M. Holliday; Wm. Ruger Porter; Kent A. Vliet; Lawrence M. Witmer (2019). "The frontoparietal fossa and dorsotemporal fenestra of archosaurs and their significance for interpretations of vascular and muscular anatomy in dinosaurs". The Anatomical Record. 303 (4): 1060–1074. doi:10.1002/ar.24218. PMID 31260177. S2CID 195756776.
  11. ^ Darren K. Griffin; Denis M. Larkin; Rebecca E. O'Connor (2019). "Jurassic Park: What did the genomes of dinosaurs look like?". In Robert H. S. Kraus (ed.). Avian genomics in ecology and evolution. From the lab into the wild. Springer. pp. 331–348. doi:10.1007/978-3-030-16477-5_11. ISBN 978-3-030-16476-8. S2CID 198263477.
  12. ^ Luke R. Grinham; Collin S. VanBuren; David B. Norman (2019). "Testing for a facultative locomotor mode in the acquisition of archosaur bipedality". Royal Society Open Science. 6 (7): Article ID 190569. Bibcode:2019RSOS....690569G. doi:10.1098/rsos.190569. PMC 6689609. PMID 31417751.
  13. ^ Vincent Beyrand; Dennis F. A. E. Voeten; Stanislav Bureš; Vincent Fernandez; Jiří Janáček; Daniel Jirák; Oliver Rauhut; Paul Tafforeau (2019). "Multiphase progenetic development shaped the brain of flying archosaurs". Scientific Reports. 9 (1): Article number 10807. Bibcode:2019NatSR...910807B. doi:10.1038/s41598-019-46959-2. PMC 6658547. PMID 31346192.
  14. ^ Alida M. Bailleul; Jingmai O'Connor; Mary H. Schweitzer (2019). "Dinosaur paleohistology: review, trends and new avenues of investigation". PeerJ. 7: e7764. doi:10.7717/peerj.7764. PMC 6768056. PMID 31579624.
  15. ^ Candice M. Stefanic; Sterling J. Nesbitt (2019). "The evolution and role of the hyposphene-hypantrum articulation in Archosauria: phylogeny, size and/or mechanics?". Royal Society Open Science. 6 (10): Article ID 190258. Bibcode:2019RSOS....690258S. doi:10.1098/rsos.190258. PMC 6837189. PMID 31824685.
  16. ^ Norbert Brunner; Manfred Kühleitner; Werner Georg Nowak; Katharina Renner-Martin; Klaus Scheicher (2019). "Comparing growth patterns of three species: Similarities and differences". PLOS ONE. 14 (10): e0224168. Bibcode:2019PLoSO..1424168B. doi:10.1371/journal.pone.0224168. PMC 6808503. PMID 31644562.
  17. ^ Richard Buchmann; Leonardo dos Santos Avilla; Taissa Rodrigues (2019). "Comparative analysis of the vertebral pneumatization in pterosaurs (Reptilia: Pterosauria) and extant birds (Avialae: Neornithes)". PLOS ONE. 14 (10): e0224165. Bibcode:2019PLoSO..1424165B. doi:10.1371/journal.pone.0224165. PMC 6814219. PMID 31652295.
  18. ^ Lida Xing; Martin G. Lockley; Tianming Du; Lijun Zhang; Hendrik Klein; Anthony Romilio; W. Scott Persons IV; Kuan Wang; Zhenyu Li; Xiaoqiao Wan (2020). "Dinosaur tracks from the Jurassic-Cretaceous boundary Tuchengzi Formation (Hebei Province, China) used as building stones in the Chengde imperial summer resort: age, ichnology, and history". Cretaceous Research. 107: Article 104310. Bibcode:2020CrRes.10704310X. doi:10.1016/j.cretres.2019.104310. S2CID 210266977.
  19. ^ Anthony R. Fiorillo; Yoshitsugu Kobayashi; Paul J. McCarthy; Tomonori Tanaka; Ronald S. Tykoski; Yuong-Nam Lee; Ryuji Takasaki; Junki Yoshida (2019). "Dinosaur ichnology and sedimentology of the Chignik Formation (Upper Cretaceous), Aniakchak National Monument, southwestern Alaska; Further insights on habitat preferences of high-latitude hadrosaurs". PLOS ONE. 14 (10): e0223471. Bibcode:2019PLoSO..1423471F. doi:10.1371/journal.pone.0223471. PMC 6821036. PMID 31665132.
  20. ^ Martin Kundrát; Thomas H. Rich; Johan Lindgren; Peter Sjövall; Patricia Vickers-Rich; Luis M. Chiappe; Benjamin P. Kear (2020). "A polar dinosaur feather assemblage from Australia". Gondwana Research. 80: 1–11. Bibcode:2020GondR..80....1K. doi:10.1016/j.gr.2019.10.004. S2CID 210276057.
  21. ^ Xia Wang; Ho Kwan Tang; Julia A. Clarke (2019). "Flight, symmetry and barb angle evolution in the feathers of birds and other dinosaurs". Biology Letters. 15 (12): Article ID 20190622. doi:10.1098/rsbl.2019.0622. PMC 6936028. PMID 31795849.
  22. ^ Devin K. Hoffman; Andrew B. Heckert; Lindsay E. Zanno (2019). "Disparate growth strategies within Aetosauria: Novel histologic data from the aetosaur Coahomasuchus chathamensis". The Anatomical Record. 302 (9): 1504–1515. doi:10.1002/ar.24019. PMID 30408334. S2CID 53239179.
  23. ^ Frederick Tolchard; Sterling J. Nesbitt; Julia B. Desojo; Pia Viglietti; Richard J. Butler; Jonah N. Choiniere (2019). ""Rauisuchian" material from the Lower Elliot Formation of South Africa: implications for Late Triassic biogeography and biostratigraphy" (PDF). Journal of African Earth Sciences. 160: Article 103610. Bibcode:2019JAfES.16003610T. doi:10.1016/j.jafrearsci.2019.103610. S2CID 202902771.
  24. ^ Emma R. Schachner; Randall B. Irmis; Adam K. Huttenlocker; Kent Sanders; Robert L. Cieri; Marylin Fox; Sterling J. Nesbitt (2019). "Osteology of the Late Triassic bipedal archosaur Poposaurus gracilis (Archosauria: Pseudosuchia) from western North America". The Anatomical Record. 303 (4): 874–917. doi:10.1002/ar.24298. PMID 31814308. S2CID 208954675.
  25. ^ Jun Wang; Rui Pei; Jianye Chen; Zhenzhu Zhou; Chongqin Feng; Su-Chin Chang (2019). "New age constraints for the Middle Triassic archosaur Lotosaurus: Implications for basal archosaurian appearance and radiation in South China". Palaeogeography, Palaeoclimatology, Palaeoecology. 521: 30–41. Bibcode:2019PPP...521...30W. doi:10.1016/j.palaeo.2019.02.008. S2CID 134668592.
  26. ^ Bianca Martins Mastrantonio; María Belén Von Baczko; Julia Brenda Desojo; Cesar L. Schultz (2019). "The skull anatomy and cranial endocast of the pseudosuchid archosaur Prestosuchus chiniquensis from the Triassic of Brazil". Acta Palaeontologica Polonica. 64 (1): 171–198. doi:10.4202/app.00527.2018. hdl:11336/117309.
  27. ^ Eric W. Wilberg; Alan H. Turner; Christopher A. Brochu (2019). "Evolutionary structure and timing of major habitat shifts in Crocodylomorpha". Scientific Reports. 9 (1): Article number 514. Bibcode:2019NatSR...9..514W. doi:10.1038/s41598-018-36795-1. PMC 6346023. PMID 30679529.
  28. ^ Pedro L. Godoy; Roger B. J. Benson; Mario Bronzati; Richard J. Butler (2019). "The multi-peak adaptive landscape of crocodylomorph body size evolution". BMC Evolutionary Biology. 19 (1): Article number 167. Bibcode:2019BMCEE..19..167G. doi:10.1186/s12862-019-1466-4. PMC 6686447. PMID 31390981.
  29. ^ Philip D. Mannion; Alfio Alessandro Chiarenza; Pedro L. Godoy; Yung Nam Cheah (2019). "Spatiotemporal sampling patterns in the 230 million year fossil record of terrestrial crocodylomorphs and their impact on diversity". Palaeontology. 62 (4): 615–637. Bibcode:2019Palgy..62..615M. doi:10.1111/pala.12419. hdl:10044/1/66724. S2CID 135111640.
  30. ^ Pedro L. Godoy (2020). "Crocodylomorph cranial shape evolution and its relationship with body size and ecology". Journal of Evolutionary Biology. 33 (1): 4–21. doi:10.1111/jeb.13540. PMID 31566848.
  31. ^ Keegan M. Melstrom; Randall B. Irmis (2019). "Repeated evolution of herbivorous crocodyliforms during the age of dinosaurs". Current Biology. 29 (14): 2389–2395.e3. Bibcode:2019CBio...29E2389M. doi:10.1016/j.cub.2019.05.076. PMID 31257139. S2CID 195699188.
  32. ^ Stephanie K. Drumheller; Eric W. Wilberg (2020). "A synthetic approach for assessing the interplay of form and function in the crocodyliform snout". Zoological Journal of the Linnean Society. 188 (2): 507–521. doi:10.1093/zoolinnean/zlz081.
  33. ^ K. N. Dollman; P. A. Viglietti; J. N. Choiniere (2019). "A new specimen of Orthosuchus stormbergi (Nash 1968) and a review of the distribution of Southern African Lower Jurassic crocodylomorphs". Historical Biology: An International Journal of Paleobiology. 31 (5): 653–664. Bibcode:2019HBio...31..653D. doi:10.1080/08912963.2017.1387110. S2CID 134134524.
  34. ^ Andrej Čerňanský; Ján Schlögl; Tomáš Mlynský; Štefan Józsa (2019). "First evidence of the Jurassic thalattosuchian (both teleosaurid and metriorhynchid) crocodylomorphs from Slovakia (Western Carpathians)". Historical Biology: An International Journal of Paleobiology. 31 (8): 1008–1015. Bibcode:2019HBio...31.1008C. doi:10.1080/08912963.2017.1414212. S2CID 90544444.
  35. ^ Jihed Dridi; Michela M. Johnson (2019). "On a longirostrine crocodylomorph (Thalattosuchia) from the Middle Jurassic of Tunisia". Geobios. 56: 95–106. Bibcode:2019Geobi..56...95D. doi:10.1016/j.geobios.2019.07.006. S2CID 199804083.
  36. ^ Dirley Cortes; Hans C.E. Larsson; Erin E. Maxwell; Mary L. Parra Ruge; Pedro Patarroyo; Jeffrey A. Wilson (2019). "An Early Cretaceous teleosaurid (Crocodylomorpha: Thalattosuchia) from Colombia". Ameghiniana. 56 (5): 365–379. doi:10.5710/AMGH.26.09.2019.3269. S2CID 210110716.
  37. ^ Sven Sachs; Michela M. Johnson; Mark T. Young; Pascal Abel (2019). "The mystery of Mystriosaurus: Redescribing the poorly known Early Jurassic teleosauroid thalattosuchians Mystriosaurus laurillardi and Steneosaurus brevior". Acta Palaeontologica Polonica. 64 (3): 565–579. doi:10.4202/app.00557.2018. hdl:20.500.11820/fa362d74-7f12-4513-b1f9-cc4eadbb0d67.
  38. ^ Andrea Cau (2019). "A revision of the diagnosis and affinities of the metriorhynchoids (Crocodylomorpha, Thalattosuchia) from the Rosso Ammonitico Veronese Formation (Jurassic of Italy) using specimen-level analyses". PeerJ. 7: e7364. doi:10.7717/peerj.7364. PMC 6712679. PMID 31523492.
  39. ^ Mark T. Young; Davide Foffa; Lorna Steel; Steve Etches (2019). "Macroevolutionary trends in the genus Torvoneustes (Crocodylomorpha: Metriorhynchidae) and discovery of a giant specimen from the Late Jurassic of Kimmeridge, UK". Zoological Journal of the Linnean Society. 189 (2): 483–493. doi:10.1093/zoolinnean/zlz101.
  40. ^ Bruno Gonçalves Augusta; Hussam Zaher (2019). "Enamel dentition microstructure of Mariliasuchus amarali (Crocodyliformes, Notosuchia), from the Upper Cretaceous (Turonian–Santonian) of the Bauru Basin, Brazil". Cretaceous Research. 99: 255–268. Bibcode:2019CrRes..99..255A. doi:10.1016/j.cretres.2019.03.013. S2CID 134660911.
  41. ^ Felipe C. Montefeltro (2019). "The osteoderms of baurusuchid crocodyliforms (Mesoeucrocodylia, Notosuchia)". Journal of Vertebrate Paleontology. 39 (2): e1594242. Bibcode:2019JVPal..39E4242M. doi:10.1080/02724634.2019.1594242. S2CID 155623378.
  42. ^ Willian A.F. Dias; Fabiano V. Iori; Aline M. Ghilardi; Marcelo A. Fernandes (2020). "The pterygoid region and cranial airways of Caipirasuchus paulistanus and Caipirasuchus montealtensis (Crocodyliformes, Sphagesauridae), from the Upper Cretaceous Adamantina Formation, Bauru Basin, Brazil". Cretaceous Research. 106: Article 104192. Bibcode:2020CrRes.10604192D. doi:10.1016/j.cretres.2019.104192. S2CID 201303113.
  43. ^ Galuber Oliveira Cunha; Rodrigo Santucci; Marco Brandalise Andrade; Carlos Eduardo Maia Oliveira (2020). "Description and phylogenetic relationships of a large-bodied sphagesaurid notosuchian from the Upper Cretaceous Adamantina Formation, Bauru Group, São Paulo, southeastern Brazil". Cretaceous Research. 106: Article 104259. Bibcode:2020CrRes.10604259C. doi:10.1016/j.cretres.2019.104259. hdl:10923/19661. S2CID 204251568.
  44. ^ Caio Fabricio Cezar Geroto; Reinaldo J. Bertini (2019). "New material of Pepesuchus (Crocodyliformes; Mesoeucrocodylia) from the Bauru Group: implications about its phylogeny and the age of the Adamantina Formation". Zoological Journal of the Linnean Society. 185 (2): 312–334. doi:10.1093/zoolinnean/zly037.
  45. ^ Isadora Marchetti; Fresia Ricardi-Branco; Flavia Callefo; Rafael Delcourt; Douglas Galante; Isabela Jurigan; Ismar S. Carvalho; Sandra A.S. Tavares (2019). "Fossildiagenesis and ontogenetic insights of crocodyliform bones from the Adamantina Formation, Bauru Basin, Brazil". Journal of South American Earth Sciences. 96: Article 102327. Bibcode:2019JSAES..9602327M. doi:10.1016/j.jsames.2019.102327. S2CID 202906138.
  46. ^ Sebastian S. Groh; Paul Upchurch; Paul M. Barrett; Julia J. Day (2019). "The phylogenetic relationships of neosuchian crocodiles and their implications for the convergent evolution of the longirostrine condition". Zoological Journal of the Linnean Society. 188 (2): 473–506. doi:10.1093/zoolinnean/zlz117.
  47. ^ Rafael G. Souza; Rodrigo G. Figueiredo; Sérgio A. K. Azevedo; Douglas Riff; Alexander W. A. Kellner (2019). "Systematic revision of Sarcosuchus hartti (Crocodyliformes) from the Recôncavo Basin (Early Cretaceous) of Bahia, north-eastern Brazil". Zoological Journal of the Linnean Society. 188 (2): 552–578. doi:10.1093/zoolinnean/zlz057.
  48. ^ Jeremy E. Martin; Raphaël Sarr; Lionel Hautier (2019). "A dyrosaurid from the Paleocene of Senegal" (PDF). Journal of Paleontology. 93 (2): 343–358. Bibcode:2019JPal...93..343M. doi:10.1017/jpa.2018.77. S2CID 133882940.
  49. ^ Rafael Gomes de Souza; Beatriz Marinho Hörmanseder; Rodrigo Giesta Figueiredo; Diogenes de Almeida Campos (2019). "Description of new dyrosaurid specimens from the Late Cretaceous–Early Paleogene of New Jersey, United States, and comments on Hyposaurus systematics". Historical Biology: An International Journal of Paleobiology. 32 (10): 1377–1393. doi:10.1080/08912963.2019.1593403. S2CID 108464896.
  50. ^ Ivan T. Kuzmin; Pavel P. Skutschas; Elizaveta A. Boitsova; Hans-Dieter Sues (2019). "Revision of the large crocodyliform Kansajsuchus (Neosuchia) from the Late Cretaceous of Central Asia". Zoological Journal of the Linnean Society. 185 (2): 335–387. doi:10.1093/zoolinnean/zly027.
  51. ^ Alejandro Serrano-Martínez; Fabien Knoll; Iván Narváez; Stephan Lautenschlager; Francisco Ortega (2019). "Inner skull cavities of the basal eusuchian Lohuecosuchus megadontos (Upper Cretaceous, Spain) and neurosensorial implications". Cretaceous Research. 93: 66–77. Bibcode:2019CrRes..93...66S. doi:10.1016/j.cretres.2018.08.016. S2CID 134164904.
  52. ^ Iván Narváez; Christopher A. Brochu; Ane De Celis; Vlad Codrea; Fernando Escaso; Adán Pérez-García; Francisco Ortega (2019). "New diagnosis for Allodaposuchus precedens, the type species of the European Upper Cretaceous clade Allodaposuchidae". Zoological Journal of the Linnean Society. 189 (2): 618–634. doi:10.1093/zoolinnean/zlz029.
  53. ^ Ane De Celis; Iván Narváez; Francisco Ortega (2019). "Spatiotemporal palaeodiversity patterns of modern crocodiles (Crocodyliformes: Eusuchia)". Zoological Journal of the Linnean Society. 189 (2): 635–656. doi:10.1093/zoolinnean/zlz038.
  54. ^ Chase Doran Brownstein (2019). "First record of a small juvenile giant crocodyliform and its ontogenetic and biogeographic implications". Bulletin of the Peabody Museum of Natural History. 60 (1): 81–90. doi:10.3374/014.060.0104. S2CID 133563223.
  55. ^ Alejandro Serrano-Martínez; Fabien Knoll; Iván Narváez; Francisco Ortega (2019). "Brain and pneumatic cavities of the braincase of the basal alligatoroid Diplocynodon tormis (Eocene, Spain)". Journal of Vertebrate Paleontology. 39 (1): e1572612. Bibcode:2019JVPal..39E2612S. doi:10.1080/02724634.2019.1572612. S2CID 132401935.
  56. ^ Jonathan P. Rio; Philip D. Mannion; Emanuel Tschopp; Jeremy E. Martin; Massimo Delfino (2020). "Reappraisal of the morphology and phylogenetic relationships of the alligatoroid crocodylian Diplocynodon hantoniensis from the late Eocene of the United Kingdom". Zoological Journal of the Linnean Society. 188 (2): 579–629. doi:10.1093/zoolinnean/zlz034. hdl:10044/1/68303.
  57. ^ Milan Chroust; Martin Mazuch; Àngel H. Luján (2019). "New crocodilian material from the Eocene–Oligocene transition of the NW Bohemia (Czech Republic): an updated fossil record in Central Europe during the Grande Coupure". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 293 (1): 73–82. doi:10.1127/njgpa/2019/0832. S2CID 199104151.
  58. ^ Andrés Solórzano; Ascanio D. Rincón; Giovanne M. Cidade; Mónica Núñez-Flores; Leonardo Sánchez (2019). "Lower Miocene alligatoroids (Crocodylia) from the Castillo Formation, northwest of Venezuela". Palaeobiodiversity and Palaeoenvironments. 99 (2): 241–259. Bibcode:2019PdPe...99..241S. doi:10.1007/s12549-018-0332-5. S2CID 133706564.
  59. ^ Giovanne M. Cidade; Daniel Fortier; Annie S. Hsiou (2020). "Taxonomic and phylogenetic review of Necrosuchus ionensis (Alligatoroidea: Caimaninae) and the early evolution and radiation of caimanines". Zoological Journal of the Linnean Society. 189 (2): 657–669. doi:10.1093/zoolinnean/zlz051.
  60. ^ Giovanne M. Cidade; Jonas P. Souza-Filho; Annie Schmaltz Hsiou; Christopher A. Brochu; Douglas Riff (2019). "New specimens of Mourasuchus (Alligatorioidea, Caimaninae) from the Miocene of Brazil and Bolivia and their taxonomic and morphological implications". Alcheringa: An Australasian Journal of Palaeontology. 43 (2): 261–278. Bibcode:2019Alch...43..261C. doi:10.1080/03115518.2019.1566495. S2CID 134832490.
  61. ^ Giovanne M. Cidade; Douglas Riff; Jonas P. de Souza-Filho; Annie Schmaltz Hsiou (2019). "A reassessment of the osteology of Mourasuchus amazonensis Price, 1964 with comments on the taxonomy of the species". Palaeontologia Electronica. 22 (2): Article number 22.2.44. doi:10.26879/893.
  62. ^ Giovanne M. Cidade; Douglas Riff; Annie Schmaltz Hsiou (2019). "The feeding habits of the strange crocodylian Mourasuchus (Alligatoroidea, Caimaninae): a review, new hypotheses and perspectives". Revista Brasileira de Paleontologia. 22 (2): 106–119. doi:10.4072/rbp.2019.2.03.
  63. ^ Torsten M. Scheyer; John R. Hutchinson; Olivier Strauss; Massimo Delfino; Jorge D. Carrillo-Briceño; Rodolfo Sánchez; Marcelo R. Sánchez-Villagra (2019). "Giant extinct caiman breaks constraint on the axial skeleton of extant crocodylians". eLife. 8: e49972. doi:10.7554/eLife.49972. PMC 6917493. PMID 31843051.
  64. ^ Giovanne M. Cidade; Daniel Fortier; Ascanio Daniel Rincón; Annie Schmaltz Hsiou (2019). "Taxonomic review of two fossil crocodylians from the Cenozoic of South America and its implications for the crocodylian fauna of the continent". Zootaxa. 4656 (3): 475–486. doi:10.11646/zootaxa.4656.3.5. PMID 31716812. S2CID 202012442.
  65. ^ Massimo Delfino; Jeremy E. Martin; France de Lapparent de Broin; Thierry Smith (2019). "Evidence for a pre-PETM dispersal of the earliest European crocodyloids". Historical Biology: An International Journal of Paleobiology. 31 (7): 845–852. Bibcode:2019HBio...31..845D. doi:10.1080/08912963.2017.1396323. S2CID 134404960.
  66. ^ Michaël P. J. Nicolaï; Nicholas J. Matzke (2019). "Trait-based range expansion aided in the global radiation of Crocodylidae". Global Ecology and Biogeography. 28 (9): 1244–1258. Bibcode:2019GloEB..28.1244N. doi:10.1111/geb.12929.
  67. ^ Masaya Iijima; Yoshitsugu Kobayashi (2019). "Mosaic nature in the skeleton of East Asian crocodylians fills the morphological gap between "Tomistominae" and Gavialinae". Cladistics. 35 (6): 623–632. doi:10.1111/cla.12372. PMID 34618925. S2CID 91400957.
  68. ^ Jeremy E. Martin; Komsorn Lauprasert; Haiyan Tong; Varavudh Suteethorn; Eric Buffetaut (2019). "An Eocene tomistomine from peninsular Thailand" (PDF). Annales de Paléontologie. 105 (3): 245–253. Bibcode:2019AnPal.105..245M. doi:10.1016/j.annpal.2019.03.002. S2CID 150247415.
  69. ^ Jeremy E. Martin (2019). "The taxonomic content of the genus Gavialis from the Siwalik Hills of India and Pakistan" (PDF). Papers in Palaeontology. 5 (3): 483–497. Bibcode:2019PPal....5..483M. doi:10.1002/spp2.1247. S2CID 134966832.
  70. ^ Loredana Macaluso; Jeremy E. Martin; Letizia Del Favero; Massimo Delfino (2019). "Revision of the crocodilians from the Oligocene of Monteviale, Italy, and the diversity of European eusuchians across the Eocene-Oligocene boundary" (PDF). Journal of Vertebrate Paleontology. 39 (2): e1601098. Bibcode:2019JVPal..39E1098M. doi:10.1080/02724634.2019.1601098. S2CID 191206692.
  71. ^ Daniel Zoboli; Luigi Sanciu; Gian Luigi Pillola; Massimo Delfino (2019). "An overview of the crocodylian fossil record from Sardinia (Italy)". Annales de Paléontologie. 105 (2): 123–137. Bibcode:2019AnPal.105..123Z. doi:10.1016/j.annpal.2019.05.001. hdl:11584/269866. S2CID 189985425.
  72. ^ Giovanne M. Cidade; Daniel Fortier; Annie Schmaltz Hsiou (2019). "The crocodylomorph fauna of the Cenozoic of South America and its evolutionary history: A review". Journal of South American Earth Sciences. 90: 392–411. Bibcode:2019JSAES..90..392C. doi:10.1016/j.jsames.2018.12.026. S2CID 134902094.
  73. ^ Domenic C. D'Amore; Megan Harmon; Stephanie K. Drumheller; Jason J. Testin (2019). "Quantitative heterodonty in Crocodylia: assessing size and shape across modern and extinct taxa". PeerJ. 7: e6485. doi:10.7717/peerj.6485. PMC 6397764. PMID 30842900.
  74. ^ Andrés Solórzano; Mónica Núñez-Flores; Oscar Inostroza-Michael; Cristián E. Hernández (2019). "Biotic and abiotic factors driving the diversification dynamics of Crocodylia". Palaeontology. 63 (3): 415–429. doi:10.1111/pala.12459. S2CID 214329634.
  75. ^ François Clarac; Florent Goussard; Vivian de Buffrénil; Vittorio Sansalone (2019). "The function(s) of bone ornamentation in the crocodylomorph osteoderms: a biomechanical model based on a finite element analysis". Paleobiology. 45 (1): 182–200. Bibcode:2019Pbio...45..182C. doi:10.1017/pab.2018.48. S2CID 92499041.
  76. ^ Haley D. O'Brien; Leigha M. Lynch; Kent A. Vliet; John Brueggen; Gregory M. Erickson; Paul M. Gignac (2019). "Crocodylian head width allometry and phylogenetic prediction of body size in extinct crocodyliforms". Integrative Organismal Biology. 1 (1): obz006. doi:10.1093/iob/obz006. PMC 7671145. PMID 33791523.
  77. ^ Antonio Ballell; Benjamin C. Moon; Laura B. Porro; Michael J. Benton; Emily J. Rayfield (2019). "Convergence and functional evolution of longirostry in crocodylomorphs". Palaeontology. 62 (6): 867–887. Bibcode:2019Palgy..62..867B. doi:10.1111/pala.12432. hdl:1983/cecf5a59-d6f9-487a-ac3d-86f5df1a9549.
  78. ^ Stéphane Jouve; Bouziane Khalloufi; Samir Zouhri (2019). "Longirostrine crocodylians from the Bartonian of Morocco and Paleogene climatic and sea level oscillations in the Peri-Tethys area" (PDF). Journal of Vertebrate Paleontology. 39 (3): e1617723. Bibcode:2019JVPal..39E7723J. doi:10.1080/02724634.2019.1617723. S2CID 196677606.
  79. ^ Alexandre R. D. Guillaume; Miguel Moreno-Azanza; Eduardo Puértolas-Pascual; Octávio Mateus (2019). "Palaeobiodiversity of crocodylomorphs from the Lourinhã Formation based on the tooth record: insights into the palaeoecology of the Late Jurassic of Portugal". Zoological Journal of the Linnean Society. 189 (2): 549–583. doi:10.1093/zoolinnean/zlz112.
  80. ^ Héctor E. Rivera-Sylva; Gerardo Carbot-Chanona; Rafael Vivas-González; Lizbeth Nava-Rodríguez; Fernando Cabral-Valdéz (2019). "The first crocodyliforms remains from La Parrita locality, Cerro del Pueblo Formation (Campanian), Coahuila, Mexico". Boletín de la Sociedad Geológica Mexicana. 71 (3): 727–739. doi:10.18268/BSGM2019v71n3a6.
  81. ^ Masaya Iijima; Takehisa Tsubamoto; Khishigjav Tsogtbaatar; Tsogtbaatar Chinzorig; Soyol Baasankhuu (2019). "Discovery of a crocodyliform tooth from the upper Eocene Ergilin Dzo Formation, Mongolia". Acta Palaeontologica Polonica. 64 (4): 775–778. doi:10.4202/app.00633.2019.
  82. ^ Alejandro Blanco; Eduardo Puértolas-Pascual; Josep Marmi; Blanca Moncunill-Solé; Sergio Llácer; Gertrud E. Rössner (2020). "Late Cretaceous (Maastrichtian) crocodyliforms from north-eastern Iberia: a first attempt to explain the crocodyliform diversity based on tooth qualitative traits". Zoological Journal of the Linnean Society. 189 (2): 584–617. doi:10.1093/zoolinnean/zlz106.
  83. ^ Jonas P. Souza-Filho; Rafael G. Souza; Annie Schmaltz Hsiou; Douglas Riff; Edson Guilherme; Francisco Ricardo Negri; Giovanne M. Cidade (2019). "A new caimanine (Crocodylia, Alligatoroidea) species from the Solimões Formation of Brazil and the phylogeny of Caimaninae". Journal of Vertebrate Paleontology. 38 (5): e1528450. doi:10.1080/02724634.2018.1528450. S2CID 91964360.
  84. ^ Márton Venczel; Vlad A. Codrea (2019). "A new Theriosuchus-like crocodyliform from the Maastrichtian of Romania". Cretaceous Research. 100: 24–38. Bibcode:2019CrRes.100...24V. doi:10.1016/j.cretres.2019.03.018. S2CID 133729562.
  85. ^ Jeremy E. Martin; Pierre-Olivier Antoine; Vincent Perrier; Jean-Loup Welcomme; Gregoire Metais; Laurent Marivaux (2019). "A large crocodyloid from the Oligocene of the Bugti Hills, Pakistan" (PDF). Journal of Vertebrate Paleontology. 39 (4): e1671427. Bibcode:2019JVPal..39E1427M. doi:10.1080/02724634.2019.1671427. S2CID 209439989.
  86. ^ Rodolfo A. Coria; Francisco Ortega; Andrea B. Arcucci; Philip J. Currie (2019). "A new and complete peirosaurid (Crocodyliformes, Notosuchia) from Sierra Barrosa (Santonian, Upper Cretaceous) of the Neuquén Basin, Argentina". Cretaceous Research. 95: 89–105. Bibcode:2019CrRes..95...89C. doi:10.1016/j.cretres.2018.11.008. S2CID 133671689.
  87. ^ Foffa, D.; Johnson, M.M.; Young, M.T.; Steel, L.; Brusatte, S.L. (2019). "Revision of the Late Jurassic deep-water teleosauroid crocodylomorph Teleosaurus megarhinus Hulke, 1871 and evidence of pelagic adaptations in Teleosauroidea". PeerJ. 7: e6646. doi:10.7717/peerj.6646. PMC 6450380. PMID 30972249.
  88. ^ Matthew C. Lamanna; Gabriel A. Casal; Lucio M. Ibiricu; Rubén D. F. Martínez (2019). "A new peirosaurid crocodyliform from the Upper Cretaceous Lago Colhué Huapi Formation of central Patagonia, Argentina". Annals of Carnegie Museum. 85 (3): 193–211. doi:10.2992/007.085.0301. S2CID 202867107.
  89. ^ Ricardo N. Martínez; Oscar A. Alcober; Diego Pol (2019). "A new protosuchid crocodyliform (Pseudosuchia, Crocodylomorpha) from the Norian Los Colorados Formation, northwestern Argentina". Journal of Vertebrate Paleontology. 38 (4): (1)–(12). doi:10.1080/02724634.2018.1491047. hdl:11336/98862. S2CID 109740761.
  90. ^ Sachs, S.; Young, M.T.; Abel, P.; Mallison, H. (2019). "A new species of the metriorhynchid crocodylomorph Cricosaurus from the Upper Jurassic of southern Germany" (PDF). Acta Palaeontologica Polonica. 64 (2): 343–356. doi:10.4202/app.00541.2018. S2CID 133953687.
  91. ^ a b Michela M. Johnson; Mark T. Young; Stephen L. Brusatte (2019). "Re-description of two contemporaneous mesorostrine teleosauroids (Crocodylomorpha: Thalattosuchia) from the Bathonian of England and insights into the early evolution of Machimosaurini". Zoological Journal of the Linnean Society. 189 (2): 449–482. doi:10.1093/zoolinnean/zlz037. hdl:1842/36656.
  92. ^ Ignacio Arribas; Angela D. Buscalioni; Rafael Royo Torres; Eduardo Espílez; Luis Mampel; Luis Alcalá (2019). "A new goniopholidid crocodyliform, Hulkepholis rori sp. nov. from the Camarillas Formation (early Barremian) in Galve, Spain)". PeerJ. 7: e7911. doi:10.7717/peerj.7911. PMC 6825746. PMID 31687271.
  93. ^ Jeremy E. Martin; Suravech Suteethorn; Komsorn Lauprasert; Haiyan Tong; Eric Buffetaut; Romain Liard; Celine Salaviale; Uthumporn Deesri; Varavudh Suteethorn; Julien Claude (2019). "A new freshwater teleosaurid from the Jurassic of northeastern Thailand" (PDF). Journal of Vertebrate Paleontology. 38 (6): e1549059. doi:10.1080/02724634.2018.1549059. S2CID 91988192.
  94. ^ Lachlan J. Hart; Phil R. Bell; Elizabeth T. Smith; Steven W. Salisbury (2019). "Isisfordia molnari sp. nov., a new basal eusuchian from the mid-Cretaceous of Lightning Ridge, Australia". PeerJ. 7: e7166. doi:10.7717/peerj.7166. PMC 6590469. PMID 31275756.
  95. ^ Lachlan J. Hart (2020). "Taxonomic clarifications concerning the crocodyliform genus Isisfordia". PeerJ. 8: e8630. doi:10.7717/peerj.8630. PMC 7047858. PMID 32140307.
  96. ^ Chun Li; Xiao-chun Wu; Scott Rufolo (2019). "A new crocodyloid (Eusuchia: Crocodylia) from the Upper Cretaceous of China". Cretaceous Research. 94: 25–39. Bibcode:2019CrRes..94...25L. doi:10.1016/j.cretres.2018.09.015. S2CID 133661294.
  97. ^ Manuela Aiglstorfer; Philipe Havlik; Yanina Herrera (2019). "The first metriorhynchoid crocodyliform from the Aalenian (Middle Jurassic) of Germany, with implications for the evolution of Metriorhynchoidea". Zoological Journal of the Linnean Society. 188 (2): 522–551. doi:10.1093/zoolinnean/zlz072.
  98. ^ Tobias Massonne; Davit Vasilyan; Márton Rabi; Madelaine Böhme (2019). "A new alligatoroid from the Eocene of Vietnam highlights an extinct Asian clade independent from extant Alligator sinensis". PeerJ. 7: e7562. doi:10.7717/peerj.7562. PMC 6839522. PMID 31720094.
  99. ^ Christopher R. Noto; Stephanie K. Drumheller; Thomas L. Adams; Alan H. Turner (2019). "An enigmatic small neosuchian crocodyliform from the Woodbine Formation of Texas". The Anatomical Record. 303 (4): 801–812. doi:10.1002/ar.24174. PMID 31173481. S2CID 174813208.
  100. ^ Thomas L. Adams (2019). "Small terrestrial crocodyliform from the Lower Cretaceous (late Aptian) of central Texas and its implications on the paleoecology of the Proctor Lake dinosaur locality". Journal of Vertebrate Paleontology. 39 (3): e1623226. Bibcode:2019JVPal..39E3226A. doi:10.1080/02724634.2019.1623226. S2CID 198259867.
  101. ^ Michael S. Y. Lee; Matthew G. Baron; David B. Norman; Paul M. Barrett (2019). "Dynamic biogeographic models and dinosaur origins". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 109 (1–2): 325–332. doi:10.1017/S1755691018000920. S2CID 134291631.
  102. ^ Júlio C. A. Marsola; Gabriel S. Ferreira; Max C. Langer; David J. Button; Richard J. Butler (2019). "Increases in sampling support the southern Gondwanan hypothesis for the origin of dinosaurs" (PDF). Palaeontology. 62 (3): 473–482. Bibcode:2019Palgy..62..473M. doi:10.1111/pala.12411. S2CID 134264303.
  103. ^ Yimeng Li; Marcello Ruta; Matthew A. Wills (2019). "Craniodental and postcranial characters of non-avian Dinosauria often imply different trees". Systematic Biology. 69 (4): 638–659. doi:10.1093/sysbio/syz077. PMC 7302058. PMID 31769837. S2CID 203357898.
  104. ^ V. Fondevilla; V. Riera; B. Vila; A. G. Sellés; J. Dinarès-Turell; E. Vicens; R. Gaete; O. Oms; À. Galobart (2019). "Chronostratigraphic synthesis of the latest Cretaceous dinosaur turnover in South-Western Europe". Earth-Science Reviews. 191: 168–189. Bibcode:2019ESRv..191..168F. doi:10.1016/j.earscirev.2019.01.007. S2CID 135231891.
  105. ^ Alfio Alessandro Chiarenza; Philip D. Mannion; Daniel J. Lunt; Alex Farnsworth; Lewis A. Jones; Sarah-Jane Kelland; Peter A. Allison (2019). "Ecological niche modelling does not support climatically-driven dinosaur diversity decline before the Cretaceous/Paleogene mass extinction". Nature Communications. 10 (1): Article number 1091. Bibcode:2019NatCo..10.1091C. doi:10.1038/s41467-019-08997-2. PMC 6403247. PMID 30842410.
  106. ^ Jordan C. Mallon (2019). "Competition structured a Late Cretaceous megaherbivorous dinosaur assemblage". Scientific Reports. 9 (1): Article number 15447. Bibcode:2019NatSR...915447M. doi:10.1038/s41598-019-51709-5. PMC 6817909. PMID 31659190.
  107. ^ Matthew C. Lamanna; Judd A. Case; Eric M. Roberts; Victoria M. Arbour; Ricardo C. Ely; Steven W. Salisbury; Julia A. Clarke; D. Edward Malinzak; Abagael R. West; Patrick M. O'Connor (2019). "Late Cretaceous non-avian dinosaurs from the James Ross Basin, Antarctica: description of new material, updated synthesis, biostratigraphy, and paleobiogeography". Advances in Polar Science. 30 (3): 228–250. doi:10.13679/j.advps.2019.0007.
  108. ^ Mary Higby Schweitzer; Elena R. Schroeter; Timothy P. Cleland; Wenxia Zheng (2019). "Paleoproteomics of Mesozoic dinosaurs and other Mesozoic fossils". Proteomics. 19 (16): Article 1800251. doi:10.1002/pmic.201800251. PMID 31172628.
  109. ^ Evan T. Saitta; Renxing Liang; Maggie C.Y. Lau; Caleb M. Brown; Nicholas R. Longrich; Thomas G. Kaye; Ben J. Novak; Steven L. Salzberg; Mark A. Norell; Geoffrey D. Abbott; Marc R. Dickinson; Jakob Vinther; Ian D. Bull; Richard A. Brooker; Peter Martin; Paul Donohoe; Timothy D.J. Knowles; Kirsty E.H. Penkman; Tullis Onstott (2019). "Cretaceous dinosaur bone contains recent organic material and provides an environment conducive to microbial communities". eLife. 8: e46205. doi:10.7554/eLife.46205. PMC 6581507. PMID 31210129.
  110. ^ Graham M. Hughes; John A. Finarelli (2019). "Olfactory receptor repertoire size in dinosaurs". Proceedings of the Royal Society B: Biological Sciences. 286 (1904): Article ID 20190909. doi:10.1098/rspb.2019.0909. PMC 6571463. PMID 31185870.
  111. ^ Wm. Ruger Porter; Lawrence M. Witmer (2019). "Vascular patterns in the heads of dinosaurs: evidence for blood vessels, sites of thermal exchange, and their role in physiological thermoregulatory strategies". The Anatomical Record. 303 (4): 1075–1103. doi:10.1002/ar.24234. PMID 31618532. S2CID 204755747.
  112. ^ Ali Nabavizadeh (2020). "Cranial musculature in herbivorous dinosaurs: a survey of reconstructed anatomical diversity and feeding mechanisms". The Anatomical Record. 303 (4): 1104–1145. doi:10.1002/ar.24283. PMID 31675182. S2CID 207815224.
  113. ^ David J. Button; Lindsay E. Zanno (2019). "Repeated evolution of divergent modes of herbivory in non-avian dinosaurs". Current Biology. 30 (1): 158–168.e4. doi:10.1016/j.cub.2019.10.050. PMID 31813611. S2CID 208652510.
  114. ^ Koen Stein; Edina Prondvai; Timothy Huang; Jean-Marc Baele; P. Martin Sander; Robert Reisz (2019). "Structure and evolutionary implications of the earliest (Sinemurian, Early Jurassic) dinosaur eggs and eggshells". Scientific Reports. 9 (1): Article number 4424. Bibcode:2019NatSR...9.4424S. doi:10.1038/s41598-019-40604-8. PMC 6418122. PMID 30872623.
  115. ^ Shu-Kang Zhang; Jun-Fang Xie; Xing-Sheng Jin; Tian-Ming Du; Mei-Yan Huang (2019). "New type of dinosaur eggs from Yiwu, Zhejiang Province, China and a revision of Dongyangoolithus nanmaensis". Vertebrata PalAsiatica. 57 (4): 325–333. doi:10.19615/j.cnki.1000-3118.190107.
  116. ^ Qing He; Shukang Zhang; Lida Xing; Qin Jiang; Yanfei An; Sen Yang (2019). "A new oogenus of Dendroolithidae from the Late Cretaceous in the Quyuangang area, Henan Province, China". Acta Geologica Sinica (English Edition). 93 (2): 477–478. Bibcode:2019AcGlS..93..477H. doi:10.1111/1755-6724.13779. S2CID 135361965.
  117. ^ Noe-Heon Kim; Seung Choi; Seongyeong Kim; Yuong-Nam Lee (2019). "A new faveoloolithid oogenus from the Wido Volcanics (Upper Cretaceous), South Korea and a new insight into the oofamily Faveoloolithidae". Cretaceous Research. 100: 145–163. Bibcode:2019CrRes.100..145K. doi:10.1016/j.cretres.2019.04.001.
  118. ^ Seung Choi; Yuong-Nam Lee (2019). "Possible Late Cretaceous dromaeosaurid eggshells from South Korea: a new insight into dromaeosaurid oology". Cretaceous Research. 103: Article 104167. Bibcode:2019CrRes.10304167C. doi:10.1016/j.cretres.2019.06.013. S2CID 198415616.
  119. ^ D. Jade Simon; David J. Varricchio; Xingsheng Jin; Steven F. Robison (2019). "Microstructural overlap of Macroelongatoolithus eggs from Asia and North America expands the occurrence of colossal oviraptorosaurs". Journal of Vertebrate Paleontology. 38 (6): e1553046. doi:10.1080/02724634.2018.1553046. S2CID 191155027.
  120. ^ Scott A. Lee (2019). "Trends in embryonic and ontogenetic growth metabolisms in nonavian dinosaurs and extant birds, mammals, and crocodylians with implications for dinosaur egg incubation". Physical Review E. 99 (5): Article 052405. Bibcode:2019PhRvE..99e2405L. doi:10.1103/PhysRevE.99.052405. PMID 31212519. S2CID 182172120.
  121. ^ Kohei Tanaka; Yoshitsugu Kobayashi; Darla K. Zelenitsky; François Therrien; Yuong-Nam Lee; Rinchen Barsbold; Katsuhiro Kubota; Hang-Jae Lee; Tsogtbaatar Chinzorig; Damdinsuren Idersaikhan (2019). "Exceptional preservation of a Late Cretaceous dinosaur nesting site from Mongolia reveals colonial nesting behavior in a non-avian theropod". Geology. 47 (9): 843–847. Bibcode:2019Geo....47..843T. doi:10.1130/G46328.1. S2CID 198412503.
  122. ^ Kimberley E. J. Chapelle; Roger B. J. Benson; Josef Stiegler; Alejandro Otero; Qi Zhao; Jonah N. Choiniere (2019). "A quantitative method for inferring locomotory shifts in amniotes during ontogeny, its application to dinosaurs and its bearing on the evolution of posture". Palaeontology. 63 (2): 229–242. doi:10.1111/pala.12451. S2CID 210278749.
  123. ^ Les Hearn; Amanda C. de C. Williams (2019). "Pain in dinosaurs: what is the evidence?". Philosophical Transactions of the Royal Society B: Biological Sciences. 374 (1785): Article ID 20190370. doi:10.1098/rstb.2019.0370. PMC 6790383. PMID 31544618.
  124. ^ Rodrigo Temp Müller; Sérgio Dias-da-Silva (2019). "Taxon sample and character coding deeply impact unstable branches in phylogenetic trees of dinosaurs". Historical Biology: An International Journal of Paleobiology. 31 (8): 1089–1092. Bibcode:2019HBio...31.1089M. doi:10.1080/08912963.2017.1418341. S2CID 90746262.
  125. ^ Daniel D. Cashmore; Richard J. Butler (2019). "Skeletal completeness of the non-avian theropod dinosaur fossil record". Palaeontology. 62 (6): 951–981. Bibcode:2019Palgy..62..951C. doi:10.1111/pala.12436.
  126. ^ Christophe Hendrickx; Octávio Mateus; Ricardo Araújo; Jonah Choiniere (2019). "The distribution of dental features in non-avian theropod dinosaurs: Taxonomic potential, degree of homoplasy, and major evolutionary trends". Palaeontologia Electronica. 22 (3): Article number 22.3.74. doi:10.26879/820. hdl:11336/146011.
  127. ^ Christopher T. Griffin; Sterling J. Nesbitt (2019). "Does the maximum body size of theropods increase across the Triassic-Jurassic boundary? Integrating ontogeny, phylogeny, and body size". The Anatomical Record. 303 (4): 1158–1169. doi:10.1002/ar.24130. PMID 30968581. S2CID 106410695.
  128. ^ Adun Samathi; Phornphen Chanthasit; Paul Martin Sander (2019). "A review of theropod dinosaurs from the Late Jurassic to mid-Cretaceous of Southeast Asia". Annales de Paléontologie. 105 (3): 201–215. Bibcode:2019AnPal.105..201S. doi:10.1016/j.annpal.2019.03.003. S2CID 197574833.
  129. ^ A.O. Averianov; S.V. Ivantsov; P.P. Skutschas (2019). "Theropod teeth from the Lower Cretaceous Ilek Formation of Western Siberia, Russia". Proceedings of the Zoological Institute of the Russian Academy of Sciences. 323 (2): 65–84. doi:10.31610/trudyzin/2019.323.2.65.
  130. ^ José A. Palma Liberona; Sergio Soto-Acuña; Marco A. Mendez; Alexander O. Vargas (2019). "Assesment [sic] and interpretation of negative forelimb allometry in the evolution of non-avian Theropoda". Frontiers in Zoology. 16 (1): Article 44. doi:10.1186/s12983-019-0342-9. PMC 6889632. PMID 31827570.
  131. ^ Adam D. Marsh; William G. Parker; Max C. Langer; Sterling J. Nesbitt (2019). "Redescription of the holotype specimen of Chindesaurus bryansmalli Long and Murry, 1995 (Dinosauria, Theropoda), from Petrified Forest National Park, Arizona". Journal of Vertebrate Paleontology. 39 (3): e1645682. Bibcode:2019JVPal..39E5682M. doi:10.1080/02724634.2019.1645682. S2CID 202865005.
  132. ^ Christopher T. Griffin (2019). "Large neotheropods from the Upper Triassic of North America and the early evolution of large theropod body sizes". Journal of Paleontology. 93 (5): 1010–1030. Bibcode:2019JPal...93.1010G. doi:10.1017/jpa.2019.13.
  133. ^ Ariana Paulina-Carabajal; Martín D. Ezcurra; Fernando E. Novas (2019). "New information on the braincase and endocranial morphology of the Late Triassic neotheropod Zupaysaurus rougieri using Computed Tomography data". Journal of Vertebrate Paleontology. 39 (3): e1630421. Bibcode:2019JVPal..39E0421P. doi:10.1080/02724634.2019.1630421. S2CID 201210215.
  134. ^ Philip J. Senter; Corwin Sullivan (2019). "Forelimbs of the theropod dinosaur Dilophosaurus wetherilli: Range of motion, influence of paleopathology and soft tissues, and description of a distal carpal bone". Palaeontologia Electronica. 22 (2): Article number 22.2.30. doi:10.26879/900.
  135. ^ Changyu Yun (2019). "An enigmatic theropod Cryolophosaurus: Reviews and comments on its paleobiology". Volumina Jurassica. 17: 103–110. Archived from the original on 2019-07-20. Retrieved 2019-07-20.
  136. ^ Michael D. D'Emic; Patrick M. O'Connor; Thomas R. Pascucci; Joanna N. Gavras; Elizabeth Mardakhayava; Eric K. Lund (2019). "Evolution of high tooth replacement rates in theropod dinosaurs". PLOS ONE. 14 (11): e0224734. Bibcode:2019PLoSO..1424734D. doi:10.1371/journal.pone.0224734. PMC 6880968. PMID 31774829.
  137. ^ Changyu Yun (2019). "Comments on the ecology of Jurassic theropod dinosaur Ceratosaurus (Dinosauria: Theropoda) with critical reevaluation for supposed semiaquatic lifestyle". Volumina Jurassica. 17: 111–116. Archived from the original on 2019-07-20. Retrieved 2019-07-20.
  138. ^ Mauricio A. Cerroni; Federico L. Agnolin; Federico Brissón Egli; Fernando E. Novas (2019). "The phylogenetic position of Afromimus tenerensis Sereno, 2017 and its paleobiogeographical implications". Journal of African Earth Sciences. 159: Article 103572. Bibcode:2019JAfES.15903572C. doi:10.1016/j.jafrearsci.2019.103572. S2CID 201352476.
  139. ^ a b Robert S.H. Smyth; Nizar Ibrahim; Alexander Kao; David M. Martill (2020). "Abelisauroid cervical vertebrae from the Cretaceous Kem Kem beds of Southern Morocco and a review of Kem Kem abelisauroids". Cretaceous Research. 108: Article 104330. Bibcode:2020CrRes.10804330S. doi:10.1016/j.cretres.2019.104330. S2CID 214136033.
  140. ^ Slimane Zitouni; Christian Laurent; Gareth Dyke; Nour-Eddine Jalil (2019). "An abelisaurid (Dinosauria: Theropoda) ilium from the Upper Cretaceous (Cenomanian) of the Kem Kem beds, Morocco". PLOS ONE. 14 (4): e0214055. Bibcode:2019PLoSO..1414055Z. doi:10.1371/journal.pone.0214055. PMC 6445567. PMID 30939139.
  141. ^ Adun Samathi (2024). "Reassessment of a theropod ilium from the Kem Kem beds of Morocco and the evolution of ilia in Spinosauridae". Cretaceous Research. 106007. doi:10.1016/j.cretres.2024.106007.
  142. ^ Mauricio A. Cerroni; Ariana Paulina-Carabajal (2019). "Novel information on the endocranial morphology of the abelisaurid theropod Carnotaurus sastrei". Comptes Rendus Palevol. 18 (8): 985–995. Bibcode:2019CRPal..18..985C. doi:10.1016/j.crpv.2019.09.005.
  143. ^ Christophe Hendrickx; Emanuel Tschopp; Martín d. Ezcurra (2020). "Taxonomic identification of isolated theropod teeth: the case of the shed tooth crown associated with Aerosteon (Theropoda: Megaraptora) and the dentition of Abelisauridae". Cretaceous Research. 108: Article 104312. Bibcode:2020CrRes.10804312H. doi:10.1016/j.cretres.2019.104312. S2CID 210268523.
  144. ^ Matías Soto; Pablo Toriño; Daniel Perea (2020). "A large sized megalosaurid (Theropoda, Tetanurae) from the late Jurassic of Uruguay and Tanzania". Journal of South American Earth Sciences. 98: Article 102458. Bibcode:2020JSAES..9802458S. doi:10.1016/j.jsames.2019.102458. S2CID 213672502.
  145. ^ Eric Buffetaut; Suravech Suteethorn; Varavudh Suteethorn; Haiyan Tong; Kamonrak Wongko (2019). "Spinosaurid teeth from the Lower Cretaceous of Ko Kut, eastern Thailand". Annales de Paléontologie. 105 (3): 239–243. Bibcode:2019AnPal.105..239B. doi:10.1016/j.annpal.2019.03.006. S2CID 146225359.
  146. ^ Thomas M.S. Arden; Catherine G. Klein; Samir Zouhri; Nicholas R. Longrich (2019). "Aquatic adaptation in the skull of carnivorous dinosaurs (Theropoda: Spinosauridae) and the evolution of aquatic habits in spinosaurids". Cretaceous Research. 93: 275–284. Bibcode:2019CrRes..93..275A. doi:10.1016/j.cretres.2018.06.013. S2CID 134735938.
  147. ^ David William Elliott Hone; Thomas Richard Holtz Jnr (2019). "Comment on: Aquatic adaptation in the skull of carnivorous dinosaurs (Theropoda: Spinosauridae) and the evolution of aquatic habits in spinosaurids. 93: 275-284". Cretaceous Research. 134: 104152. doi:10.1016/j.cretres.2019.05.010. hdl:1903/28567. S2CID 189987679.
  148. ^ Rebecca J. Lakin; Nicholas R. Longrich (2019). "Juvenile spinosaurs (Theropoda: Spinosauridae) from the middle Cretaceous of Morocco and implications for spinosaur ecology". Cretaceous Research. 93: 129–142. Bibcode:2019CrRes..93..129L. doi:10.1016/j.cretres.2018.09.012.
  149. ^ Tom Brougham; Elizabeth T. Smith; Phil R. Bell (2019). "New theropod (Tetanurae: Avetheropoda) material from the 'mid'-Cretaceous Griman Greek Formation at Lightning Ridge, New South Wales, Australia". Royal Society Open Science. 6 (1): Article ID 180826. Bibcode:2019RSOS....680826B. doi:10.1098/rsos.180826. PMC 6366187. PMID 30800346.
  150. ^ Elisabete Malafaia; Pedro Mocho; Fernando Escaso; Pedro Dantas; Francisco Ortega (2019). "Carcharodontosaurian remains (Dinosauria, Theropoda) from the Upper Jurassic of Portugal". Journal of Paleontology. 93 (1): 157–172. Bibcode:2019JPal...93..157M. doi:10.1017/jpa.2018.47. S2CID 134139008.
  151. ^ Elena Cuesta; Francisco Ortega; José L. Sanz (2019). "Axial osteology of Concavenator corcovatus (Theropoda; Carcharodontosauria) from the Lower Cretaceous of Spain". Cretaceous Research. 95: 106–120. Bibcode:2019CrRes..95..106C. doi:10.1016/j.cretres.2018.10.026. S2CID 241596434.
  152. ^ Ariana Paulina-Carabajal; Mauro N. Nieto (2020). "Brief comment on the brain and inner ear of Giganotosaurus carolinii (Dinosauria: Theropoda) based on CT scans". Ameghiniana. 57 (1): 58–62. doi:10.5710/AMGH.25.10.2019.3237. S2CID 210261759.
  153. ^ Alexis M. Aranciaga Rolando; Fernando E. Novas; Federico L. Agnolín (2019). "A reanalysis of Murusraptor barrosaensis Coria & Currie (2016) affords new evidence about the phylogenetical relationships of Megaraptora". Cretaceous Research. 99: 104–127. Bibcode:2019CrRes..99..104A. doi:10.1016/j.cretres.2019.02.021. S2CID 134503923.
  154. ^ Stephen F. Poropat; Matt A. White; Patricia Vickers-Rich; Thomas H. Rich (2019). "New megaraptorid (Dinosauria: Theropoda) remains from the Lower Cretaceous Eumeralla Formation of Cape Otway, Victoria, Australia". Journal of Vertebrate Paleontology. 39 (4): e1666273. Bibcode:2019JVPal..39E6273P. doi:10.1080/02724634.2019.1666273. S2CID 208603798.
  155. ^ Joep Schaeffer; Michael J. Benton; Emily J. Rayfield; Thomas L. Stubbs (2019). "Morphological disparity in theropod jaws: comparing discrete characters and geometric morphometrics". Palaeontology. 63 (2): 283–299. doi:10.1111/pala.12455. hdl:1983/cd19be5a-92e0-4e55-9d13-b8d7369c3cc2.
  156. ^ Lexis M. Aranciaga-Rolando; Mauricio A. Cerroni; Fernando E. Novas (2019). "Skull anatomy and pneumaticity of the enigmatic coelurosaurian theropod Bicentenaria argentina Novas et al. (2012)". The Anatomical Record. 303 (7): 1884–1900. doi:10.1002/ar.24288. PMID 31595689. S2CID 203983329.
  157. ^ Alexander O. Averianov; Anastasia Osochnikova; Pavel Skutschas; Sergei Krasnolutskii; Rico Schellhorn; Julia A. Schultz; Thomas Martin (2019). "New data on the tyrannosauroid dinosaur Kileskus from the Middle Jurassic of Siberia, Russia". Historical Biology: An International Journal of Paleobiology. 33 (7): 897–903. doi:10.1080/08912963.2019.1666839. S2CID 203890300.
  158. ^ Eric Snively; Haley O'Brien; Donald M. Henderson; Heinrich Mallison; Lara A. Surring; Michael E. Burns; Thomas R. Holtz Jr; Anthony P. Russell; Lawrence M. Witmer; Philip J. Currie; Scott A. Hartman; John R. Cotton (2019). "Lower rotational inertia and larger leg muscles indicate more rapid turns in tyrannosaurids than in other large theropods". PeerJ. 7: e6432. doi:10.7717/peerj.6432. PMC 6387760. PMID 30809441.
  159. ^ Jordan C. Mallon; Jonathan R. Bura; Dirk Schumann; Philip J. Currie (2019). "A problematic tyrannosaurid (Dinosauria: Theropoda) skeleton and its implications for tyrannosaurid diversity in the Horseshoe Canyon Formation (Upper Cretaceous) of Alberta". The Anatomical Record. 303 (4): 673–690. doi:10.1002/ar.24199. PMC 7079176. PMID 31254458.
  160. ^ Jared T. Voris; Darla K. Zelenitsky; François Therrien; Philip J. Currie (2019). "Reassessment of a juvenile Daspletosaurus from the Late Cretaceous of Alberta, Canada with implications for the identification of immature tyrannosaurids". Scientific Reports. 9 (1): Article number 17801. Bibcode:2019NatSR...917801V. doi:10.1038/s41598-019-53591-7. PMC 6882908. PMID 31780682.
  161. ^ Tomoya Hanai; Takanobu Tsuihiji (2019). "Description of tooth ontogeny and replacement patterns in a juvenile Tarbosaurus bataar (Dinosauria: Theropoda) using CT-scan data". The Anatomical Record. 302 (7): 1210–1225. doi:10.1002/ar.24014. PMID 30378771. S2CID 53109996.
  162. ^ Krzysztof Owocki; Barbara Kremer; Martin Cotte; Hervé Bocherens (2020). "Diet preferences and climate inferred from oxygen and carbon isotopes of tooth enamel of Tarbosaurus bataar (Nemegt Formation, Upper Cretaceous, Mongolia)". Palaeogeography, Palaeoclimatology, Palaeoecology. 537: Article 109190. Bibcode:2020PPP...53709190O. doi:10.1016/j.palaeo.2019.05.012. S2CID 182937778.
  163. ^ Ingmar Werneburg; Borja Esteve-Altava; Joana Bruno; Marta Torres Ladeira; Rui Diogo (2019). "Unique skull network complexity of Tyrannosaurus rex among land vertebrates". Scientific Reports. 9 (1): Article number 1520. Bibcode:2019NatSR...9.1520W. doi:10.1038/s41598-018-37976-8. PMC 6365547. PMID 30728455.
  164. ^ Joseph E. Peterson; Karsen N. Daus (2019). "Feeding traces attributable to juvenile Tyrannosaurus rex offer insight into ontogenetic dietary trends". PeerJ. 7: e6573. doi:10.7717/peerj.6573. PMC 6404657. PMID 30863686.
  165. ^ W. Scott Persons IV; Philip J. Currie; Gregory M. Erickson (2019). "An older and exceptionally large adult specimen of Tyrannosaurus rex". The Anatomical Record. 303 (4): 656–672. doi:10.1002/ar.24118. PMID 30897281. S2CID 85448862.
  166. ^ Ian N. Cost; Kevin M. Middleton; Kaleb C. Sellers; M. Scott Echols; Lawrence M. Witmer; Julian L. Davis; Casey M. Holliday (2019). "Palatal biomechanics and its significance for cranial kinesis in Tyrannosaurus rex". The Anatomical Record. 303 (4): 999–1017. doi:10.1002/ar.24219. PMID 31260190. S2CID 195757498.
  167. ^ Franziska Sattler; Daniela Schwarz (2019). "Tooth replacement in a specimen of Tyrannosaurus rex (Dinosauria, Theropoda) from the Hell Creek Formation (Maastrichtian), Montana". Historical Biology: An International Journal of Paleobiology. 33 (7): 949–972. doi:10.1080/08912963.2019.1675052. S2CID 208562234.
  168. ^ Elizabeth M. Boatman; Mark B. Goodwin; Hoi-Ying N. Holman; Sirine Fakra; Wenxia Zheng; Ronald Gronsky; Mary H. Schweitzer (2019). "Mechanisms of soft tissue and protein preservation in Tyrannosaurus rex". Scientific Reports. 9 (1): Article number 15678. Bibcode:2019NatSR...915678B. doi:10.1038/s41598-019-51680-1. PMC 6821828. PMID 31666554.
  169. ^ Chase Doran Brownstein (2019). "New records of theropods from the latest Cretaceous of New Jersey and the Maastrichtian Appalachian fauna". Royal Society Open Science. 6 (11): Article ID 191206. Bibcode:2019RSOS....691206B. doi:10.1098/rsos.191206. PMC 6894593. PMID 31827856.
  170. ^ Ian Macdonald; Philip J. Currie (2019). "Description of a partial Dromiceiomimus (Dinosauria: Theropoda) skeleton with comments on the validity of the genus". Canadian Journal of Earth Sciences. 56 (2): 129–157. Bibcode:2019CaJES..56..129M. doi:10.1139/cjes-2018-0162. S2CID 134730129.
  171. ^ Alexander Averianov; Hans-Dieter Sues (2019). "Morphometric analysis of the teeth and taxonomy of the enigmatic theropod Richardoestesia from the Upper Cretaceous of Uzbekistan". Journal of Vertebrate Paleontology. 39 (3): e1614941. Bibcode:2019JVPal..39E4941A. doi:10.1080/02724634.2019.1614941. S2CID 199061940.
  172. ^ Zi-Chuan Qin; Qi Zhao; Xing Xu (2019). "Metatarsal II osteohistology of Xixianykus zhangi (Theropoda: Alvarezsauria) and its implications for the development of the arctometatarsalian pes". Vertebrata PalAsiatica. 57 (3): 205–213. doi:10.19615/j.cnki.1000-3118.190425.
  173. ^ Chun-Chi Liao; Xing Xu (2019). "Cranial osteology of Beipiaosaurus inexpectus (Theropoda: Therizinosauria)". Vertebrata PalAsiatica. 57 (2): 117–132. doi:10.19615/j.cnki.1000-3118.190115.
  174. ^ Waisum Ma; Stephen L. Brusatte; Junchang Lü; Manabu Sakamoto (2020). "The skull evolution of oviraptorosaurian dinosaurs: the role of niche-partitioning in diversification" (PDF). Journal of Evolutionary Biology. 33 (2): 178–188. doi:10.1111/jeb.13557. PMID 31622509. S2CID 204773776.
  175. ^ Yaser Saffar Talori; Jing-Shan Zhao; Yun-Fei Liu; Wen-Xiu Lu; Zhi-Heng Li; Jingmai Kathleen O'Connor (2019). "Identification of avian flapping motion from non-volant winged dinosaurs based on modal effective mass analysis". PLOS Computational Biology. 15 (5): e1006846. Bibcode:2019PLSCB..15E6846T. doi:10.1371/journal.pcbi.1006846. PMC 6497222. PMID 31048911.
  176. ^ Yaser Saffar Talori; Jing-Shan Zhao (2019). "Aerodynamics of soft flapping wings of Caudipteryx". In Haibin Yu; Jinguo Liu; Lianqing Liu; Zhaojie Ju; Yuwang Liu; Dalin Zhou (eds.). Intelligent Robotics and Applications. 12th International Conference, ICIRA 2019, Shenyang, China, August 8–11, 2019, Proceedings, Part III. Springer. pp. 155–170. doi:10.1007/978-3-030-27535-8_15. ISBN 978-3-030-27534-1. S2CID 199435644.
  177. ^ G. F. Funston; P. J. Currie; M. J. Ryan; Z.-M. Dong (2019). "Birdlike growth and mixed-age flocks in avimimids (Theropoda, Oviraptorosauria)". Scientific Reports. 9 (1): Article number 18816. Bibcode:2019NatSR...918816F. doi:10.1038/s41598-019-55038-5. PMC 6906459. PMID 31827127.
  178. ^ Gregory F. Funston; Ryan D. Wilkinson; D. Jade Simon; Aaron H. Leblanc; Mateusz Wosik; Philip J. Currie (2019). "Histology of caenagnathid (Theropoda, Oviraptorosauria) dentaries and implications for development, ontogenetic edentulism, and taxonomy". The Anatomical Record. 303 (4): 918–934. doi:10.1002/ar.24205. PMID 31270950. S2CID 195797251.
  179. ^ Tzu-Ruei Yang; Jasmina Wiemann; Li Xu; Yen-Nien Cheng; Xiao-Chun Wu; P. Martin Sander (2019). "Reconstruction of oviraptorid clutches illuminates their unique nesting biology". Acta Palaeontologica Polonica. 64 (3): 581–596. doi:10.4202/app.00497.2018.
  180. ^ Tzu-Ruei Yang; Thomas Engler; Jens N. Lallensack; Adun Samathi; Malgorzata Makowska; Burkhard Schillinger (2019). "Hatching asynchrony in oviraptorid dinosaurs sheds light on their unique nesting biology". Integrative Organismal Biology. 1 (1): obz030. doi:10.1093/iob/obz030. PMC 7671163. PMID 33791544.
  181. ^ Peter J. Bishop (2019). "Testing the function of dromaeosaurid (Dinosauria, Theropoda) 'sickle claws' through musculoskeletal modelling and optimization". PeerJ. 7: e7577. doi:10.7717/peerj.7577. PMC 6717499. PMID 31523517.
  182. ^ I. Yu. Bolotskii; Yu. L. Bolotskii; A. P. Sorokin (2019). "The first find of an ungual phalanx of a dromaeosaurid dinosaur (Dinosauria: Dromaeosauridae) from the Blagoveshchensk area of Late Cretaceous dinosaurs (Amur Region, Russia)". Doklady Earth Sciences. 484 (1): 18–20. Bibcode:2019DokES.484...18B. doi:10.1134/S1028334X19010100. S2CID 134803475.
  183. ^ Chase D. Brownstein (2019). "Halszkaraptor escuilliei and the evolution of the paravian bauplan". Scientific Reports. 9 (1): Article number 16455. Bibcode:2019NatSR...916455B. doi:10.1038/s41598-019-52867-2. PMC 6848195. PMID 31712644.
  184. ^ Andrea Cau (2020). "The body plan of Halszkaraptor escuilliei (Dinosauria, Theropoda) is not a transitional form along the evolution of dromaeosaurid hypercarnivory". PeerJ. 8: e8672. doi:10.7717/peerj.8672. PMC 7047864. PMID 32140312.
  185. ^ Jingmai O'Connor; Xiaoting Zheng; Liping Dong; Xiaoli Wang; Yan Wang; Xiaomei Zhang; Zhonghe Zhou (2019). "Microraptor with ingested lizard suggests non-specialized digestive function". Current Biology. 29 (14): 2423–2429.e2. Bibcode:2019CBio...29E2423O. doi:10.1016/j.cub.2019.06.020. PMID 31303494. S2CID 195887207.
  186. ^ Philip J. Currie; David C. Evans (2019). "Cranial anatomy of new specimens of Saurornitholestes langstoni (Dinosauria, Theropoda, Dromaeosauridae) from the Dinosaur Park Formation (Campanian) of Alberta". The Anatomical Record. 303 (4): 691–715. doi:10.1002/ar.24241. PMID 31497925. S2CID 202002676.
  187. ^ Caizhi Shen; Junchang Lü; Chunling Gao; Masato Hoshino; Kentaro Uesugi; Martin Kundrát (2019). "Forearm bone histology of the small theropod Daliansaurus liaoningensis (Paraves: Troodontidae) from the Yixian Formation, Liaoning, China". Historical Biology: An International Journal of Paleobiology. 31 (2): 253–261. Bibcode:2019HBio...31..253S. doi:10.1080/08912963.2017.1360296. S2CID 134050997.
  188. ^ Yanhong Pan; Wenxia Zheng; Roger H. Sawyer; Michael W. Pennington; Xiaoting Zheng; Xiaoli Wang; Min Wang; Liang Hu; Jingmai O'Connor; Tao Zhao; Zhiheng Li; Elena R. Schroeter; Feixiang Wu; Xing Xu; Zhonghe Zhou; Mary H. Schweitzer (2019). "The molecular evolution of feathers with direct evidence from fossils". Proceedings of the National Academy of Sciences of the United States of America. 116 (8): 3018–3023. Bibcode:2019PNAS..116.3018P. doi:10.1073/pnas.1815703116. PMC 6386655. PMID 30692253.
  189. ^ Evan T. Saitta; Jakob Vinther (2019). "A perspective on the evidence for keratin protein preservation in fossils: An issue of replication versus validation". Palaeontologia Electronica. 22 (3): Article number 22.3.2E. doi:10.26879/1017E. S2CID 213903998.
  190. ^ Chloe M. E. Young; Christophe Hendrickx; Thomas J. Challands; Davide Foffa; Dugald A. Ross; Ian B. Butler; Stephen L. Brusatte (2019). "New theropod dinosaur teeth from the Middle Jurassic of the Isle of Skye, Scotland" (PDF). Scottish Journal of Geology. 55 (1): 7–19. Bibcode:2019ScJG...55....7Y. doi:10.1144/sjg2018-020. hdl:20.500.11820/063549bc-2a00-4ddc-bcf6-a1bc2f872c26. S2CID 134102042.
  191. ^ Rodrigo T. Müller; Maurício S. Garcia (2019). "Rise of an empire: analysing the high diversity of the earliest sauropodomorph dinosaurs through distinct hypotheses". Historical Biology: An International Journal of Paleobiology. 32 (10): 1334–1339. doi:10.1080/08912963.2019.1587754. S2CID 92177386.
  192. ^ Max Cardoso Langer; Blair Wayne McPhee; Júlio César de Almeida Marsola; Lúcio Roberto-da-Silva; Sérgio Furtado Cabreira (2019). "Anatomy of the dinosaur Pampadromaeus barberenai (Saurischia—Sauropodomorpha) from the Late Triassic Santa Maria Formation of southern Brazil". PLOS ONE. 14 (2): e0212543. Bibcode:2019PLoSO..1412543L. doi:10.1371/journal.pone.0212543. PMC 6382151. PMID 30785940.
  193. ^ Rodrigo Temp Müller; Max Cardoso Langer; Cristian Pereira Pacheco; Sérgio Dias-da-Silva (2019). "The role of ontogeny on character polarization in early dinosaurs: a new specimen from the Late Triassic of southern Brazil and its implications". Historical Biology: An International Journal of Paleobiology. 31 (6): 794–805. Bibcode:2019HBio...31..794M. doi:10.1080/08912963.2017.1395421. S2CID 90276036.
  194. ^ Mario Bronzati; Max C. Langer; Oliver W. M. Rauhut (2019). "Braincase anatomy of the early sauropodomorph Saturnalia tupiniquim (Late Triassic, Brazil)". Journal of Vertebrate Paleontology. 38 (5): e1559173. doi:10.1080/02724634.2018.1559173. S2CID 108597134.
  195. ^ Mario Bronzati; Rodrigo T. Müller; Max C. Langer (2019). "Skull remains of the dinosaur Saturnalia tupiniquim (Late Triassic, Brazil): With comments on the early evolution of sauropodomorph feeding behaviour". PLOS ONE. 14 (9): e0221387. Bibcode:2019PLoSO..1421387B. doi:10.1371/journal.pone.0221387. PMC 6730896. PMID 31490962.
  196. ^ Blair W. McPhee; Jonathas S. Bittencourt; Max C. Langer; Cecilia Apaldetti; Átila A. S. Da Rosa (2019). "Reassessment of Unaysaurus tolentinoi (Dinosauria: Sauropodomorpha) from the Late Triassic (early Norian) of Brazil, with a consideration of the evidence for monophyly within non-sauropodan sauropodomorphs". Journal of Systematic Palaeontology. 18 (3): 259–293. doi:10.1080/14772019.2019.1602856. S2CID 182843217.
  197. ^ Rodrigo Temp Müller (2019). "Craniomandibular osteology of Macrocollum itaquii (Dinosauria: Sauropodomorpha) from the Late Triassic of southern Brazil". Journal of Systematic Palaeontology. 18 (10): 805–841. doi:10.1080/14772019.2019.1683902. S2CID 209575985.
  198. ^ James M. Neenan; Kimberley E. J. Chapelle; Vincent Fernandez; Jonah N. Choiniere (2019). "Ontogeny of the Massospondylus labyrinth: implications for locomotory shifts in a basal sauropodomorph dinosaur". Palaeontology. 62 (2): 255–265. Bibcode:2019Palgy..62..255N. doi:10.1111/pala.12400. S2CID 134012822.
  199. ^ Paul M. Barrett; Kimberley E.J. Chapelle; Casey K. Staunton; Jennifer Botha; Jonah N. Choiniere (2019). "Postcranial osteology of the neotype specimen of Massospondylus carinatus Owen, 1854 (Dinosauria: Sauropodomorpha) from the upper Elliot formation of South Africa". Palaeontologia Africana. 53: 114–178. hdl:10539/26829.
  200. ^ Qian-Nan Zhang; Tao Wang; Zhi-Wen Yang; Hai-Lu You (2019). "Redescription of the cranium of Jingshanosaurus xinwaensis (Dinosauria: Sauropodomorpha) from the Lower Jurassic Lufeng Formation of Yunnan Province, China". The Anatomical Record. 303 (4): 759–771. doi:10.1002/ar.24113. PMID 30860663. S2CID 75140305.
  201. ^ Ya-Ming Wang; Tao Wang; Zhi-Wen Yang; Hai-Lu You (2019). "Cranium and vertebral column of Xingxiulong chengi (Dinosauria: Sauropodomorpha) from the Early Jurassic of China". The Anatomical Record. 303 (4): 772–789. doi:10.1002/ar.24305. PMID 31804026. S2CID 208643235.
  202. ^ Alejandro Otero; Andrew R. Cuff; Vivian Allen; Lauren Sumner-Rooney; Diego Pol; John R. Hutchinson (2019). "Ontogenetic changes in the body plan of the sauropodomorph dinosaur Mussaurus patagonicus reveal shifts of locomotor stance during growth". Scientific Reports. 9 (1): Article number 7614. Bibcode:2019NatSR...9.7614O. doi:10.1038/s41598-019-44037-1. PMC 6527699. PMID 31110190.
  203. ^ Ada J. Klinkhamer; Heinrich Mallison; Stephen F. Poropat; Trish Sloan; Stephen Wroe (2019). "Comparative three-dimensional moment arm analysis of the sauropod forelimb: Implications for the transition to a wide-gauge stance in titanosaurs". The Anatomical Record. 302 (5): 794–817. doi:10.1002/ar.23977. PMID 30315633. S2CID 52977062.
  204. ^ Andréas Jannel; Jay P. Nair; Olga Panagiotopoulou; Anthony Romilio; Steven W. Salisbury (2019). ""Keep your feet on the ground": Simulated range of motion and hind foot posture of the Middle Jurassic sauropod Rhoetosaurus brownei and its implications for sauropod biology". Journal of Morphology. 280 (6): 849–878. doi:10.1002/jmor.20989. PMID 30964205. S2CID 104295938.
  205. ^ Christopher N. Todd; Eric M. Roberts; Espen M. Knutsen; Andrew C. Rozefelds; Hui-Qing Huang; Carl Spandler (2019). "Refined age and geological context of two of Australia's most important Jurassic vertebrate taxa (Rhoetosaurus brownei and Siderops kehli), Queensland". Gondwana Research. 76: 19–25. Bibcode:2019GondR..76...19T. doi:10.1016/j.gr.2019.05.008. S2CID 199105458.
  206. ^ Michael W. Maisch; Andreas T. Matzke (2019). "First record of a eusauropod (Dinosauria: Sauropoda) from the Upper Jurassic Qigu-Formation (southern Junggar Basin, China), and a reconsideration of Late Jurassic sauropod diversity in Xinjiang". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 291 (1): 109–117. doi:10.1127/njgpa/2019/0792. S2CID 135213577.
  207. ^ Chao Tan; Hui Dai; Jian-Jun He; Feng Zhang; Xu-Feng Hu; Hai-Dong Yu; Ning Li; Guang-Biao Wei; Guang-Zhao Peng; Yong Ye; Qian-Nan Zhang; Xin-Xin Ren; Hai-Lu You (2019). "Discovery of Omeisaurus (Dinosauria: Sauropoda) in the Middle Jurassic Shaximiao Formation of Yunyang, Chongqing, China". Vertebrata PalAsiatica. 57 (2): 105–116. doi:10.19615/j.cnki.1000-3118.181115.
  208. ^ Alexander Averianov; Sergei Krasnolutskii; Stepan Ivantsov; Pavel Skutschas; Rico Schellhorn; Julia Schultz; Thomas Martin (2019). "Sauropod remains from the Middle Jurassic Itat Formation of West Siberia, Russia". PalZ. 93 (4): 691–701. Bibcode:2019PalZ...93..691A. doi:10.1007/s12542-018-00445-8. S2CID 135205021.
  209. ^ Jun Wang; Mark A. Norell; Rui Pei; Yong Ye; Su-Chin Chang (2019). "Surprisingly young age for the mamenchisaurid sauropods in South China". Cretaceous Research. 104: Article 104176. Bibcode:2019CrRes.10404176W. doi:10.1016/j.cretres.2019.07.006. S2CID 199099072.
  210. ^ Miky Lova Tantely Raveloson; Neil D. L. Clark; Armand H. Rasoamiaramana (2019). "New information on the Madagascan Middle Jurassic sauropod Lapparentosaurus madagascariensis". Geosciences. 9 (12): Article 498. Bibcode:2019Geosc...9..498R. doi:10.3390/geosciences9120498.
  211. ^ Philip D. Mannion (2019). "A turiasaurian sauropod dinosaur from the Early Cretaceous Wealden Supergroup of the United Kingdom". PeerJ. 7: e6348. doi:10.7717/peerj.6348. PMC 6348093. PMID 30697494.
  212. ^ Gabriele Bindellini; Cristiano Dal Sasso (2019). "Sauropod teeth from the Middle Jurassic of Madagascar, and the oldest record of Titanosauriformes". Papers in Palaeontology. 7 (1): 137–161. doi:10.1002/spp2.1282. S2CID 203376597.
  213. ^ Femke M. Holwerda; Mark Evans; Jeff J. Liston (2019). "Additional sauropod dinosaur material from the Callovian Oxford Clay Formation, Peterborough, UK: evidence for higher sauropod diversity". PeerJ. 7: e6404. doi:10.7717/peerj.6404. PMC 6378091. PMID 30783572.
  214. ^ Emanuel Tschopp; Susannah C.R. Maidment; Matthew C. Lamanna; Mark A. Norell (2019). "Reassessment of a historical collection of sauropod dinosaurs from the northern Morrison Formation of Wyoming, with implications for sauropod biogeography". Bulletin of the American Museum of Natural History. 2019 (437): 1–79. doi:10.1206/0003-0090.437.1.1. hdl:2246/6968. S2CID 207890316.
  215. ^ Guillermo J. Windholz; Rodolfo A. Coria; Virginia L. Zurriaguz (2019). "Vertebral pneumatic structures in the Early Cretaceous sauropod dinosaur Pilmatueia faundezi from northwestern Patagonia, Argentina". Lethaia. 53 (3): 369–381. doi:10.1111/let.12363. S2CID 212766423.
  216. ^ Jose Luis Carballido; Michael Scheil; Nils Knötschke; P. Martin Sander (2019). "The appendicular skeleton of the dwarf macronarian sauropod Europasaurus holgeri from the Late Jurassic of Germany and a re-evaluation of its systematic affinities". Journal of Systematic Palaeontology. 18 (9): 739–781. doi:10.1080/14772019.2019.1683770. S2CID 213155599.
  217. ^ Michael D. D'Emic; Matthew T. Carrano (2019). "Redescription of brachiosaurid sauropod dinosaur material from the Upper Jurassic Morrison Formation, Colorado, USA". The Anatomical Record. 303 (4): 732–758. doi:10.1002/ar.24198. PMID 31254331. S2CID 195765189.
  218. ^ M. Pérez-Pueyo; M. Moreno-Azanza; J. L. Barco; J. I. Canudo (2019). "New contributions to the phylogenetic position of the sauropod Galvesaurus herreroi from the late Kimmeridgian-early Tithonian (Jurassic) of Teruel (Spain)". Boletín Geológico y Minero. 130 (3): 375–392. doi:10.21701/bolgeomin.130.3.001. hdl:10362/103664.
  219. ^ a b Philip D. Mannion; Paul Upchurch; Daniela Schwarz; Oliver Wings (2019). "Taxonomic affinities of the putative titanosaurs from the Late Jurassic Tendaguru Formation of Tanzania: phylogenetic and biogeographic implications for eusauropod dinosaur evolution". Zoological Journal of the Linnean Society. 185 (3): 784–909. doi:10.1093/zoolinnean/zly068. hdl:10044/1/64080.
  220. ^ Mark B. Goodwin; Randall B. Irmis; Gregory P. Wilson; David G. DeMar Jr.; Keegan Melstrom; Cornelia Rasmussen; Balemwal Atnafu; Tadesse Alemu; Million Alemayehu; Samuel G. Chernet (2019). "The first confirmed sauropod dinosaur from Ethiopia discovered in the Upper Jurassic Mugher Mudstone". Journal of African Earth Sciences. 159: Article 103571. Bibcode:2019JAfES.15903571G. doi:10.1016/j.jafrearsci.2019.103571. S2CID 201319035.
  221. ^ S. Apesteguía; Y. Ceballos Izquierdo; M. Iturralde-Vinent (2019). "New taxonomic assignment for a dinosaur sauropod bone from Cuba". Historical Biology: An International Journal of Paleobiology. 33 (5): 737–742. doi:10.1080/08912963.2019.1661406. S2CID 202854022.
  222. ^ Alexander O. Averianov; Pavel P. Skutschas; Rico Schellhorn; Alexey V. Lopatin; Petr N. Kolosov; Veniamin V. Kolchanov; Dmitry D. Vitenko; Dmitry V. Grigoriev; Thomas Martin (2019). "The northernmost sauropod record in the Northern Hemisphere". Lethaia. 53 (3): 362–368. doi:10.1111/let.12362. S2CID 213596036.
  223. ^ Philip D. Mannion; Paul Upchurch; Xingsheng Jin; Wenjie Zheng (2019). "New information on the Cretaceous sauropod dinosaurs of Zhejiang Province, China: impact on Laurasian titanosauriform phylogeny and biogeography". Royal Society Open Science. 6 (8): Article ID 191057. Bibcode:2019RSOS....691057M. doi:10.1098/rsos.191057. PMC 6731702. PMID 31598266.
  224. ^ Fenglu Han; Xing Xu; Corwin Sullivan; Leqing Huang; Yu Guo; Rui Wu (2019). "New titanosauriform (Dinosauria: Sauropoda) specimens from the Upper Cretaceous Daijiaping Formation of southern China". PeerJ. 7: e8237. doi:10.7717/peerj.8237. PMC 6927344. PMID 31875155.
  225. ^ Romina González; Ignacio A. Cerda; Leonardo S. Filippi; Leonardo Salgado (2020). "Early growth dynamics of titanosaur sauropods inferred from bone histology". Palaeogeography, Palaeoclimatology, Palaeoecology. 537: Article 109404. Bibcode:2020PPP...53709404G. doi:10.1016/j.palaeo.2019.109404. S2CID 210317138.
  226. ^ Fabien Knoll; Stephan Lautenschlager; Xavier Valentin; Verónica Díez Díaz; Xabier Pereda Suberbiola; Géraldine Garcia (2019). "First palaeoneurological study of a sauropod dinosaur from France and its phylogenetic significance". PeerJ. 7: e7991. doi:10.7717/peerj.7991. PMC 6871212. PMID 31763068.
  227. ^ Alexander O. Averianov; Stepan V. Ivantsov; Pavel P. Skutschas (2020). "Caudal vertebrae of titanosaurian sauropod dinosaurs from the Lower Cretaceous Ilek Formation in Western Siberia, Russia". Cretaceous Research. 107: Article 104309. Bibcode:2020CrRes.10704309A. doi:10.1016/j.cretres.2019.104309. S2CID 210619334.
  228. ^ Bernardo J. González Riga; Matthew C. Lamanna; Alejandro Otero; Leonardo D. Ortiz David; Alexander W.A. Kellner; Lucio M. Ibiricu (2019). "An overview of the appendicular skeletal anatomy of South American titanosaurian sauropods, with definition of a newly recognized clade". Anais da Academia Brasileira de Ciências. 91 (Suppl. 2): e20180374. doi:10.1590/0001-3765201920180374. hdl:11336/106658. PMID 31340217.
  229. ^ Jeffrey A. Wilson; Dhananjay M. Mohabey; Prabhakar Lakra; Arun Bhadran (2019). "Titanosaur (Dinosauria: Sauropoda) vertebrae from the Upper Cretaceous Lameta Formation of western and central India". Contributions from the Museum of Paleontology, University of Michigan. 33 (1): 1–27. hdl:2027.42/152450.
  230. ^ Kate A. Andrzejewski; Michael J. Polcyn; Dale A. Winkler; Elizabeth Gomani Chindebvu; Louis L. Jacobs (2019). "The braincase of Malawisaurus dixeyi (Sauropoda: Titanosauria): A 3D reconstruction of the brain endocast and inner ear". PLOS ONE. 14 (2): e0211423. Bibcode:2019PLoSO..1411423A. doi:10.1371/journal.pone.0211423. PMC 6373922. PMID 30759166.
  231. ^ Julian C. G. Junior Silva; Thiago S. Marinho; Agustín G. Martinelli; Max C. Langer (2019). "Osteology and systematics of Uberabatitan ribeiroi (Dinosauria; Sauropoda): a Late Cretaceous titanosaur from Minas Gerais, Brazil". Zootaxa. 4577 (3): 401–438. doi:10.11646/zootaxa.4577.3.1. PMID 31715707. S2CID 145939866.
  232. ^ Tito Aureliano; Aline M. Ghilardi; Julian C.G. Silva Junior; Agustín G. Martinelli; Luiz Carlos Borges Ribeiro; Thiago Marinho; Marcelo A. Fernandes; Fresia Ricardi-Branco; P. Martin Sander (2020). "Influence of taphonomy on histological evidence for vertebral pneumaticity in an Upper Cretaceous titanosaur from South America". Cretaceous Research. 108: Article 104337. Bibcode:2020CrRes.10804337A. doi:10.1016/j.cretres.2019.104337. S2CID 211007804.
  233. ^ P. Mocho; A. Pérez-García; M. Martín Jiménez; F. Ortega (2019). "New remains from the Spanish Cenomanian shed light on the Gondwanan origin of European Early Cretaceous titanosaurs". Cretaceous Research. 95: 164–190. Bibcode:2019CrRes..95..164M. doi:10.1016/j.cretres.2018.09.016. S2CID 134881405.
  234. ^ Alexander O. Averianov; Alexey V. Lopatin (2019). "Sauropod diversity in the Upper Cretaceous Nemegt Formation of Mongolia—a possible new specimen of Nemegtosaurus". Acta Palaeontologica Polonica. 64 (2): 313–321. doi:10.4202/app.00596.2019.
  235. ^ W. Scott Persons IV; Philip J. Currie (2019). "The anatomical and functional evolution of the femoral fourth trochanter in ornithischian dinosaurs". The Anatomical Record. 303 (4): 1146–1157. doi:10.1002/ar.24094. PMID 30776198. S2CID 73456637.
  236. ^ Leire Perales-Gogenola; Javier Elorza; José Ignacio Canudo; Xabier Pereda-Suberbiola (2019). "Taphonomy and palaeohistology of ornithischian dinosaur remains from the Lower Cretaceous bonebed of La Cantalera (Teruel, Spain)". Cretaceous Research. 99: 316–334. Bibcode:2019CrRes..98..316P. doi:10.1016/j.cretres.2019.01.024. S2CID 135430365.
  237. ^ David B. Norman, FLS (2020). "Scelidosaurus harrisonii from the Early Jurassic of Dorset, England: cranial anatomy". Zoological Journal of the Linnean Society. 188 (1): 1–81. doi:10.1093/zoolinnean/zlz074.
  238. ^ David B. Norman, FLS (2020). "Scelidosaurus harrisonii from the Early Jurassic of Dorset, England: postcranial skeleton". Zoological Journal of the Linnean Society. 189 (1): 47–157. doi:10.1093/zoolinnean/zlz078.
  239. ^ Thomas J. Raven; Paul M. Barrett; Xing Xu; Susannah C.R. Maidment (2019). "A reassessment of the purported ankylosaurian dinosaur Bienosaurus lufengensis from the Lower Lufeng Formation of Yunnan, China". Acta Palaeontologica Polonica. 64 (2): 335–342. doi:10.4202/app.00577.2018. hdl:10141/622543.
  240. ^ Marco Romano (2019). "Disparity vs. diversity in Stegosauria (Dinosauria, Ornithischia): cranial and post-cranial sub-dataset provide different signals". Historical Biology: An International Journal of Paleobiology. 31 (7): 857–865. Bibcode:2019HBio...31..857R. doi:10.1080/08912963.2017.1397655. S2CID 89787668.
  241. ^ D. Cary Woodruff; David Trexler; Susannah C.R. Maidment (2019). "Two new stegosaur specimens from the Upper Jurassic Morrison Formation of Montana, USA". Acta Palaeontologica Polonica. 64 (3): 461–480. doi:10.4202/app.00585.2018.
  242. ^ Francisco Costa; Octávio Mateus (2019). "Dacentrurine stegosaurs (Dinosauria): A new specimen of Miragaia longicollum from the Late Jurassic of Portugal resolves taxonomical validity and shows the occurrence of the clade in North America". PLOS ONE. 14 (11): e0224263. Bibcode:2019PLoSO..1424263C. doi:10.1371/journal.pone.0224263. PMC 6853308. PMID 31721771.
  243. ^ Peter M. Galton (2019). "Earliest record of an ankylosaurian dinosaur (Ornithischia: Thyreophora): Dermal armor from Lower Kota Formation (Lower Jurassic) of India". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 291 (2): 205–219. doi:10.1127/njgpa/2019/0800. S2CID 134302379.
  244. ^ Attila Ősi; Gábor Botfalvai; Gáspár Albert; Zsófia Hajdu (2019). "The dirty dozen: taxonomical and taphonomical overview of a unique ankylosaurian (Dinosauria: Ornithischia) assemblage from the Santonian Iharkút locality, Hungary" (PDF). Palaeobiodiversity and Palaeoenvironments. 99 (2): 195–240. Bibcode:2019PdPe...99..195O. doi:10.1007/s12549-018-0362-z. S2CID 135050124.
  245. ^ Victoria M. Arbour; Lindsay E. Zanno (2019). "Tail weaponry in ankylosaurs and glyptodonts: an example of a rare but strongly convergent phenotype". The Anatomical Record. 303 (4): 988–998. doi:10.1002/ar.24093. PMID 30835954. S2CID 73488683.
  246. ^ Alejandro Murray; Facundo Riguetti; Sebastián Rozadilla (2019). "New ankylosaur (Thyreophora, Ornithischia) remains from the Upper Cretaceous of Patagonia". Journal of South American Earth Sciences. 96: Article 102320. Bibcode:2019JSAES..9602320M. doi:10.1016/j.jsames.2019.102320. S2CID 202192449.
  247. ^ Jin-Young Park; Yuong-Nam Lee; Philip J. Currie; Yoshitsugu Kobayashi; Eva Koppelhus; Rinchen Barsbold; Octávio Mateus; Sungjin Lee; Su-Hwan Kim (2020). "Additional skulls of Talarurus plicatospineus (Dinosauria: Ankylosauridae) and implications for paleobiogeography and paleoecology of armored dinosaurs". Cretaceous Research. 108: Article 104340. Bibcode:2020CrRes.10804340P. doi:10.1016/j.cretres.2019.104340. S2CID 212423361.
  248. ^ Ma Duiping (2019). "Preliminary study on the sexual dimorphism of Tianzhenosaurus youngi". Journal of Geology. 43 (4): 589–594. Archived from the original on 2020-07-26. Retrieved 2020-05-08.
  249. ^ V. R. Alifanov; S. V. Saveliev (2019). "The brain morphology and neurobiology in armored dinosaur Bissekipelta archibaldi (Ankylosauridae) from the Late Cretaceous of Uzbekistan". Paleontological Journal. 53 (3): 315–321. Bibcode:2019PalJ...53..315A. doi:10.1134/S003103011903002X. S2CID 195299630.
  250. ^ Ignacio A. Cerda; Zulma Gasparini; Rodolfo A. Coria; Leonardo Salgado; Marcelo Reguero; Denis Ponce; Romina Gonzalez; J. Marcos Jannello; Juan Moly (2019). "Paleobiological inferences for the Antarctic dinosaur Antarctopelta oliveroi (Ornithischia: Ankylosauria) based on bone histology of the holotype". Cretaceous Research. 103: Article 104171. Bibcode:2019CrRes.10304171C. doi:10.1016/j.cretres.2019.07.001. S2CID 199112893.
  251. ^ Aude Cincotta; Ekaterina B. Pestchevitskaya; Sofia M. Sinitsa; Valentina S. Markevich; Vinciane Debaille; Svetlana A. Reshetova; Irina M. Mashchuk; Andrei O. Frolov; Axel Gerdes; Johan Yans; Pascal Godefroit (2019). "The rise of feathered dinosaurs: Kulindadromeus zabaikalicus, the oldest dinosaur with 'feather-like' structures". PeerJ. 7: e6239. doi:10.7717/peerj.6239. PMC 6361000. PMID 30723614.
  252. ^ John P. Wilson; David J. Varricchio (2019). "Photogrammetry of the Oryctodromeus cubicularis type locality burrow and the utility of preexisting, standard field photographs for three dimensional digital reconstruction". Historical Biology: An International Journal of Paleobiology. 32 (8): 1054–1061. doi:10.1080/08912963.2018.1563783. S2CID 91500384.
  253. ^ L.J. Krumenacker; David J. Varricchio; John P. Wilson; Anthony Martin; Ashley Ferguson (2019). "Taphonomy of and new burrows from Oryctodromeus cubicularis, a burrowing neornithischian dinosaur, from the mid-Cretaceous (Albian-Cenomanian) of Idaho and Montana, U.S.A.". Palaeogeography, Palaeoclimatology, Palaeoecology. 530: 300–311. Bibcode:2019PPP...530..300K. doi:10.1016/j.palaeo.2019.05.047. S2CID 195570530.
  254. ^ a b Matthew C. Herne; Jay P. Nair; Alistair R. Evans; Alan M. Tait (2019). "New small-bodied ornithopods (Dinosauria, Neornithischia) from the Early Cretaceous Wonthaggi Formation (Strzelecki Group) of the Australian-Antarctic rift system, with revision of Qantassaurus intrepidus Rich and Vickers-Rich, 1999". Journal of Paleontology. 93 (3): 543–584. Bibcode:2019JPal...93..543H. doi:10.1017/jpa.2018.95. S2CID 134593160.
  255. ^ Justin L. Kitchener; Nicolás E. Campione; Elizabeth T. Smith; Phil R. Bell (2019). "High-latitude neonate and perinate ornithopods from the mid-Cretaceous of southeastern Australia". Scientific Reports. 9 (1): Article number 19600. Bibcode:2019NatSR...919600K. doi:10.1038/s41598-019-56069-8. PMC 6925213. PMID 31862946.
  256. ^ Francisco J. Verdú; Alberto Cobos; Rafael Royo-Torres; Luis Alcalá (2019). "Diversity of large ornithopod dinosaurs in the upper Hauterivian-lower Barremian (Lower Cretaceous) of Teruel (Spain): a morphometric approach" (PDF). Spanish Journal of Palaeontology. 34 (2): 269–288. doi:10.7203/sjp.34.2.16116. S2CID 214180178.
  257. ^ Sebastián Rozadilla; Federico Lisandro Agnolín; Fernando Emilio Novas (2019). "Osteology of the Patagonian ornithopod Talenkauen santacrucensis (Dinosauria, Ornithischia)". Journal of Systematic Palaeontology. 17 (24): 2043–2089. Bibcode:2019JSPal..17.2043R. doi:10.1080/14772019.2019.1582562. S2CID 155344014.
  258. ^ Sebastián Rozadilla; Penélope Cruzado-Caballero; Jorge O. Calvo (2020). "Osteology of ornithopod Macrogryphosaurus gondwanicus (Dinosauria, Ornithischia) from the Upper Cretaceous of Patagonia, Argentina". Cretaceous Research. 108: Article 104311. Bibcode:2020CrRes.10804311R. doi:10.1016/j.cretres.2019.104311. S2CID 213679041.
  259. ^ T. C. Hunt; J. E. Peterson; J. A. Frederickson; J. E. Cohen; J. L. Berry (2019). "First documented pathologies in Tenontosaurus tilletti with comments on infection in non-avian dinosaurs". Scientific Reports. 9 (1): Article number 8705. Bibcode:2019NatSR...9.8705H. doi:10.1038/s41598-019-45101-6. PMC 6581885. PMID 31213629.
  260. ^ A. O. Averianov; A. V. Lopatin (2019). "Dinosaur fossils from the Upper Cretaceous of Crimea". Paleontological Journal. 53 (4): 398–410. Bibcode:2019PalJ...53..398A. doi:10.1134/S0031030119040026. S2CID 201723908.
  261. ^ Daniel Madzia; John W.M. Jagt; Eric W.A. Mulder (2020). "Osteology, phylogenetic affinities and taxonomic status of the enigmatic late Maastrichtian ornithopod taxon Orthomerus dolloi (Dinosauria, Ornithischia)". Cretaceous Research. 108: Article 104334. Bibcode:2020CrRes.10804334M. doi:10.1016/j.cretres.2019.104334.
  262. ^ Thomas L. Stubbs; Michael J. Benton; Armin Elsler; Albert Prieto-Márquez (2019). "Morphological innovation and the evolution of hadrosaurid dinosaurs". Paleobiology. 45 (2): 347–362. Bibcode:2019Pbio...45..347S. doi:10.1017/pab.2019.9. hdl:1983/df59c332-628e-4545-ade9-a93e4f2e78b1. S2CID 148567806.
  263. ^ Victoria F. Crystal; Erica S.J. Evans; Henry Fricke; Ian M. Miller; Joseph J.W. Sertich (2019). "Late Cretaceous fluvial hydrology and dinosaur behavior in southern Utah, USA: Insights from stable isotopes of biogenic carbonate". Palaeogeography, Palaeoclimatology, Palaeoecology. 516: 152–165. Bibcode:2019PPP...516..152C. doi:10.1016/j.palaeo.2018.11.022. S2CID 135118646.
  264. ^ Matteo Fabbri; Jasmina Wiemann; Fabio Manucci; Derek E. G. Briggs (2019). "Three-dimensional soft tissue preservation revealed in the skin of a non-avian dinosaur". Palaeontology. 63 (2): 185–193. doi:10.1111/pala.12470.
  265. ^ Yu-Guang Zhang; Ke-Bai Wang; Shu-Qing Chen; Di Liu; Hai Xing (2019). "Osteological re-assessment and taxonomic revision of "Tanius laiyangensis" (Ornithischia: Hadrosauroidea) from the Upper Cretaceous of Shandong, China". The Anatomical Record. 303 (4): 790–800. doi:10.1002/ar.24097. PMID 30773831. S2CID 73476311.
  266. ^ Holly N. Woodward (2019). "Maiasaura (Dinosauria: Hadrosauridae) tibia osteohistology reveals non-annual cortical vascular rings in young of the year". Frontiers in Earth Science. 7: Article 50. Bibcode:2019FrEaS...7...50W. doi:10.3389/feart.2019.00050. S2CID 83459491.
  267. ^ Talia Michelle Lowi-Merri; David C. Evans (2019). "Cranial variation in Gryposaurus and biostratigraphy of hadrosaurines (Ornithischia: Hadrosauridae) from the Dinosaur Park Formation of Alberta, Canada". Canadian Journal of Earth Sciences. 57 (6): 765–779. doi:10.1139/cjes-2019-0073. S2CID 210619635.
  268. ^ Eamon T. Drysdale; François Therrien; Darla K. Zelenitsky; David B. Weishampel; David C. Evans (2019). "Description of juvenile specimens of Prosaurolophus maximus (Hadrosauridae: Saurolophinae) from the Upper Cretaceous Bearpaw Formation of southern Alberta, Canada, reveals ontogenetic changes in crest morphology". Journal of Vertebrate Paleontology. 38 (6): e1547310. doi:10.1080/02724634.2018.1547310. S2CID 109440173.
  269. ^ Ryan C. McKellar; Emma Jones; Michael S. Engel; Ralf Tappert; Alexander P. Wolfe; Karlis Muehlenbachs; Pierre Cockx; Eva B. Koppelhus; Philip J. Currie (2019). "A direct association between amber and dinosaur remains provides paleoecological insights". Scientific Reports. 9 (1): Article number 17916. Bibcode:2019NatSR...917916M. doi:10.1038/s41598-019-54400-x. PMC 6884503. PMID 31784622.
  270. ^ Paul V. Ullmann; Suraj H. Pandya; Ron Nellermoe (2019). "Patterns of soft tissue and cellular preservation in relation to fossil bone tissue structure and overburden depth at the Standing Rock Hadrosaur Site, Maastrichtian Hell Creek Formation, South Dakota, USA". Cretaceous Research. 99: 1–13. Bibcode:2019CrRes..99....1U. doi:10.1016/j.cretres.2019.02.012. S2CID 134351785.
  271. ^ Andrew A. Farke; Eunice Yip (2019). "A juvenile cf. Edmontosaurus annectens (Ornithischia, Hadrosauridae) femur documents a previously unreported intermediate growth stage for this taxon". Vertebrate Anatomy Morphology Palaeontology. 7: 59–67. doi:10.18435/vamp29347.
  272. ^ Mateusz Wosik; Mark B. Goodwin; David C. Evans (2019). "Nestling-sized hadrosaurine cranial material from the Hell Creek Formation of northeastern Montana, USA, with an analysis of cranial ontogeny in Edmontosaurus annectens". PaleoBios. 36: ucmp_paleobios_44525.
  273. ^ Mauricio Barbi; Phil R. Bell; Federico Fanti; James J. Dynes; Anezka Kolaceke; Josef Buttigieg; Ian M. Coulson; Philip J. Currie (2019). "Integumentary structure and composition in an exceptionally well-preserved hadrosaur (Dinosauria: Ornithischia)". PeerJ. 7: e7875. doi:10.7717/peerj.7875. PMC 6800526. PMID 31637130.
  274. ^ Ryuji Takasaki; Anthony R. Fiorillo; Yoshitsugu Kobayashi; Ronald S. Tykoski; Paul J. McCarthy (2019). "The first definite lambeosaurine bone from the Liscomb Bonebed of the Upper Cretaceous Prince Creek Formation, Alaska, United States". Scientific Reports. 9 (1): Article number 5384. Bibcode:2019NatSR...9.5384T. doi:10.1038/s41598-019-41325-8. PMC 6440964. PMID 30926823.
  275. ^ Simone Conti; Bernat Vila; Albert G. Sellés; Àngel Galobart; Michael J. Benton; Albert Prieto-Márquez (2020). "The oldest lambeosaurine dinosaur from Europe: insights into the arrival of Tsintaosaurini" (PDF). Cretaceous Research. 107: Article 104286. Bibcode:2020CrRes.10704286C. doi:10.1016/j.cretres.2019.104286. hdl:1983/be876efb-979c-4237-94f9-5f8d80121f7e. S2CID 208195457.
  276. ^ Héctor E. Rivera-Sylva; Christina I. Barrón-Ortízb; Rafael l Vivas González; Rosalba Lizbeth Nava Rodríguez; José Rubén Guzmán-Gutiérreza; Fernando Cabral Valdez; Claudio de León Dávila (2019). "Preliminary assessment of hadrosaur dental microwear from the Cerro del Pueblo Formation (Upper Cretaceous: Campanian) of Coahuila, northeastern Mexico". Paleontología Mexicana. 8 (1): 17–28.
  277. ^ Qi Zhao; Michael J. Benton; Shoji Hayashi; Xing Xu (2019). "Ontogenetic stages of ceratopsian dinosaur Psittacosaurus in bone histology". Acta Palaeontologica Polonica. 64 (2): 323–334. doi:10.4202/app.00559.2018.
  278. ^ Claire M. Bullar; Qi Zhao; Michael J. Benton; Michael J. Ryan (2019). "Ontogenetic braincase development in Psittacosaurus lujiatunensis (Dinosauria: Ceratopsia) using micro-computed tomography". PeerJ. 7: e7217. doi:10.7717/peerj.7217. PMC 6698140. PMID 31428535.
  279. ^ Qian-Nan Zhang; James L. King; Da-Qing Li; Ye-Mao Hou; Hai-Lu You (2019). "Endocranial morphology of Auroraceratops sp. (Dinosauria: Ceratopsia) from the Early Cretaceous of Gansu Province, China". Historical Biology: An International Journal of Paleobiology. 32 (10): 1355–1360. doi:10.1080/08912963.2019.1588893. S2CID 91650220.
  280. ^ Marina B. Suarez; Timothy Milder; Nan Peng; Celina A. Suarez; Hailu You; Daqing Li; Peter Dodson (2019). "Chemostratigraphy of the Lower Cretaceous dinosaur-bearing Xiagou and Zhonggou formations, Yujingzi Basin, northwest China". Journal of Vertebrate Paleontology. 38 (Supplement): 12–21. doi:10.1080/02724634.2018.1510412. S2CID 202865132.
  281. ^ Celina A. Suarez; Eric M. Morschhauser; Marina B. Suarez; Hailu You; Daqing Li; Peter Dodson (2019). "Rare earth element geochemistry of bone beds from the Lower Cretaceous Zhonggou Formation of Gansu Province, China". Journal of Vertebrate Paleontology. 38 (Supplement): 22–35. doi:10.1080/02724634.2017.1400441. S2CID 202867203.
  282. ^ Eric M. Morschhauser; Daqing Li; Hailu You; Peter Dodson (2019). "Cranial anatomy of the basal neoceratopsian Auroraceratops rugosus (Ornithischia: Ceratopsia) from the Yujingzi Basin, Gansu Province, China". Journal of Vertebrate Paleontology. 38 (Supplement): 36–68. doi:10.1080/02724634.2017.1399136. S2CID 202867911.
  283. ^ Daqing Li; Eric M. Morschhauser; Hailu You; Peter Dodson (2019). "The anatomy of the syncervical of Auroraceratops (Ornithischia: Ceratopsia), the oldest known ceratopsian syncervical". Journal of Vertebrate Paleontology. 38 (Supplement): 69–74. doi:10.1080/02724634.2018.1510411. S2CID 202865074.
  284. ^ Eric M. Morschhauser; Hailu You; Daqing Li; Peter Dodson (2019). "Postcranial morphology of the basal neoceratopsian (Ornithischia: Ceratopsia) Auroraceratops rugosus from the Early Cretaceous (Aptian–Albian) of northwestern Gansu Province, China". Journal of Vertebrate Paleontology. 38 (Supplement): 75–116. doi:10.1080/02724634.2018.1524383. S2CID 202867095.
  285. ^ Eric M. Morschhauser; Hailu You; Daqing Li; Peter Dodson (2019). "Phylogenetic history of Auroraceratops rugosus (Ceratopsia: Ornithischia) from the Lower Cretaceous of Gansu Province, China". Journal of Vertebrate Paleontology. 38 (Supplement): 117–147. doi:10.1080/02724634.2018.1509866. S2CID 202867827.
  286. ^ Łukasz Czepiński (2019). "Ontogeny and variation of a protoceratopsid dinosaur Bagaceratops rozhdestvenskyi from the Late Cretaceous of the Gobi Desert". Historical Biology: An International Journal of Paleobiology. 32 (10): 1394–1421. doi:10.1080/08912963.2019.1593404. S2CID 132780322.
  287. ^ Bitnara Kim; Hyesu Yun; Yuong-Nam Lee (2019). "The postcranial skeleton of Bagaceratops (Ornithischia: Neoceratopsia) from the Baruungoyot Formation (Upper Cretaceous) in Hermiin Tsav of southwestern Gobi, Mongolia". Journal of the Geological Society of Korea. 55 (2): 179–190. doi:10.14770/jgsk.2019.55.2.179. S2CID 150321203.
  288. ^ Justyna Słowiak; Victor S. Tereshchenko; Łucja Fostowicz-Frelik (2019). "Appendicular skeleton of Protoceratops andrewsi (Dinosauria, Ornithischia): comparative morphology, ontogenetic changes, and the implications for non-ceratopsid ceratopsian locomotion". PeerJ. 7: e7324. doi:10.7717/peerj.7324. PMC 6657679. PMID 31367485.
  289. ^ Brandon P. Hedrick; Erika Goldsmith; Hector Rivera-Sylva; Anthony R. Fiorillo; Allison R. Tumarkin-Deratzian; Peter Dodson (2019). "Filling in gaps in the ceratopsid histologic database: Histology of two basal centrosaurines and an assessment of the utility of rib histology in the Ceratopsidae". The Anatomical Record. 303 (4): 935–948. doi:10.1002/ar.24099. PMID 30773832. S2CID 73475454.
  290. ^ Ronald S. Tykoski; Anthony R. Fiorillo; Kentaro Chiba (2019). "New data and diagnosis for the Arctic ceratopsid dinosaur Pachyrhinosaurus perotorum". Journal of Systematic Palaeontology. 17 (16): 1397–1416. Bibcode:2019JSPal..17.1397T. doi:10.1080/14772019.2018.1532464. S2CID 92034503.
  291. ^ Robert.B. Holmes; Walter Scott Persons; Baltej Singh Rupal; Ahmed Jawad Qureshi; Philip J. Currie (2020). "Morphological variation and asymmetrical development in the skull of Styracosaurus albertensis". Cretaceous Research. 107: Article 104308. Bibcode:2020CrRes.10704308H. doi:10.1016/j.cretres.2019.104308. S2CID 210260909.
  292. ^ James Alexander Campbell; Michael J. Ryan; Claudia J. Schroder-Adams; Robert B. Holmes; David C. Evans (2019). "Temporal range extension and evolution of the chasmosaurine ceratopsid "Vagaceratops" irvinensis (Dinosauria: Ornithischia) in the Upper Cretaceous (Campanian) Dinosaur Park Formation of Alberta". Vertebrate Anatomy Morphology Palaeontology. 7: 83–100. doi:10.18435/vamp29356.
  293. ^ James Alexander Campbell; Michael P.J. Ryan; Jason Anderson (2019). "A taphonomic analysis of a multi-taxic bonebed from the St. Mary River Formation (uppermost Campanian to lowermost Maastrichtian) of Alberta, dominated by cf. Edmontosaurus regalis (Ornithischia: Hadrosauridae), with significant remains of Pachyrhinosaurus canadensis (Ornithischia: Ceratopsidae)". Canadian Journal of Earth Sciences. 57 (5): 617–629. doi:10.1139/cjes-2019-0089. S2CID 210287585.
  294. ^ Maurício S. Garcia; Rodrigo T. Müller; Sérgio Dias-da-Silva (2019). "On the taxonomic status of Teyuwasu barberenai Kischlat, 1999 (Archosauria: Dinosauriformes), a challenging taxon from the Upper Triassic of southern Brazil". Zootaxa. 4629 (1): 146–150. doi:10.11646/zootaxa.4629.1.12. PMID 31712541. S2CID 198274900.
  295. ^ Garcia, Maurício; Pretto, Flávio; Dias-da-Silva, Sérgio; Müller, Rodrigo (2019). "A dinosaur ilium from the Late Triassic of Brazil with comments on key-character supporting Saturnaliinae". Anais da Academia Brasileira de Ciências. 91 (Suppl. 2): e20180614. doi:10.1590/0001-3765201920180614. PMID 31411248.
  296. ^ Maidment, Susannah C. R.; Raven, Thomas J.; Ouarhache, Driss; Barrett, Paul M. (2019). "North Africa's first stegosaur: Implications for Gondwanan thyreophoran dinosaur diversity". Gondwana Research. 77: 82–97. doi:10.1016/j.gr.2019.07.007. ISSN 1342-937X
  297. ^ Prieto-Márquez, Albert; Fondevilla, Víctor; Sellés, Albert G.; Wagner, Jonathan R.; Galobart; Àngel (2019). "Adynomosaurus arcanus, a new lambeosaurine dinosaur from the Late Cretaceous Ibero-Armorican Island of the European Archipelago". Cretaceous Research. 96: 19–37. Bibcode:2019CrRes..96...19P. doi:10.1016/j.cretres.2018.12.002. S2CID 134582286.
  298. ^ Min Wang; Jingmai K. O'Connor; Xing Xu; Zhonghe Zhou (2019). "A new Jurassic scansoriopterygid and the loss of membranous wings in theropod dinosaurs". Nature. 569 (7755): 256–259. Bibcode:2019Natur.569..256W. doi:10.1038/s41586-019-1137-z. PMID 31068719. S2CID 148571099.
  299. ^ Albert Prieto-Márquez; Jonathan R. Wagner; Thomas Lehman (2019). "An unusual 'shovel-billed' dinosaur with trophic specializations from the early Campanian of Trans-Pecos Texas, and the ancestral hadrosaurian crest". Journal of Systematic Palaeontology. 18 (6): 461–498. doi:10.1080/14772019.2019.1625078. S2CID 202018197.
  300. ^ Oliver W. M. Rauhut; Diego Pol (2019). "Probable basal allosauroid from the early Middle Jurassic Cañadón Asfalto Formation of Argentina highlights phylogenetic uncertainty in tetanuran theropod dinosaurs". Scientific Reports. 9 (1): Article number 18826. Bibcode:2019NatSR...918826R. doi:10.1038/s41598-019-53672-7. PMC 6906444. PMID 31827108.
  301. ^ Pablo A. Gallina; Sebastián Apesteguía; Juan I. Canale; Alejandro Haluza (2019). "A new long-spined dinosaur from Patagonia sheds light on sauropod defense system". Scientific Reports. 9 (1): Article number 1392. Bibcode:2019NatSR...9.1392G. doi:10.1038/s41598-018-37943-3. PMC 6362061. PMID 30718633.
  302. ^ Kate A. Andrzejewski; Dale A. Winkler; Louis L. Jacobs (2019). "A new basal ornithopod (Dinosauria: Ornithischia) from the Early Cretaceous of Texas". PLOS ONE. 14 (3): e0207935. Bibcode:2019PLoSO..1407935A. doi:10.1371/journal.pone.0207935. PMC 6413910. PMID 30860999.
  303. ^ Victoria M. Arbour; David C. Evans (2019). "A new leptoceratopsid dinosaur from Maastrichtian-aged deposits of the Sustut Basin, northern British Columbia, Canada". PeerJ. 7: e7926. doi:10.7717/peerj.7926. PMC 6842559. PMID 31720103.
  304. ^ Phil R. Bell; Tom Brougham; Matthew C. Herne; Timothy Frauenfelder; Elizabeth T. Smith (2019). "Fostoria dhimbangunmal, gen. et sp. nov., a new iguanodontian (Dinosauria, Ornithopoda) from the mid-Cretaceous of Lightning Ridge, New South Wales, Australia". Journal of Vertebrate Paleontology. 39 (1): e1564757. Bibcode:2019JVPal..39E4757B. doi:10.1080/02724634.2019.1564757. S2CID 195424096.
  305. ^ Xu-ri Wang; Wen-hao Wu; Tao Li; Qiang Ji; Yin-xian Li; Jin-fang Guo (2019). "A new titanosauriform dinosaur (Dinosauria: Sauropoda) from Late Jurassic of Junggar Basin, Xinjiang". Global Geology. 38 (3): 581–588. doi:10.3969/j.issn.1004-5589.2019.03.001.
  306. ^ Cristian Pacheco; Rodrigo T. Müller; Max Langer; Flávio A. Pretto; Leonardo Kerber; Sérgio Dias da Silva (2019). "Gnathovorax cabreirai: a new early dinosaur and the origin and initial radiation of predatory dinosaurs". PeerJ. 7: e7963. doi:10.7717/peerj.7963. PMC 6844243. PMID 31720108.
  307. ^ Khishigjav Tsogtbaatar; David B. Weishampel; David C. Evans; Mahito Watabe (2019). "A new hadrosauroid (Dinosauria: Ornithopoda) from the Late Cretaceous Baynshire Formation of the Gobi Desert (Mongolia)". PLOS ONE. 14 (4): e0208480. Bibcode:2019PLoSO..1408480T. doi:10.1371/journal.pone.0208480. PMC 6469754. PMID 30995236.
  308. ^ Sungjin Lee; Yuong-Nam Lee; Anusuya Chinsamy; Junchang Lü; Rinchen Barsbold; Khishigjav Tsogtbaatar (2019). "A new baby oviraptorid dinosaur (Dinosauria: Theropoda) from the Upper Cretaceous Nemegt Formation of Mongolia". PLOS ONE. 14 (2): e0210867. Bibcode:2019PLoSO..1410867L. doi:10.1371/journal.pone.0210867. PMC 6364893. PMID 30726228.
  309. ^ Scott Hartman; Mickey Mortimer; William R. Wahl; Dean R. Lomax; Jessica Lippincott; David M. Lovelace (2019). "A new paravian dinosaur from the Late Jurassic of North America supports a late acquisition of avian flight". PeerJ. 7: e7247. doi:10.7717/peerj.7247. PMC 6626525. PMID 31333906.
  310. ^ Ricardo C. Ely; Judd A. Case (2019). "Phylogeny of a new gigantic paravian (Theropoda; Coelurosauria; Maniraptora) from the Upper Cretaceous of James Ross Island, Antarctica". Cretaceous Research. 101: 1–16. Bibcode:2019CrRes.101....1E. doi:10.1016/j.cretres.2019.04.003. S2CID 146325060.
  311. ^ a b c Fernando Novas; Federico Agnolin; Sebastián Rozadilla; Alexis Aranciaga-Rolando; Federico Brissón-Eli; Matias Motta; Mauricio Cerroni; Martín Ezcurra; Agustin Martinelli; Julia D'Angelo; Gerardo Álvarez-Herrera; Adriel Gentil; Sergio Bogan; Nicolas Chimento; Jordi García-Marsà; Gastón Lo Coco; Sergio Miquel; Fatima Brito; Ezequiel Vera; Valeria Loinaze; Mariela Fernandez; Leonardo Salgado (2019). "Paleontological discoveries in the Chorrillo Formation (upper Campanian-lower Maastrichtian, Upper Cretaceous), Santa Cruz Province, Patagonia, Argentina". Revista del Museo Argentino de Ciencias Naturales. Nueva Series. 21 (2): 217–293. doi:10.22179/revmacn.21.655. hdl:11336/122229.
  312. ^ Rafael Matos Lindoso; Manuel Alfredo Araújo Medeiros; Ismar de Souza Carvalho; Agostinha Araújo Pereira; Ighor Dienes Mendes; Fabiano Vidoi Iori; Eliane Pinheiro Sousa; Silvia Helena Souza Arcanjo; Taciane Costa Madeira Silva (2019). "A new rebbachisaurid (Sauropoda: Diplodocoidea) from the middle Cretaceous of northern Brazil". Cretaceous Research. 104: Article 104191. Bibcode:2019CrRes.10404191L. doi:10.1016/j.cretres.2019.104191. S2CID 201321631.
  313. ^ Wu Xiao-chun; Shi Jian-Ru; Dong Li-Yang; Thomas D. Carr; Yi Jian; Xu Shi-Chao (2020). "A new tyrannosauroid from the Upper Cretaceous of Shanxi, China". Cretaceous Research. 108: Article 104357. Bibcode:2020CrRes.10804357W. doi:10.1016/j.cretres.2019.104357. S2CID 214354354.
  314. ^ Leonardo S. Filippi; Leonardo Salgado; Alberto C. Garrido (2019). "A new giant basal titanosaur sauropod in the Upper Cretaceous (Coniacian) of the Neuquén Basin, Argentina". Cretaceous Research. 100: 61–81. Bibcode:2019CrRes.100...61F. doi:10.1016/j.cretres.2019.03.008. S2CID 134843807.
  315. ^ Yoshitsugu Kobayashi; Tomohiro Nishimura; Ryuji Takasaki; Kentaro Chiba; Anthony R. Fiorillo; Kohei Tanaka; Tsogtbaatar Chinzorig; Tamaki Sato; Kazuhiko Sakurai (2019). "A new hadrosaurine (Dinosauria: Hadrosauridae) from the marine deposits of the Late Cretaceous Hakobuchi Formation, Yezo Group, Japan". Scientific Reports. 9 (1): Article number 12389. Bibcode:2019NatSR...912389K. doi:10.1038/s41598-019-48607-1. PMC 6728324. PMID 31488887.
  316. ^ Jialiang Zhang; Xiaolin Wang; Qiang Wang; Shunxing Jiang; Xin Cheng; Ning Li; Rui Qiu (2019). "A new saurolophine hadrosaurid (Dinosauria: Ornithopoda) from the Upper Cretaceous of Shandong, China". Anais da Academia Brasileira de Ciências. 91 (Suppl. 2): e20160920. doi:10.1590/0001-3765201720160920. PMID 28876393.
  317. ^ Rodolfo A. Coria; Philip J. Currie; Francisco Ortega; Mattia A. Baiano (2020). "An Early Cretaceous, medium-sized carcharodontosaurid theropod (Dinosauria, Saurischia) from the Mulichinco Formation (upper Valanginian), Neuquén Province, Patagonia, Argentina". Cretaceous Research. 111: Article 104319. Bibcode:2020CrRes.11104319C. doi:10.1016/j.cretres.2019.104319. hdl:11336/122794. S2CID 214475057.
  318. ^ Xi Yao; Chun-Chi Liao; Corwin Sullivan; Xing Xu (2019). "A new transitional therizinosaurian theropod from the Early Cretaceous Jehol Biota of China". Scientific Reports. 9 (1): Article number 5026. Bibcode:2019NatSR...9.5026Y. doi:10.1038/s41598-019-41560-z. PMC 6430829. PMID 30903000.
  319. ^ Penélope Cruzado-Caballero; José M. Gasca; Leonardo S. Filippi; Ignacio Cerda; Alberto C. Garrido (2019). "A new ornithopod dinosaur from the Santonian of Northern Patagonia (Rincón de los Sauces, Argentina)". Cretaceous Research. 98: 211–229. Bibcode:2019CrRes..98..211C. doi:10.1016/j.cretres.2019.02.014. S2CID 133830733.
  320. ^ Lindsay E. Zanno; Ryan T. Tucker; Aurore Canoville; Haviv M. Avrahami; Terry A. Gates; Peter J. Makovicky (2019). "Diminutive fleet-footed tyrannosauroid narrows the 70-million-year gap in the North American fossil record". Communications Biology. 2: Article number 64. doi:10.1038/s42003-019-0308-7. PMC 6385174. PMID 30820466.
  321. ^ Eric Gorscak; Patrick M. O'Connor (2019). "A new African titanosaurian sauropod dinosaur from the middle Cretaceous Galula Formation (Mtuka Member), Rukwa Rift Basin, southwestern Tanzania". PLOS ONE. 14 (2): e0211412. Bibcode:2019PLoSO..1411412G. doi:10.1371/journal.pone.0211412. PMC 6374010. PMID 30759122.
  322. ^ Sungjin Lee; Jin-Young Park; Yuong-Nam Lee; Su-Hwan Kim; Junchang Lü; Rinchen Barsbold; Khishigjav Tsogtbaatar (2019). "A new alvarezsaurid dinosaur from the Nemegt Formation of Mongolia". Scientific Reports. 9 (1): Article number 15493. Bibcode:2019NatSR...915493L. doi:10.1038/s41598-019-52021-y. PMC 6820876. PMID 31664171.
  323. ^ Kimberley E.J. Chapelle; Paul M. Barrett; Jennifer Botha; Jonah N. Choiniere (2019). "Ngwevu intloko: a new early sauropodomorph dinosaur from the Lower Jurassic Elliot Formation of South Africa and comments on cranial ontogeny in Massospondylus carinatus". PeerJ. 7: e7240. doi:10.7717/peerj.7240. PMC 6687053. PMID 31403001.
  324. ^ Júlio C. A. Marsola; Jonathas S. Bittencourt; Richard J. Butler; Átila A. S. Da Rosa; Juliana M. Sayão; Max C. Langer (2019). "A new dinosaur with theropod affinities from the Late Triassic Santa Maria Formation, South Brazil" (PDF). Journal of Vertebrate Paleontology. 38 (5): e1531878. doi:10.1080/02724634.2018.1531878. S2CID 91999370.
  325. ^ Marion Zahner; Winand Brinkmann (2019). "A Triassic averostran-line theropod from Switzerland and the early evolution of dinosaurs". Nature Ecology & Evolution. 3 (8): 1146–1152. Bibcode:2019NatEE...3.1146Z. doi:10.1038/s41559-019-0941-z. PMC 6669044. PMID 31285577.
  326. ^ Pedro Mocho; Rafael Royo-Torres; Francisco Ortega (2019). "A new macronarian sauropod from the Upper Jurassic of Portugal". Journal of Vertebrate Paleontology. 39 (1): e1578782. Bibcode:2019JVPal..39E8782M. doi:10.1080/02724634.2019.1578782. S2CID 182239988.
  327. ^ Javier Párraga; Albert Prieto-Márquez (2019). "Pareisactus evrostos, a new basal iguanodontian (Dinosauria: Ornithopoda) from the Upper Cretaceous of southwestern Europe". Zootaxa. 4555 (2): 247–258. doi:10.11646/zootaxa.4555.2.5. PMID 30790960. S2CID 73469628.
  328. ^ a b Adun Samathi; Phornphen Chanthasit; P. Martin Sander (2019). "Two new basal coelurosaurian theropod dinosaurs from the Lower Cretaceous Sao Khua Formation of Thailand". Acta Palaeontologica Polonica. 64 (2): 239–260. doi:10.4202/app.00540.2018.
  329. ^ Rodolfo A. Coria; Guillermo J. Windholz; Francisco Ortega; Philip J. Currie (2019). "A new dicraeosaurid sauropod from the Lower Cretaceous (Mulichinco Formation, Valanginian, Neuquén Basin) of Argentina". Cretaceous Research. 93: 33–48. Bibcode:2019CrRes..93...33C. doi:10.1016/j.cretres.2018.08.019. S2CID 135017018.
  330. ^ James G. Napoli; Tyler Hunt; Gregory M. Erickson; Mark A. Norell (2019). "Psittacosaurus amitabha, a new species of ceratopsian dinosaur from the Ondai Sayr locality, central Mongolia". American Museum Novitates (3932): 1–36. doi:10.1206/3932.1. hdl:2246/6953. S2CID 199571348.
  331. ^ Ning Li; Hui Dai; Chao Tan; Xufeng Hu; Zhaoying Wei; Yu Lin; Guangbiao Wei; Deliang Li; Li Meng; Baoqiao Hao; Hailu You; Guangzhao Peng (2020). "A neornithischian dinosaur from the Middle Jurassic Xintiangou Formation of Yunyang, Chongqing, China: the earliest record in Asia". Historical Biology: An International Journal of Paleobiology. 33 (7): 1089–1102. doi:10.1080/08912963.2019.1679129. S2CID 209583081.
  332. ^ Lucio M. Ibiricu; Gabriel A. Casal; Rubén D. Martínez; Marcelo Luna; Juan I. Canale; Bruno N. Álvarez; Bernardo González Riga (2019). "A new ornithopod dinosaur (Dinosauria; Ornithischia) from the Late Cretaceous of central Patagonia". Cretaceous Research. 98: 276–291. Bibcode:2019CrRes..98..276I. doi:10.1016/j.cretres.2019.02.001. S2CID 135066801.
  333. ^ Zichuan Qin; James Clark; Jonah Choiniere; Xing Xu (2019). "A new alvarezsaurian theropod from the Upper Jurassic Shishugou Formation of western China". Scientific Reports. 9 (1): Article number 11727. Bibcode:2019NatSR...911727Q. doi:10.1038/s41598-019-48148-7. PMC 6692367. PMID 31409823.
  334. ^ Duangsuda Chokchaloemwong; Soki Hattori; Elena Cuesta; Pratueng Jintasakul; Masateru Shibata; Yoichi Azuma (2019). "A new carcharodontosaurian theropod (Dinosauria: Saurischia) from the Lower Cretaceous of Thailand". PLOS ONE. 14 (10): e0222489. Bibcode:2019PLoSO..1422489C. doi:10.1371/journal.pone.0222489. PMC 6784982. PMID 31596853.
  335. ^ Sterling J. Nesbitt; Robert K. Denton Jr; Mark A. Loewen; Stephen L. Brusatte; Nathan D. Smith; Alan H. Turner; James I. Kirkland; Andrew T. McDonald; Douglas G. Wolfe (2019). "A mid-Cretaceous tyrannosauroid and the origin of North American end-Cretaceous dinosaur assemblages" (PDF). Nature Ecology & Evolution. 3 (6): 892–899. Bibcode:2019NatEE...3..892N. doi:10.1038/s41559-019-0888-0. hdl:20.500.11820/a6709b34-e3ab-416e-a866-03ba1162b23d. PMID 31061476. S2CID 146115938.
  336. ^ M.A. Cerroni; M.J. Motta; F.L. Agnolín; A.M. Aranciaga Rolando; F. Brissón Egli; F.E. Novas (2020). "A new abelisaurid from the Huincul Formation (Cenomanian-Turonian; Upper Cretaceous) of Río Negro province, Argentina". Journal of South American Earth Sciences. 98: Article 102445. Bibcode:2020JSAES..9802445C. doi:10.1016/j.jsames.2019.102445. S2CID 213781725.
  337. ^ Elisabete Malafaia; José Miguel Gasulla; Fernando Escaso; Iván Narváez; José Luis Sanz; Francisco Ortega (2020). "A new spinosaurid theropod (Dinosauria: Megalosauroidea) from the late Barremian of Vallibona, Spain: Implications for spinosaurid diversity in the Early Cretaceous of the Iberian Peninsula". Cretaceous Research. 106: Article 104221. doi:10.1016/j.cretres.2019.104221. S2CID 202189246.
  338. ^ Max Cardoso Langer; Neurides de Oliveira Martins; Paulo César Manzig; Gabriel de Souza Ferreira; Júlio César de Almeida Marsola; Edison Fortes; Rosana Lima; Lucas Cesar Frediani Sant'ana; Luciano da Silva Vidal; Rosangela Honório da Silva Lorençato; Martín Daniel Ezcurra (2019). "A new desert-dwelling dinosaur (Theropoda, Noasaurinae) from the Cretaceous of south Brazil". Scientific Reports. 9 (1): Article number 9379. Bibcode:2019NatSR...9.9379L. doi:10.1038/s41598-019-45306-9. PMC 6594977. PMID 31243312.
  339. ^ Rui Qiu; Xiaolin Wang; Qiang Wang; Ning Li; Jialiang Zhang; Yiyun Ma (2019). "A new caudipterid from the Lower Cretaceous of China with information on the evolution of the manus of Oviraptorosauria". Scientific Reports. 9 (1): Article number 6431. Bibcode:2019NatSR...9.6431Q. doi:10.1038/s41598-019-42547-6. PMC 6483983. PMID 31024012.
  340. ^ Lida Xing; Tetsuto Miyashita; Donghao Wang; Kechung Niu; Philip J. Currie (2020). "A new compsognathid theropod dinosaur from the oldest assemblage of the Jehol Biota in the Lower Cretaceous Huajiying Formation, northeastern China". Cretaceous Research. 107: Article 104285. Bibcode:2020CrRes.10704285X. doi:10.1016/j.cretres.2019.104285. S2CID 210615455.
  341. ^ S. Apesteguía; J.E. Soto Luzuriaga; P.A. Gallina; J. Tamay Granda; G.A. Guamán Jaramillo (2020). "The first dinosaur remains from the Cretaceous of Ecuador". Cretaceous Research. 108: Article 104345. Bibcode:2020CrRes.10804345A. doi:10.1016/j.cretres.2019.104345. hdl:11336/175377. S2CID 213645743.
  342. ^ Chi Zhang; Min Wang (2019). "Bayesian tip dating reveals heterogeneous morphological clocks in Mesozoic birds". Royal Society Open Science. 6 (7): Article ID 182062. Bibcode:2019RSOS....682062Z. doi:10.1098/rsos.182062. PMC 6689603. PMID 31417697.
  343. ^ Francisco José Serrano; Luis María Chiappe; Paul Palmqvist; Borja Figueirido; John Long; José Luis Sanz (2019). "The effect of long-term atmospheric changes on the macroevolution of birds". Gondwana Research. 65: 86–96. Bibcode:2019GondR..65...86S. doi:10.1016/j.gr.2018.09.002. hdl:2328/38616. S2CID 135203437.
  344. ^ Grunmeier O, D'Emic MD (April 2019). "Scaling of statically derived osteocyte lacunae in extant birds: implications for palaeophysiological reconstruction". Biology Letters. 15 (4): 20180837. doi:10.1098/rsbl.2018.0837. PMC 6501357. PMID 30940024.
  345. ^ Kenta Kawahata; Ingrid Rosenburg Cordeiro; Shogo Ueda; Guojun Sheng; Yuuta Moriyama; Chika Nishimori; Reiko Yu; Makoto Koizumi; Masataka Okabe; Mikiko Tanaka (2019). "Evolution of the avian digital pattern". Scientific Reports. 9 (1): Article number 8560. Bibcode:2019NatSR...9.8560K. doi:10.1038/s41598-019-44913-w. PMC 6561939. PMID 31189916.
  346. ^ Thomas A. Stewart; Cong Liang; Justin L. Cotney; James P. Noonan; Thomas J. Sanger; Günter P. Wagner (2019). "Evidence against tetrapod-wide digit identities and for a limited frame shift in bird wings". Nature Communications. 10 (1): Article number 3244. Bibcode:2019NatCo..10.3244S. doi:10.1038/s41467-019-11215-8. PMC 6642197. PMID 31324809.
  347. ^ Ya-Chun Zhou; Corwin Sullivan; Fu-Cheng Zhang (2019). "Negligible effect of tooth reduction on body mass in Mesozoic birds". Vertebrata PalAsiatica. 57 (1): 38–50. doi:10.19615/j.cnki.1000-3118.180307.
  348. ^ Jingmai O'Connor (2019). "The trophic habits of early birds". Palaeogeography, Palaeoclimatology, Palaeoecology. 513: 178–195. Bibcode:2019PPP...513..178O. doi:10.1016/j.palaeo.2018.03.006. S2CID 133781513.
  349. ^ Jingmai K. O'Connor; Zhonghe Zhou (2019). "The evolution of the modern avian digestive system: insights from paravian fossils from the Yanliao and Jehol biotas". Palaeontology. 63 (1): 13–27. doi:10.1111/pala.12453.
  350. ^ Yonghua Wu; Haifeng Wang (2019). "Convergent evolution of bird-mammal shared characteristics for adapting to nocturnality". Proceedings of the Royal Society B: Biological Sciences. 286 (1897): Article ID 20182185. doi:10.1098/rspb.2018.2185. PMC 6408890. PMID 30963837.
  351. ^ Klara K. Nordén; Jaeike Faber; Frane Babarović; Thomas L. Stubbs; Tara Selly; James D. Schiffbauer; Petra Peharec Štefanić; Gerald Mayr; Fiann Smithwick; Jakob Vinther (2019). "Melanosome diversity and convergence in the evolution of iridescent avian feathers-implications for paleocolor reconstruction". Evolution. 73 (1): 15–27. doi:10.1111/evo.13641. PMC 6587736. PMID 30411346.
  352. ^ Frane Babarović; Mark N. Puttick; Marta Zaher; Elizabeth Learmonth; Emily-Jane Gallimore; Fiann M. Smithwick; Gerald Mayr; Jakob Vinther (2019). "Characterization of melanosomes involved in the production of non-iridescent structural feather colours and their detection in the fossil record". Journal of the Royal Society Interface. 16 (155): Article ID 20180921. doi:10.1098/rsif.2018.0921. PMC 6597762. PMID 31238836.
  353. ^ Victoria E. McCoy; Sarah E. Gabbott; Kirsty Penkman; Matthew J. Collins; Samantha Presslee; John Holt; Harrison Grossman; Bo Wang; Monica M. Solórzano Kraemer; Xavier Delclòs; Enrique Peñalver (2019). "Ancient amino acids from fossil feathers in amber". Scientific Reports. 9 (1): Article number 6420. Bibcode:2019NatSR...9.6420M. doi:10.1038/s41598-019-42938-9. PMC 6478714. PMID 31015542.
  354. ^ Nathan R. Carroll; Luis M. Chiappe; David J. Bottjer (2019). "Mid-Cretaceous amber inclusions reveal morphogenesis of extinct rachis-dominated feathers". Scientific Reports. 9 (1): Article number 18108. Bibcode:2019NatSR...918108C. doi:10.1038/s41598-019-54429-y. PMC 6889117. PMID 31792276.
  355. ^ Federico L. Agnolin; Sebastián Rozadilla; Ismar de Souza Carvalho (2019). "Praeornis sharovi Rautian, 1978 a fossil feather from the early Late Jurassic of Kazakhstan". Historical Biology: An International Journal of Paleobiology. 31 (7): 962–966. Bibcode:2019HBio...31..962A. doi:10.1080/08912963.2017.1413102. hdl:11422/3324. S2CID 55885911.
  356. ^ Thomas G. Kaye; Michael Pittman; Gerald Mayr; Daniela Schwarz; Xing Xu (2019). "Detection of lost calamus challenges identity of isolated Archaeopteryx feather". Scientific Reports. 9 (1): Article number 1182. Bibcode:2019NatSR...9.1182K. doi:10.1038/s41598-018-37343-7. PMC 6362147. PMID 30718905.
  357. ^ Ryan M. Carney; Helmut Tischlinger; Matthew D. Shawkey (2020). "Evidence corroborates identity of isolated fossil feather as a wing covert of Archaeopteryx". Scientific Reports. 10 (1): Article number 15593. Bibcode:2020NatSR..1015593C. doi:10.1038/s41598-020-65336-y. PMC 7528088. PMID 32999314.
  358. ^ Daniela Schwarz; Martin Kundrát; Helmut Tischlinger; Gareth Dyke; Ryan M. Carney (2019). "Ultraviolet light illuminates the avian nature of the Berlin Archaeopteryx skeleton". Scientific Reports. 9 (1): Article number 6518. Bibcode:2019NatSR...9.6518S. doi:10.1038/s41598-019-42823-5. PMC 6482141. PMID 31019224.
  359. ^ Min Wang; Jingmai O'Connor; Zhong-He Zhou (2019). "A taxonomical revision of the Confuciusornithiformes (Aves: Pygostylia)". Vertebrata PalAsiatica. 57 (1): 1–37. doi:10.19615/j.cnki.1000-3118.180530.
  360. ^ Amanda Falk; Jingmai O'Connor; Min Wang; Zhonghe Zhou (2019). "On the preservation of the beak in Confuciusornis (Aves: Pygostylia)". Diversity. 11 (11): Article 212. doi:10.3390/d11110212.
  361. ^ Anusuya Chinsamy; Jesús Marugán-Lobón; Francisco J. Serrano; Luis Chiappe (2019). "Osteohistology and life history of the basal pygostylian, Confuciusornis sanctus". The Anatomical Record. 303 (4): 949–962. doi:10.1002/ar.24282. PMID 31751500. S2CID 208229215.
  362. ^ Fabien Knoll; Luis M. Chiappe; Sophie Sanchez; Russell J. Garwood; Nicholas P. Edwards; Roy A. Wogelius; William I. Sellers; Phillip L. Manning; Francisco Ortega; Francisco J. Serrano; Jesús Marugán-Lobón; Elena Cuesta; Fernando Escaso; Jose Luis Sanz (2018). "A diminutive perinate European Enantiornithes reveals an asynchronous ossification pattern in early birds". Nature Communications. 9 (1): Article number 937. Bibcode:2018NatCo...9..937K. doi:10.1038/s41467-018-03295-9. PMC 5838198. PMID 29507288.
  363. ^ Thomas G. Kaye; Michael Pittman; Jesús Marugán-Lobón; Hugo Martín-Abad; José Luis Sanz; Angela D. Buscalioni (2019). "Fully fledged enantiornithine hatchling revealed by Laser-Stimulated Fluorescence supports precocial nesting behavior". Scientific Reports. 9 (1): Article number 5006. Bibcode:2019NatSR...9.5006K. doi:10.1038/s41598-019-41423-7. PMC 6428842. PMID 30899080.
  364. ^ Lida Xing; Ryan C. McKellar; Jingmai O'Connor; Ming Bai; Kuowei Tseng; Luis M. Chiappe (2019). "A fully feathered enantiornithine foot and wing fragment preserved in mid-Cretaceous Burmese amber". Scientific Reports. 9 (1): Article number 927. Bibcode:2019NatSR...9..927X. doi:10.1038/s41598-018-37427-4. PMC 6353931. PMID 30700773.
  365. ^ Alexander D. Clark; Jingmai K. O'Connor (2021). "Exploring the Ecomorphology of Two Cretaceous Enantiornithines With Unique Pedal Morphology". Frontiers in Ecology and Evolution. 9: Article 654156. doi:10.3389/fevo.2021.654156.
  366. ^ Lida Xing; Ryan C. McKellar; Jingmai K. O'Connor; Kecheng Niu; Huijuan Mai (2019). "A mid-Cretaceous enantiornithine foot and tail feather preserved in Burmese amber". Scientific Reports. 9 (1): Article number 15513. Bibcode:2019NatSR...915513X. doi:10.1038/s41598-019-51929-9. PMC 6820775. PMID 31664115.
  367. ^ Jingmai O'Connor; Amanda Falk; Min Wang; Xiao-Ting Zheng (2019). "First report of immature feathers in juvenile enantiornithines from the Early Cretaceous Jehol avifauna". Vertebrata PalAsiatica. 58 (1): 24–44. doi:10.19615/j.cnki.1000-3118.190823.
  368. ^ Luis M. Chiappe; Liu Di; Francisco J. Serrano; Zhang Yuguang; Qingjin Meng (2019). "Anatomy and flight performance of the early enantiornithine bird Protopteryx fengningensis: information from new specimens of the Early Cretaceous Huajiying Formation of China". The Anatomical Record. 303 (4): 716–731. doi:10.1002/ar.24322. PMID 31825173. S2CID 209313158.
  369. ^ Junyou Wang; Xiuzhi Hao; Martin Kundrát; Zhiping Liu; Kentaro Uesugi; Zuzana Jurašeková; Bin Guo; Masato Hoshino; Yaoquan Li; Quentin Monfroy; Bin Zhou; Gabriela Fabriciová; Ai Kang; Mei Wang; Yunhui Si; Jie Gao; Guo Xu; Zhen Li (2019). "Bone tissue histology of the Early Cretaceous bird Yanornis: evidence for a diphyletic origin of modern avian growth strategies within Ornithuromorpha". Historical Biology: An International Journal of Paleobiology. 32 (10): 1422–1434. doi:10.1080/08912963.2019.1593405. S2CID 108704489.
  370. ^ Alida M. Bailleul; Zhiheng Li; Jingmai O'Connor; Zhonghe Zhou (2019). "Origin of the avian predentary and evidence of a unique form of cranial kinesis in Cretaceous ornithuromorphs". Proceedings of the National Academy of Sciences of the United States of America. 116 (49): 24696–24706. Bibcode:2019PNAS..11624696B. doi:10.1073/pnas.1911820116. PMC 6900542. PMID 31740590.
  371. ^ Alyssa Bell; Yun-Hsin Wu; Luis M. Chiappe (2019). "Morphometric comparison of the Hesperornithiformes and modern diving birds". Palaeogeography, Palaeoclimatology, Palaeoecology. 513: 196–207. Bibcode:2019PPP...513..196B. doi:10.1016/j.palaeo.2017.12.010. S2CID 133964417.
  372. ^ Laura E. Wilson (2019). "A bird's eye view: hesperornithiforms as environmental indicators in the Late Cretaceous Western Interior Seaway". Transactions of the Kansas Academy of Science. 122 (3–4): 193–213. doi:10.1660/062.122.0302. S2CID 207933625.
  373. ^ Eric Buffetaut; Delphine Angst (2019). "A femur of the Late Cretaceous giant bird Gargantuavis from Cruzy (southern France) and its systematic implications". Palæovertebrata. 42 (1): e3. doi:10.18563/pv.42.1.e3. S2CID 198403535.
  374. ^ Gerald Mayr; Vlad Codrea; Alexandru Solomon; Marian Bordeianu; Thierry Smith (2020). "A well-preserved pelvis from the Maastrichtian of Romania suggests that the enigmatic Gargantuavis is neither an ornithurine bird nor an insular endemic". Cretaceous Research. 106: Article 104271. Bibcode:2020CrRes.10604271M. doi:10.1016/j.cretres.2019.104271. S2CID 210302354.
  375. ^ Eric Buffetaut; Delphine Angst (2020). "Gargantuavis is an insular basal ornithurine: a comment on Mayr et al., 2020, 'A well-preserved pelvis from the Maastrichtian of Romania suggests that the enigmatic Gargantuavis is neither an ornithurine bird nor an insular endemic'". Cretaceous Research. 112: Article 104438. Bibcode:2020CrRes.11204438B. doi:10.1016/j.cretres.2020.104438. S2CID 219047539.
  376. ^ Gerald Mayr; Vlad Codrea; Alexandru Solomon; Marian Bordeianu; Thierry Smith (2020). "Reply to comments on "A well-preserved pelvis from the Maastrichtian of Romania suggests that the enigmatic Gargantuavis is neither an ornithurine bird nor an insular endemic"". Cretaceous Research. 112: Article 104465. Bibcode:2020CrRes.11204465M. doi:10.1016/j.cretres.2020.104465. S2CID 216228480.
  377. ^ Nicholas M.A. Crouch; Julia A. Clarke (2019). "Body size evolution in palaeognath birds is consistent with Neogene cooling-linked gigantism". Palaeogeography, Palaeoclimatology, Palaeoecology. 532: Article 109224. Bibcode:2019PPP...53209224C. doi:10.1016/j.palaeo.2019.05.046. S2CID 195546508.
  378. ^ Gerald Mayr (2019). "Hindlimb morphology of Palaeotis suggests palaeognathous affinities of the Geranoididae and other "crane-like" birds from the Eocene of the Northern Hemisphere". Acta Palaeontologica Polonica. 64 (4): 669–678. doi:10.4202/app.00650.2019.
  379. ^ Christopher R. Torres; Mark A. Norell; Julia A. Clarke (2019). "Estimating flight style of Early Eocene stem palaeognath bird Calciavis grandei (Lithornithidae)". The Anatomical Record. 303 (4): 1035–1042. doi:10.1002/ar.24207. PMID 31313482. S2CID 197423827.
  380. ^ Jennifer M. Miller; Elizabeth A. Sawchuk (2019). "Ostrich eggshell bead diameter in the Holocene: Regional variation with the spread of herding in eastern and southern Africa". PLOS ONE. 14 (11): e0225143. Bibcode:2019PLoSO..1425143M. doi:10.1371/journal.pone.0225143. PMC 6880992. PMID 31774851.
  381. ^ Cinthia Carolina Abbona; Ophélie Lebrasseur; Jeff Johnson; Miguel Giardina; Gustavo Neme; Steve Wolverton (2019). "Analysis of ancient DNA from South American rhea bones: Implications for zooarchaeology and biogeography". Journal of Archaeological Science: Reports. 25: 624–631. Bibcode:2019JArSR..25..624A. doi:10.1016/j.jasrep.2019.05.035. S2CID 189982843.
  382. ^ Jamie R. Wood; Janet M. Wilmshurst (2019). "Comparing the effects of asynchronous herbivores on New Zealand montane vegetation communities". PLOS ONE. 14 (4): e0214959. Bibcode:2019PLoSO..1414959W. doi:10.1371/journal.pone.0214959. PMC 6448933. PMID 30947249.
  383. ^ Peter J. Bishop; R. Paul Scofield; Scott A. Hocknull (2019). "The architecture of cancellous bone in the hindlimb of moa (Aves: Dinornithiformes), with implications for stance and gait" (PDF). Alcheringa: An Australasian Journal of Palaeontology. 43 (4): 612–628. Bibcode:2019Alch...43..612B. doi:10.1080/03115518.2019.1594380. S2CID 164788521.
  384. ^ A. David M. Latham; M. Cecilia Latham; Janet M. Wilmshurst; David M. Forsyth; Andrew M. Gormley; Roger P. Pech; George L. W. Perry; Jamie R. Wood (2020). "A refined model of body mass and population density in flightless birds reconciles extreme bimodal population estimates for extinct moa". Ecography. 43 (3): 353–364. Bibcode:2020Ecogr..43..353L. doi:10.1111/ecog.04917.
  385. ^ Nikita V. Zelenkov; Alexander V. Lavrov; Dmitry B. Startsev; Innessa A. Vislobokova; Alexey V. Lopatin (2019). "A giant early Pleistocene bird from eastern Europe: unexpected component of terrestrial faunas at the time of early Homo arrival". Journal of Vertebrate Paleontology. 39 (2): e1605521. Bibcode:2019JVPal..39E5521Z. doi:10.1080/02724634.2019.1605521. S2CID 198384367.
  386. ^ Jordi Alexis Garcia Marsà; Federico L. Agnolín; Fernando Novas (2019). "Bone microstructure of Vegavis iaai (Aves, Anseriformes) from the Upper Cretaceous of Vega Island, Antarctic Peninsula". Historical Biology: An International Journal of Paleobiology. 31 (2): 163–167. Bibcode:2019HBio...31..163M. doi:10.1080/08912963.2017.1348503. S2CID 133907659.
  387. ^ Géraldine Garcia; Cécile Mourer-Chauviré; Mohammed Adaci; Mustapha Bensalah; Fateh Mebrouk; Xavier Valentin; M'hammed Mahboubi; Rodolphe Tabuce (2020). "First discovery of avian egg and bone remains (Presbyornithidae) from the Gour Lazib (Eocene, Algeria)" (PDF). Journal of African Earth Sciences. 162: Article 103666. Bibcode:2020JAfES.16203666G. doi:10.1016/j.jafrearsci.2019.103666. S2CID 210607715.
  388. ^ Judd A. Case; Marcelo Reguero; James E. Martin; Amanda Cordes-Person (2006). "A cursorial bird from the Maastrichtian of Antarctica". Journal of Vertebrate Paleontology. 26 (Supplement to Number 3): 48A. doi:10.1080/02724634.2006.10010069. S2CID 220413406.
  389. ^ Abagael R. West; Christopher R. Torres; Judd A. Case; Julia A. Clarke; Patrick M. O'Connor; Matthew C. Lamanna (2019). "An avian femur from the Late Cretaceous of Vega Island, Antarctic Peninsula: removing the record of cursorial landbirds from the Mesozoic of Antarctica". PeerJ. 7: e7231. doi:10.7717/peerj.7231. PMC 6626523. PMID 31333904.
  390. ^ Ricardo Santiago De Mendoza; Claudia P. Tambussi (2019). "Cayaoa bruneti (Aves: Anseriformes) from the Early Miocene of Patagonia, Argentina: new materials and revised diagnosis". Ameghiniana. 56 (3): 213–227. doi:10.5710/AMGH.24.05.2019.3199. S2CID 195535034.
  391. ^ Ricardo S. De Mendoza (2019). "Phylogenetic relationships of the Early Miocene diving and flightless duck Cayaoa bruneti (Aves, Anatidae) from Patagonia: homology or convergence?". Papers in Palaeontology. 5 (4): 743–751. Bibcode:2019PPal....5..743D. doi:10.1002/spp2.1268. S2CID 196650908.
  392. ^ N.V. Zelenkov (2019). "Cenozoic evolution of Eurasian anatids (Aves: Anatidae s. l.)". Zhurnal Obshcheĭ Biologii. 80 (5): 323–333. Bibcode:2020BioBR..10..417Z. doi:10.1134/S2079086420050096.
  393. ^ N.V. Zelenkov (2019). "Systematic position of Palaeortyx (Aves, ?Phasianidae) and notes on the evolution of Phasianidae". Paleontological Journal. 53 (2): 194–202. Bibcode:2019PalJ...53..194Z. doi:10.1134/S0031030119020138. S2CID 195319349.
  394. ^ Albert Chen; Noor D. White; Roger B.J. Benson; Michael J. Braun; Daniel J. Field (2019). "Total-evidence framework reveals complex morphological evolution in nightbirds (Strisores)". Diversity. 11 (9): Article 143. doi:10.3390/d11090143.
  395. ^ Grace Musser; Daniel T. Ksepka; Daniel J. Field (2019). "New material of Paleocene-Eocene Pellornis (Aves: Gruiformes) clarifies the pattern and timing of the extant gruiform radiation". Diversity. 11 (7): Article 102. doi:10.3390/d11070102.
  396. ^ Alexander P. Boast; Brendan Chapman; Michael B. Herrera; Trevor H. Worthy; R. Paul Scofield; Alan J. D. Tennyson; Peter Houde; Michael Bunce; Alan Cooper; Kieren J. Mitchell (2019). "Mitochondrial genomes from New Zealand's extinct adzebills (Aves: Aptornithidae: Aptornis) support a sister-taxon relationship with the Afro-Madagascan Sarothruridae". Diversity. 11 (2): Article 24. doi:10.3390/d11020024. hdl:2440/119533.
  397. ^ Grace M. Musser; Joel Cracraft (2019). "A new morphological dataset reveals a novel relationship for the adzebills of New Zealand (Aptornis) and provides a foundation for total evidence neoavian phylogenetics". American Museum Novitates (3927): 1–70. doi:10.1206/3927.1. hdl:2246/6937. S2CID 155704891.
  398. ^ Julian P. Hume; David Martill (2019). "Repeated evolution of flightlessness in Dryolimnas rails (Aves: Rallidae) after extinction and recolonization on Aldabra". Zoological Journal of the Linnean Society. 186 (3): 666–672. doi:10.1093/zoolinnean/zlz018.
  399. ^ Janske van de Crommenacker; Nancy Bunbury; Hazel A. Jackson; Lisa J. Nupen; Ross Wanless; Frauke Fleischer-Dogley; Jim J. Groombridge; Ben H. Warren (2019). "Rapid loss of flight in the Aldabra white-throated rail". PLOS ONE. 14 (12): e0226064. Bibcode:2019PLoSO..1426064V. doi:10.1371/journal.pone.0226064. PMC 6927662. PMID 31869373.
  400. ^ a b Julian Pender Hume (2019). "Systematics, morphology and ecology of rails (Aves: Rallidae) of the Mascarene Islands, with one new species". Zootaxa. 4626 (1): 1–107. doi:10.11646/zootaxa.4626.1.1. PMID 31712544. S2CID 198258434.
  401. ^ Tereza Senfeld; Thomas J. Shannon; Hein Van Grouw; Dane M. Paijmans; Erika S. Tavares; Allan J. Baker; Alexander C. Lees; J. Martin Collinson (2019). "Taxonomic status of the extinct Canary Islands Oystercatcher Haematopus meadewaldoi" (PDF). Ibis. 162 (3): 1068–1074. doi:10.1111/ibi.12778. S2CID 202852004.
  402. ^ Vanesa L. De Pietri; Gerald Mayr; R. Paul Scofield (2019). "Becassius charadriioides, an early Miocene pratincole-like bird from France: with comments on the early evolutionary history of the Glareolidae (Aves, Charadriiformes)". PalZ. 94 (1): 107–124. doi:10.1007/s12542-019-00469-8. S2CID 197556472.
  403. ^ Mariana B. J. Picasso; Ricardo S. De Mendoza; Javier N. Gelfo (2019). "A seedsnipe (Aves, Charadriiformes, Thinocoridae) from the Ensenadan Age/Stage (early-middle Pleistocene) of Buenos Aires, Argentina". Historical Biology: An International Journal of Paleobiology. 31 (3): 363–370. Bibcode:2019HBio...31..363P. doi:10.1080/08912963.2017.1370647. S2CID 134535674.
  404. ^ Jessica E Thomas; Gary R Carvalho; James Haile; Nicolas J Rawlence; Michael D Martin; Simon YW Ho; Arnór Þ Sigfússon; Vigfús A Jósefsson; Morten Frederiksen; Jannie F Linnebjerg; Jose A Samaniego Castruita; Jonas Niemann; Mikkel-Holger S Sinding; Marcela Sandoval-Velasco; André ER Soares; Robert Lacy; Christina Barilaro; Juila Best; Dirk Brandis; Chiara Cavallo; Mikelo Elorza; Kimball L Garrett; Maaike Groot; Friederike Johansson; Jan T Lifjeld; Göran Nilson; Dale Serjeanston; Paul Sweet; Errol Fuller; Anne Karin Hufthammer; Morten Meldgaard; Jon Fjeldså; Beth Shapiro; Michael Hofreiter; John R Stewart; M Thomas P Gilbert; Michael Knap (2019). "Demographic reconstruction from ancient DNA supports rapid extinction of the great auk". eLife. 8: e47509. doi:10.7554/eLife.47509. PMC 6879203. PMID 31767056.
  405. ^ Piotr Jadwiszczak; Bruce M. Rothschild (2019). "The first evidence of an infectious disease in early penguins". Historical Biology: An International Journal of Paleobiology. 31 (2): 177–180. Bibcode:2019HBio...31..177J. doi:10.1080/08912963.2017.1353606. S2CID 91005097.
  406. ^ Piotr Jadwiszczak; Thomas Mörs (2019). "First partial skeleton of Delphinornis larseni Wiman, 1905, a slender-footed penguin from the Eocene of Antarctic Peninsula". Palaeontologia Electronica. 22 (2): Article number 22.2.32. doi:10.26879/933.
  407. ^ Carolina Acosta Hospitaleche; Nadia Haidr; Ariana Paulina-Carabajal; Marcelo Reguero (2019). "The first skull of Anthropornis grandis (Aves, Sphenisciformes) associated with postcranial elements". Comptes Rendus Palevol. 18 (6): 599–617. Bibcode:2019CRPal..18..599A. doi:10.1016/j.crpv.2019.06.003. hdl:11336/121923.
  408. ^ Daniel B. Thomas; Daniel T. Ksepka; Emma J. Holvast; Alan J. D. Tennyson; Paul Scofield (2019). "Re-evaluating New Zealand's endemic Pliocene penguin genus". New Zealand Journal of Geology and Geophysics. 63 (3): 324–330. doi:10.1080/00288306.2019.1699583. S2CID 213289076.
  409. ^ Carolina Acosta Hospitaleche; Washington W. Jones; Felipe H. Montenegro; Andrés Rinderknecht; Deyvit Chappore (2019). "First penguin fossil (Aves, Spheniscidae) from Uruguay". Journal of South American Earth Sciences. 96: Article 102332. Bibcode:2019JSAES..9602332A. doi:10.1016/j.jsames.2019.102332. S2CID 202899752.
  410. ^ Yuesong Gao; Lianjiao Yang; Wenqing Yang; Yuhong Wang; Zhouqing Xie; Liguang Sun (2019). "Dynamics of penguin population size and food availability at Prydz Bay, East Antarctica, during the last millennium: A solar control". Palaeogeography, Palaeoclimatology, Palaeoecology. 516: 220–231. Bibcode:2019PPP...516..220G. doi:10.1016/j.palaeo.2018.11.027. S2CID 134166687.
  411. ^ Renato Pereira Lopes; Jamil Corrêa Pereira; Jorge Ferigolo (2019). "A late Pleistocene fossil stork (Ciconiiformes: Ciconiidae) from the Santa Vitória Formation, Southern Brazil and its paleoenvironmental significance". Revista Brasileira de Paleontologia. 22 (3): 199–216. doi:10.4072/rbp.2019.3.03.
  412. ^ Piotr Jadwiszczak; Andrzej Gaździcki; Andrzej Tatur (2008). "An ibis-like bird from the Upper La Meseta Formation (Late Eocene) of Seymour Island, Antarctica". Antarctic Science. 20 (4): 413–414. doi:10.1017/S0954102008000977. S2CID 128551334.
  413. ^ Federico Lisandro Agnolin; Sergio Bogan; Sebastián Rozadilla (2019). "Were ibises (Aves, Threskiornithidae) present in Antarctica?". Antarctic Science. 31 (1): 35–36. doi:10.1017/S0954102018000512. S2CID 134545946.
  414. ^ Nicholas M. A. Crouch; Roberta Mason-Gamer (2019). "Mass estimation of extinct taxa and phylogenetic hypotheses both influence analyses of character evolution in a large clade of birds (Telluraves)". Proceedings of the Royal Society B: Biological Sciences. 286 (1917): Article ID 20191745. doi:10.1098/rspb.2019.1745. PMC 6939909. PMID 31847761.
  415. ^ Paula L. Perrig; Emily D. Fountain; Sergio A. Lambertucci; Jonathan N. Pauli (2019). "Demography of avian scavengers after Pleistocene megafaunal extinction". Scientific Reports. 9 (1): Article number 9680. Bibcode:2019NatSR...9.9680P. doi:10.1038/s41598-019-45769-w. PMC 6609603. PMID 31273237.
  416. ^ David W. Steadman; Juan N. Almonte Milan; Alexis M. Mychajliw (2019). "An extinct eagle (Aves: Accipitridae) from the Quaternary of Hispaniola". Journal of Raptor Research. 53 (3): 319–333. doi:10.3356/JRR-18-769. S2CID 199571353.
  417. ^ Michael Knapp; Jessica E. Thomas; James Haile; Stefan Prost; Simon Y.W. Ho; Nicolas Dussex; Sophia Cameron-Christie; Olga Kardailsky; Ross Barnett; Michael Bunce; M. Thomas P. Gilbert; R. Paul Scofield (2019). "Mitogenomic evidence of close relationships between New Zealand's extinct giant raptors and small-sized Australian sister-taxa". Molecular Phylogenetics and Evolution. 134: 122–128. Bibcode:2019MolPE.134..122K. doi:10.1016/j.ympev.2019.01.026. PMID 30753886. S2CID 73420145.
  418. ^ Stewart Finlayson; Geraldine Finlayson; Francisco Giles Guzman; Clive Finlayson (2019). "Neanderthals and the cult of the Sun Bird". Quaternary Science Reviews. 217: 217–224. Bibcode:2019QSRv..217..217F. doi:10.1016/j.quascirev.2019.04.010. S2CID 149949579.
  419. ^ A. Rodríguez-Hidalgo; J. I. Morales; A. Cebrià; L. A. Courtenay; J. L. Fernández-Marchena; G. García-Argudo; J. Marín; P. Saladié; M. Soto; J.-M. Tejero; J.-M. Fullola (2019). "The Châtelperronian Neanderthals of Cova Foradada (Calafell, Spain) used imperial eagle phalanges for symbolic purposes". Science Advances. 5 (11): eaax1984. Bibcode:2019SciA....5.1984R. doi:10.1126/sciadv.aax1984. PMC 6824858. PMID 31701003.
  420. ^ Meena Madan; Donald R. Prothero; Valerie J.P. Syverson (2019). "Stasis in the smaller owls from Rancho La Brea during the last glacial-interglacial climate change". Palaeontologia Electronica. 22 (3): Article number 22.3.70. doi:10.26879/960. hdl:1983/66a94d7f-e065-40cb-8a90-55c954884cf4.
  421. ^ Jenna M. McCullough; Robert G. Moyle; Brian T. Smith; Michael J. Andersen (2019). "A Laurasian origin for a pantropical bird radiation is supported by genomic and fossil data (Aves: Coraciiformes)". Proceedings of the Royal Society B: Biological Sciences. 286 (1910): Article ID 20190122. doi:10.1098/rspb.2019.0122. PMC 6742990. PMID 31506056.
  422. ^ Federico J. Degrange; Drew Eddy; Pablo Puerta; Julia Clarke (2019). "New skull remains of Phorusrhacos longissimus (Aves, Cariamiformes) from the Miocene of Argentina: implications for the morphology of Phorusrhacidae". Journal of Paleontology. 93 (6): 1221–1233. Bibcode:2019JPal...93.1221D. doi:10.1017/jpa.2019.53. S2CID 199094122.
  423. ^ Jessica A. Oswald; Julia M. Allen; Kelsey E. Witt; Ryan A. Folk; Nancy A. Albury; David W. Steadman; Robert P. Guralnick (2019). "Ancient DNA from a 2,500-year-old Caribbean fossil places an extinct bird (Caracara creightoni) in a phylogenetic context". Molecular Phylogenetics and Evolution. 140: Article 106576. Bibcode:2019MolPE.14006576O. doi:10.1016/j.ympev.2019.106576. PMID 31381968. S2CID 199452613.
  424. ^ Gerald Mayr; Philip D. Gingerich; Thierry Smith (2019). "Calcardea junnei Gingerich, 1987 from the late Paleocene of North America is not a heron, but resembles the early Eocene Indian taxon Vastanavis Mayr et al., 2007". Journal of Paleontology. 93 (2): 359–367. Bibcode:2019JPal...93..359M. doi:10.1017/jpa.2018.85. S2CID 134577618.
  425. ^ Anthony S. Cheke; Justin J. F. J. Jansen (2016). "An enigmatic parakeet – the disputed provenance of an Indian Ocean Psittacula". Ibis. 158 (2): 439–443. doi:10.1111/ibi.12347.
  426. ^ Carl G. Jones; Hazel A. Jackson; Robert Y. McGowan; Julian P. Hume; Joseph M. Forshaw; Vikash Tatayah; Ria Winters; Jim J. Groombridge (2019). "A parakeet specimen held at National Museums Scotland is a unique skin of the extinct Réunion Parakeet Psittacula eques eques: a reply to Cheke and Jansen (2016)". Ibis. 161 (1): 230–238. doi:10.1111/ibi.12673. hdl:10141/622482.
  427. ^ Pere Gelabert; Marcela Sandoval-Velasco; Aitor Serres; Marc de Manuel; Pere Renom; Ashot Margaryan; Josefin Stiller; Toni de-Dios; Qi Fang; Shaohong Feng; Santi Mañosa; George Pacheco; Manuel Ferrando-Bernal; Guolin Shi; Fei Hao; Xianqing Chen; Bent Petersen; Remi-André Olsen; Arcadi Navarro; Yuan Deng; Love Dalén; Tomàs Marquès-Bonet; Guojie Zhang; Agostinho Antunes; M. Thomas P. Gilbert; Carles Lalueza-Fox (2019). "Evolutionary history, genomic adaptation to toxic diet, and extinction of the Carolina parakeet". Current Biology. 30 (1): 108–114.e5. doi:10.1016/j.cub.2019.10.066. hdl:10230/43920. PMID 31839456.
  428. ^ Carl H. Oliveros; Daniel J. Field; Daniel T. Ksepka; F. Keith Barker; Alexandre Aleixo; Michael J. Andersen; Per Alström; Brett W. Benz; Edward L. Braun; Michael J. Braun; Gustavo A. Bravo; Robb T. Brumfield; R. Terry Chesser; Santiago Claramunt; Joel Cracraft; Andrés M. Cuervo; Elizabeth P. Derryberry; Travis C. Glenn; Michael G. Harvey; Peter A. Hosner; Leo Joseph; Rebecca T. Kimball; Andrew L. Mack; Colin M. Miskelly; A. Townsend Peterson; Mark B. Robbins; Frederick H. Sheldon; Luís Fábio Silveira; Brian Tilston Smith; Noor D. White; Robert G. Moyle; Brant C. Faircloth (2019). "Earth history and the passerine superradiation". Proceedings of the National Academy of Sciences of the United States of America. 116 (16): 7916–7925. Bibcode:2019PNAS..116.7916O. doi:10.1073/pnas.1813206116. PMC 6475423. PMID 30936315.
  429. ^ Nicolas Dussex; Johanna von Seth; Michael Knapp; Olga Kardailsky; Bruce C. Robertson; Love Dalén (2019). "Complete genomes of two extinct New Zealand passerines show responses to climate fluctuations but no evidence for genomic erosion prior to extinction". Biology Letters. 15 (9): Article ID 20190491. doi:10.1098/rsbl.2019.0491. PMC 6769136. PMID 31480938.
  430. ^ Carolina Acosta Hospitaleche; Piotr Jadwiszczak; Julia A. Clarke; Marcos Cenizo (2019). "The fossil record of birds from the James Ross Basin, West Antarctica". Advances in Polar Science. 30 (3): 251–273. doi:10.13679/j.advps.2019.0014.
  431. ^ Erin E. Saupe; Alexander Farnsworth; Daniel J. Lunt; Navjit Sagoo; Karen V. Pham; Daniel J. Field (2019). "Climatic shifts drove major contractions in avian latitudinal distributions throughout the Cenozoic". Proceedings of the National Academy of Sciences of the United States of America. 116 (26): 12895–12900. Bibcode:2019PNAS..11612895S. doi:10.1073/pnas.1903866116. PMC 6601418. PMID 31182570.
  432. ^ Gerald Mayr; Sophie Hervet; Eric Buffetaut (2019). "On the diverse and widely ignored Paleocene avifauna of Menat (Puy-de-Dôme, France): new taxonomic records and unusual soft tissue preservation". Geological Magazine. 156 (3): 572–584. Bibcode:2019GeoM..156..572M. doi:10.1017/S0016756818000080. S2CID 133878360.
  433. ^ Gerald Mayr; Thierry Smith (2019). "New Paleocene bird fossils from the North Sea Basin in Belgium and France". Geologica Belgica. 22 (1–2): 35–46. doi:10.20341/gb.2019.003.
  434. ^ Gerald Mayr; S. Bruce Archibald; Gary Kaiser; Rolf W. Mathewes (2019). "Early Eocene (Ypresian) birds from the Okanagan Highlands, British Columbia (Canada) and Washington State (USA)". Canadian Journal of Earth Sciences. 56 (8): 803–813. Bibcode:2019CaJES..56..803M. doi:10.1139/cjes-2018-0267. S2CID 135271937.
  435. ^ Gerald Mayr; Thierry Smith (2019). "A diverse bird assemblage from the Ypresian of Belgium furthers knowledge of early Eocene avifaunas of the North Sea Basin". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 291 (3): 253–281. doi:10.1127/njgpa/2019/0801. S2CID 243569467.
  436. ^ Sarah C. Hood; Chris R. Torres; Mark A. Norell; Julia A. Clarke (2019). "New fossil birds from the earliest Eocene of Mongolia". American Museum Novitates (3934): 1–24. doi:10.1206/3934.1. hdl:2246/6956. S2CID 199571350.
  437. ^ Martin Ezequiel Farina; Verónica Krapovickas; Lucas Fernández Piana; Rocío Belen Vera; María De Los Ángeles Ordoñez (2019). "Flamingo-like footprints and the problem of addressing biological diversity in the past". Historical Biology: An International Journal of Paleobiology. 33 (7): 912–926. doi:10.1080/08912963.2019.1669024. S2CID 208582248.
  438. ^ Alexander L. Bond; Colin J. Carlson; Kevin R. Burgio (2019). "Local extinctions of insular avifauna on the most remote inhabited island in the world". Journal of Ornithology. 160 (1): 49–60. doi:10.1007/s10336-018-1590-8. hdl:10141/622447. S2CID 52049042.
  439. ^ Enric Torres-Roig; Anna Díaz; Pere Bover; Josep Antoni Alcover (2019). "A palaeornithological assemblage from the early Pliocene of the Mediterranean island of Mallorca: Raptorial birds as bioaccumulators at Na Burguesa-1". Comptes Rendus Palevol. 18 (8): 997–1010. Bibcode:2019CRPal..18..997T. doi:10.1016/j.crpv.2019.08.003.
  440. ^ Nicolas J. Rawlence; R. Paul Scofield; Matt S. McGlone; Michael Knapp (2019). "History repeats: large scale synchronous biological turnover in avifauna from the Plio-Pleistocene and late Holocene of New Zealand". Frontiers in Ecology and Evolution. 7: Article 158. doi:10.3389/fevo.2019.00158. S2CID 153310758.
  441. ^ Hanneke J.M. Meijer; Julien Louys; Sue O'Connor (2019). "First record of avian extinctions from the Late Pleistocene and Holocene of Timor Leste". Quaternary Science Reviews. 203: 170–184. Bibcode:2019QSRv..203..170M. doi:10.1016/j.quascirev.2018.11.005. S2CID 134892348.
  442. ^ Ivana Fiore; Monica Gala; Francesco Boschin; Jacopo Crezzini; Antonio Tagliacozzo; Adriana Moroni (2019). "Archeozoology and taphonomy of bird remains from Grotta di Castelcivita (Salerno, Italy) and clues for human-bird interactions". Quaternary International. 551: 224–242. doi:10.1016/j.quaint.2019.09.004. hdl:11365/1120719. S2CID 203078270.
  443. ^ Ruth Blasco; Jordi Rosell; Antonio Sánchez-Marco; Avi Gopher; Ran Barkai (2019). "Feathers and food: Human-bird interactions at Middle Pleistocene Qesem Cave, Israel". Journal of Human Evolution. 136: Article 102653. Bibcode:2019JHumE.13602653B. doi:10.1016/j.jhevol.2019.102653. PMID 31542561. S2CID 202731186.
  444. ^ Ivo R. Horn; Yvo Kenens; N. Magnus Palmblad; Suzanne J. van der Plas-Duivesteijn; Bram W. Langeveld; Hanneke J. M. Meijer; Hans Dalebout; Rob J. Marissen; Anja Fischer; F. B. Vincent Florens; Jonas Niemann; Kenneth F. Rijsdijk; Anne S. Schulp; Jeroen F. J. Laros; Barbara Gravendeel (2019). "Palaeoproteomics of bird bones for taxonomic classification". Zoological Journal of the Linnean Society. 186 (3): 650–665. doi:10.1093/zoolinnean/zlz012. hdl:1956/21615.
  445. ^ Hanneke J.M. Meijer; Francesco d'Errico; Alain Queffelec; Iwan Kurniawan; Erick Setiabudi; Indra Sutisna; Adam Brumm; Gerrit D. van den Bergh (2019). "Characterization of bone surface modifications on an Early to Middle Pleistocene bird assemblage from Mata Menge (Flores, Indonesia) using multifocus and confocal microscopy". Palaeogeography, Palaeoclimatology, Palaeoecology. 529: 1–11. Bibcode:2019PPP...529....1M. doi:10.1016/j.palaeo.2019.05.025. hdl:10072/387049.
  446. ^ Luis Valente; Rampal S. Etienne; Juan C. Garcia-R. (2019). "Deep macroevolutionary impact of humans on New Zealand's unique avifauna" (PDF). Current Biology. 29 (15): 2563–2569.e4. Bibcode:2019CBio...29E2563V. doi:10.1016/j.cub.2019.06.058. PMID 31386837. S2CID 199469555.
  447. ^ Oliver W.M. Rauhut; Helmut Tischlinger; Christian Foth (2019). "A non-archaeopterygid avialan theropod from the Late Jurassic of southern Germany". eLife. 8: e43789. doi:10.7554/eLife.43789. PMC 6516837. PMID 31084702.
  448. ^ Gerald Mayr; Alan J. D. Tennyson (2019). "A small, narrow-beaked albatross from the Pliocene of New Zealand demonstrates a higher past diversity in the feeding ecology of the Diomedeidae". Ibis. 162 (3): 723–734. doi:10.1111/ibi.12757. S2CID 203891391.
  449. ^ Amanda Cordes-Person; Carolina Acosta Hospitaleche; Judd Case; James Martin (2020). "An enigmatic bird from the lower Maastrichtian of Vega Island, Antarctica". Cretaceous Research. 108: Article 104314. Bibcode:2020CrRes.10804314C. doi:10.1016/j.cretres.2019.104314. S2CID 213442204.
  450. ^ Martin Kundrát; John Nudds; Benjamin P. Kear; Junchang Lü; Per Ahlberg (2019). "The first specimen of Archaeopteryx from the Upper Jurassic Mörnsheim Formation of Germany". Historical Biology: An International Journal of Paleobiology. 31 (1): 3–63. Bibcode:2019HBio...31....3K. doi:10.1080/08912963.2018.1518443. S2CID 91497638.
  451. ^ a b Alida M. Bailleul; Jingmai O'Connor; Shukang Zhang; Zhiheng Li; Qiang Wang; Matthew C. Lamanna; Xufeng Zhu; Zhonghe Zhou (2019). "An Early Cretaceous enantiornithine (Aves) preserving an unlaid egg and probable medullary bone". Nature Communications. 10 (1275): 1275. Bibcode:2019NatCo..10.1275B. doi:10.1038/s41467-019-09259-x. PMC 6426974. PMID 30894527.
  452. ^ Vahe Demirjian (2019). "Camptodontornis gen. nov., a replacement name for the bird genus Camptodontus Li, Gong, Zhang, Yang, and Hou, 2010, a junior homonym of Camptodontus Dejean, 1826". Zootaxa. 4612 (3): 440. doi:10.11646/zootaxa.4612.3.10. PMID 31717059. S2CID 190899508.
  453. ^ Gerald Mayr (2019). "A skeleton of a small bird with a distinctive furcula morphology, from the Rupelian of Poland, adds a new taxon to early Oligocene avifaunas". Palaeodiversity. 12 (1): 113–122. doi:10.18476/pale.v12.a11.
  454. ^ Zbigniew M. Bocheński; Krzysztof Wertz; Teresa Tomek; Leonid Gorobets (2019). "A new species of the late Miocene charadriiform bird (Aves: Charadriiformes), with a summary of all Paleogene and Miocene Charadrii remains". Zootaxa. 4624 (1): 41–58. doi:10.11646/zootaxa.4624.1.3. PMID 31716235. S2CID 198247721.
  455. ^ Claudia P. Tambussi; Federico J. Degrange; Ricardo S. De Mendoza; Emilia Sferco; Sergrio Santillana (2019). "A stem anseriform from the early Palaeocene of Antarctica provides new key evidence in the early evolution of waterfowl". Zoological Journal of the Linnean Society. 186 (3): 673–700. doi:10.1093/zoolinnean/zly085.
  456. ^ a b c Juan C. Rando; Josep A. Alcover; Harald Pieper; Storrs L. Olson; C. Nayra Hernández; L. Felipe López-Jurado (2020). "Unforeseen diversity of quails (Galliformes: Phasianidae: Coturnix) in oceanic islands provided by the fossil record of Macaronesia". Zoological Journal of the Linnean Society. 188 (4): 1296–1317. doi:10.1093/zoolinnean/zlz107.
  457. ^ Gerald Mayr; Vanesa L. De Pietri; Leigh Love; Al Mannering; R. Paul Scofield (2019). "Leg bones of a new penguin species from the Waipara Greensand add to the diversity of very large-sized Sphenisciformes in the Paleocene of New Zealand". Alcheringa: An Australasian Journal of Palaeontology. 44 (1): 194–201. doi:10.1080/03115518.2019.1641619. S2CID 202191197.
  458. ^ Jacqueline M. T. Nguyen (2019). "A new species of bristlebird (Passeriformes, Dasyornithidae) from the early Miocene of Australia". Journal of Vertebrate Paleontology. 39 (1): e1575838. Bibcode:2019JVPal..39E5838N. doi:10.1080/02724634.2019.1575838. S2CID 132763252.
  459. ^ Adam M. Yates; Trevor H. Worthy (2019). "A diminutive species of emu (Casuariidae: Dromaiinae) from the late Miocene of the Northern Territory, Australia". Journal of Vertebrate Paleontology. 39 (4): e1665057. Bibcode:2019JVPal..39E5057Y. doi:10.1080/02724634.2019.1665057. S2CID 209439993.
  460. ^ a b Trevor H. Worthy; David V. Burley (2020). "Prehistoric avifaunas from the Kingdom of Tonga". Zoological Journal of the Linnean Society. 189 (3): 998–1045. doi:10.1093/zoolinnean/zlz110.
  461. ^ Lida Xing; Jingmai K. O'Connor; Luis M. Chiappe; Ryan C. McKellar; Nathan Carroll; Han Hu; Ming Bai; Fumin Lei (2019). "A new enantiornithine bird with unusual pedal proportions found in amber". Current Biology. 29 (14): 2396–2401.e2. Bibcode:2019CBio...29E2396X. doi:10.1016/j.cub.2019.05.077. PMID 31303484. S2CID 195887085.
  462. ^ Daniel T. Ksepka; Lance Grande; Gerald Mayr (2019). "Oldest finch-beaked birds reveal parallel ecological radiations in the earliest evolution of passerines". Current Biology. 29 (4): 657–663.e1. Bibcode:2019CBio...29E.657K. doi:10.1016/j.cub.2018.12.040. PMID 30744971. S2CID 73427761.
  463. ^ a b Theresa L. Cole; Daniel T. Ksepka; Kieren J. Mitchell; Alan J. D. Tennyson; Daniel B. Thomas; Hailin Pan; Guojie Zhang; Nicolas J. Rawlence; Jamie R. Wood; Pere Bover; Juan L. Bouzat; Alan Cooper; Steven Fiddaman; Tom Hart; Gary Miller; Peter G. Ryan; Lara D. Shepherd; Janet M. Wilmshurst; Jonathan M. Waters (2019). "Mitogenomes uncover extinct penguin taxa and reveal island formation as a key driver of speciation". Molecular Biology and Evolution. 36 (4): 784–797. doi:10.1093/molbev/msz017. PMID 30722030.
  464. ^ Takuya Imai; Yoichi Azuma; Soichiro Kawabe; Masateru Shibata; Kazunori Miyata; Min Wang; Zhonghe Zhou (2019). "An unusual bird (Theropoda, Avialae) from the Early Cretaceous of Japan suggests complex evolutionary history of basal birds". Communications Biology. 2: Article number 399. doi:10.1038/s42003-019-0639-4. PMC 6856171. PMID 31754639.
  465. ^ Marco Pavia (2019). "Geronticus thackerayi, sp. nov. (Aves, Threskiornithidae), a new ibis from the hominin-bearing locality of Kromdraai (Cradle of Humankind, Gauteng, South Africa)". Journal of Vertebrate Paleontology. 39 (3): e1647433. Bibcode:2019JVPal..39E7433P. doi:10.1080/02724634.2019.1647433. S2CID 202859773.
  466. ^ Luis M. Chiappe; Meng Qingjin; Francisco Serrano; Trond Sigurdsen; Wang Min; Alyssa Bell; Liu Di (2019). "New Bohaiornis-like bird from the Early Cretaceous of China: enantiornithine interrelationships and flight performance". PeerJ. 7: e7846. doi:10.7717/peerj.7846. PMC 6816414. PMID 31667014.
  467. ^ Trevor H. Worthy; Suzanne J. Hand; Michael Archer; R. Paul Scofield; Vanesa L. De Pietri (2019). "Evidence for a giant parrot from the Early Miocene of New Zealand". Biology Letters. 15 (8): Article ID 20190467. doi:10.1098/rsbl.2019.0467. PMC 6731479. PMID 31387471.
  468. ^ Jacob C. Blokland; Catherine M. Reid; Trevor H. Worthy; Alan J.D. Tennyson; Julia A. Clarke; R. Paul Scofield (2019). "Chatham Island Paleocene fossils provide insight into the palaeobiology, evolution, and diversity of early penguins (Aves, Sphenisciformes)". Palaeontologia Electronica. 22 (3): Article number 22.3.78. doi:10.26879/1009.
  469. ^ Gerald Mayr; Zbigniew M. Bocheński; Teresa Tomek; Krzysztof Wertz; Małgorzata Bieńkowska-Wasiluk; Albrecht Manegold (2019). "Skeletons from the early Oligocene of Poland fill a significant temporal gap in the fossil record of upupiform birds (hoopoes and allies)". Historical Biology: An International Journal of Paleobiology. 32 (9): 1163–1175. doi:10.1080/08912963.2019.1570507. S2CID 91860637.
  470. ^ Min Wang; Jingmai K. O'Connor; Shuang Zhou; Zhonghe Zhou (2019). "New toothed Early Cretaceous ornithuromorph bird reveals intraclade diversity in pattern of tooth loss". Journal of Systematic Palaeontology. 18 (8): 631–645. doi:10.1080/14772019.2019.1682696. S2CID 209575088.
  471. ^ Min Wang; Jingmai K. O'Connor; Alida M. Bailleul; Zhiheng Li (2019). "Evolution and distribution of medullary bone: evidence from a new Early Cretaceous enantiornithine bird". National Science Review. 7 (6): 1068–1078. doi:10.1093/nsr/nwz214. PMC 8289052. PMID 34692126.
  472. ^ Nikita V. Zelenkov (2019). "A swan-sized anseriform bird from the late Paleocene of Mongolia". Journal of Vertebrate Paleontology. 38 (6): e1531879. doi:10.1080/02724634.2018.1531879. S2CID 92463523.
  473. ^ Di Liu; L.M. Chiappe; Yuguang Zhang; F.J. Serrano; Qingjin Meng (2019). "Soft tissue preservation in two new enantiornithine specimens (Aves) from the Lower Cretaceous Huajiying Formation of Hebei Province, China". Cretaceous Research. 95: 191–207. Bibcode:2019CrRes..95..191L. doi:10.1016/j.cretres.2018.10.017. S2CID 133741465.
  474. ^ Gerald Mayr; Vanesa L. De Pietri; R. Paul Scofield; Thierry Smith (2019). "A fossil heron from the early Oligocene of Belgium – the earliest temporally well-constrained record of the Ardeidae". Ibis. 161 (1): 79–90. doi:10.1111/ibi.12600.
  475. ^ Gerald Mayr; Vanesa L. De Pietri; Leigh Love; Al Mannering; Richard Paul Scofield (2019). "Oldest, smallest and phylogenetically most basal pelagornithid, from the early Paleocene of New Zealand, sheds light on the evolutionary history of the largest flying birds". Papers in Palaeontology. 7 (1): 217–233. doi:10.1002/spp2.1284. S2CID 203884619.
  476. ^ Min Wang; Zhonghe Zhou (2019). "A new enantiornithine (Aves: Ornithothoraces) with completely fused premaxillae from the Early Cretaceous of China". Journal of Systematic Palaeontology. 17 (15): 1299–1312. Bibcode:2019JSPal..17.1299W. doi:10.1080/14772019.2018.1527403. S2CID 92131036.
  477. ^ Grace Musser; Zhiheng Li; Julia A. Clarke (2019). "A new species of Eogruidae (Aves: Gruiformes) from the Miocene of the Linxia Basin, Gansu, China: Evolutionary and climatic implications". The Auk. 137 (1): ukz067. doi:10.1093/auk/ukz067. S2CID 213590865.
  478. ^ David W. Steadman; Oona M. Takano (2019). "A new genus and species of heron (Aves: Ardeidae) from the late Miocene of Florida" (PDF). Bulletin of the Florida Museum of Natural History. 55 (9): 174–186. doi:10.58782/flmnh.qskt9951.
  479. ^ Nikita V. Zelenkov; Andrey V. Panteleyev (2019). "A small stem-galliform bird (Aves: Paraortygidae) from the Eocene of Uzbekistan". Comptes Rendus Palevol. 18 (5): 517–523. Bibcode:2019CRPal..18..517Z. doi:10.1016/j.crpv.2019.04.005.
  480. ^ Tobin L. Hieronymus; David A. Waugh; Julia A. Clarke (2019). "A new zygodactylid species indicates the persistence of stem passerines into the early Oligocene in North America". BMC Evolutionary Biology. 19 (1): Article 3. Bibcode:2019BMCEE..19....3H. doi:10.1186/s12862-018-1319-6. PMC 6321701. PMID 30611195.
  481. ^ Richard Buchmann; Taissa Rodrigues (2019). "The evolution of pneumatic foramina in pterosaur vertebrae". Anais da Academia Brasileira de Ciências. 91 (Suppl. 2): e20180782. doi:10.1590/0001-3765201920180782. PMID 31090800.
  482. ^ David Michael Unwin; D. Charles Deeming (2019). "Prenatal development in pterosaurs and its implications for their postnatal locomotory ability". Proceedings of the Royal Society B: Biological Sciences. 286 (1904): Article ID 20190409. doi:10.1098/rspb.2019.0409. PMC 6571455. PMID 31185866.
  483. ^ Martin Qvarnström; Erik Elgh; Krzysztof Owocki; Per E. Ahlberg; Grzegorz Niedźwiedzki (2019). "Filter feeding in Late Jurassic pterosaurs supported by coprolite contents". PeerJ. 7: e7375. doi:10.7717/peerj.7375. PMC 6714960. PMID 31523493.
  484. ^ Zixiao Yang; Baoyu Jiang; Maria E. McNamara; Stuart L. Kearns; Michael Pittman; Thomas G. Kaye; Patrick J. Orr; Xing Xu; Michael J. Benton (2019). "Supplementary information for: Pterosaur integumentary structures with complex feather-like branching" (PDF). Nature Ecology & Evolution. 3 (1): 24–30. doi:10.1038/s41559-018-0728-7. hdl:1983/1f7893a1-924d-4cb3-a4bf-c4b1592356e9. PMID 30568282. S2CID 56480710.
  485. ^ Zixiao Yang; Baoyu Jiang; Maria E. McNamara; Stuart L. Kearns; Michael Pittman; Thomas G. Kaye; Patrick J. Orr; Xing Xu; Michael J. Benton (2019). "Pterosaur integumentary structures with complex feather-like branching" (PDF). Nature Ecology & Evolution. 3 (1): 24–30. doi:10.1038/s41559-018-0728-7. hdl:1983/1f7893a1-924d-4cb3-a4bf-c4b1592356e9. PMID 30568282. S2CID 56480710. Retrieved 2020-09-28.[permanent dead link]
  486. ^ David M. Unwin; David M. Martill (2020). "No protofeathers on pterosaurs". Nature Ecology & Evolution. 4 (12): 1590–1591. Bibcode:2020NatEE...4.1590U. doi:10.1038/s41559-020-01308-9. PMID 32989266. S2CID 222168569.
  487. ^ Zixiao Yang; Baoyu Jiang; Maria E. McNamara; Stuart L. Kearns; Michael Pittman; Thomas G. Kaye; Patrick J. Orr; Xing Xu; Michael J. Benton (2020). "Reply to: No protofeathers on pterosaurs" (PDF). Nature Ecology & Evolution. 4 (12): 1592–1593. Bibcode:2020NatEE...4.1592Y. doi:10.1038/s41559-020-01309-8. hdl:10468/11874. PMID 32989267. S2CID 222163211.[permanent dead link]
  488. ^ Adele H. Pentland; Stephen F. Poropat (2019). "Reappraisal of Mythunga camara Molnar & Thulborn, 2007 (Pterosauria, Pterodactyloidea, Anhangueria) from the upper Albian Toolebuc Formation of Queensland, Australia". Cretaceous Research. 93: 151–169. Bibcode:2019CrRes..93..151P. doi:10.1016/j.cretres.2018.09.011. S2CID 133856481.
  489. ^ David M. Martill; Robert A. Coram (2019). "Additional evidence for very large wing-span pterosaurs in the Wessex Formation (Early Cretaceous, Barremian) of southern England". Proceedings of the Geologists' Association. 131 (3–4): 293–300. doi:10.1016/j.pgeola.2019.05.002. S2CID 182649986.
  490. ^ Xinjun Zhang; Shunxing Jiang; Xin Cheng; Xiaolin Wang (2019). "New material of Sinopterus (Pterosauria, Tapejaridae) from the Early Cretaceous Jehol Biota of China". Anais da Academia Brasileira de Ciências. 91 (Suppl. 2): e20180756. doi:10.1590/0001-376520192018756. PMID 31271567.
  491. ^ Elizabeth Martin-Silverstone; Daniel Sykes; Darren Naish (2019). "Does postcranial palaeoneurology provide insight into pterosaur behaviour and lifestyle? New data from the azhdarchoid Vectidraco and the ornithocheirids Coloborhynchus and Anhanguera" (PDF). Palaeontology. 62 (2): 197–210. Bibcode:2019Palgy..62..197M. doi:10.1111/pala.12390. hdl:1983/d4d42086-9b8e-463d-a104-9e602ffca96c. S2CID 133796336.
  492. ^ Flavio Bellardini; Laura Codorniú (2019). "First pterosaur post-cranial remains from the Lower Cretaceous Lohan Cura Formation (Albian) of Patagonia, Argentina". Ameghiniana. 56 (2): 116–134. doi:10.5710/AMGH.13.03.2019.3225. S2CID 131780806.
  493. ^ Felipe L. Pinheiro; Gustavo Prado; Shosuke Ito; John D. Simon; Kazumasa Wakamatsu; Luiz E. Anelli; José A. F. Andrade; Keely Glass (2019). "Chemical characterization of pterosaur melanin challenges color inferences in extinct animals". Scientific Reports. 9 (1): Article number 15947. Bibcode:2019NatSR...915947P. doi:10.1038/s41598-019-52318-y. PMC 6828676. PMID 31685890.
  494. ^ Alexander W.A. Kellner; Taissa Rodrigues; Fabiana R. Costa; Luiz C. Weinschütz; Rodrigo G. Figueiredo; Geovane A. de Souza; Arthur S. Brum; Lúcia H.S. Eleutério; Carsten W. Mueller; Juliana M. Sayão (2019). "Pterodactyloid pterosaur bones from Cretaceous deposits of the Antarctic Peninsula". Anais da Academia Brasileira de Ciências. 91 (Suppl. 2): e20191300. doi:10.1590/0001-3765201920191300. PMID 31800676.
  495. ^ Alexandru A. Solomon; Vlad A. Codrea; Márton Venczel; Gerald Grellet-Tinner (2020). "A new species of large-sized pterosaur from the Maastrichtian of Transylvania (Romania)". Cretaceous Research. 110: Article 104316. Bibcode:2020CrRes.11004316S. doi:10.1016/j.cretres.2019.104316. S2CID 213808137.
  496. ^ Megan L. Jacobs; David M. Martill; Nizar Ibrahim; Nick Longrich (2019). "A new species of Coloborhynchus (Pterosauria, Ornithocheiridae) from the mid-Cretaceous of North Africa". Cretaceous Research. 95: 77–88. Bibcode:2019CrRes..95...77J. doi:10.1016/j.cretres.2018.10.018. S2CID 134439172.
  497. ^ Borja Holgado; Rodrigo V. Pêgas (2020). "A taxonomic and phylogenetic review of the anhanguerid pterosaur group Coloborhynchinae and the new clade Tropeognathinae". Acta Palaeontologica Polonica. 65. doi:10.4202/app.00751.2020.
  498. ^ David W. E. Hone; Michael B. Habib; François Therrien (2019). "Cryodrakon boreas gen. et sp. nov. a Late Cretaceous Canadian azhdarchid pterosaur". Journal of Vertebrate Paleontology. 39 (3): e1649681. Bibcode:2019JVPal..39E9681H. doi:10.1080/02724634.2019.1649681. S2CID 203406859.
  499. ^ Adele H. Pentland; Stephen F. Poropat; Travis R. Tischler; Trish Sloan; Robert A. Elliott; Harry A. Elliott; Judy A. Elliott; David A. Elliott (2019). "Ferrodraco lentoni gen. et sp. nov., a new ornithocheirid pterosaur from the Winton Formation (Cenomanian–lower Turonian) of Queensland, Australia". Scientific Reports. 9 (1): Article number 13454. Bibcode:2019NatSR...913454P. doi:10.1038/s41598-019-49789-4. PMC 6776501. PMID 31582757.
  500. ^ Borja Holgado; Rodrigo V. Pêgas; José Ignacio Canudo; Josep Fortuny; Taissa Rodrigues; Julio Company; Alexander W. A. Kellner (2019). "On a new crested pterodactyloid from the Early Cretaceous of the Iberian Peninsula and the radiation of the clade Anhangueria". Scientific Reports. 9 (1): Article number 4940. Bibcode:2019NatSR...9.4940H. doi:10.1038/s41598-019-41280-4. PMC 6426928. PMID 30894614.
  501. ^ Alexander W.A. Kellner; Luiz C. Weinschütz; Borja Holgado; Renan A. M. Bantim; Juliana M. Sayão (2019). "A new toothless pterosaur (Pterodactyloidea) from Southern Brazil with insights into the paleoecology of a Cretaceous desert". Anais da Academia Brasileira de Ciências. 91 (Suppl. 2): e20190768. doi:10.1590/0001-3765201920190768. PMID 31432888.
  502. ^ Alexander W. A. Kellner; Michael W. Caldwell; Borja Holgado; Fabio M. Dalla Vecchia; Roy Nohra; Juliana M. Sayão; Philip J. Currie (2019). "First complete pterosaur from the Afro-Arabian continent: insight into pterodactyloid diversity". Scientific Reports. 9 (1): Article number 17875. Bibcode:2019NatSR...917875K. doi:10.1038/s41598-019-54042-z. PMC 6884559. PMID 31784545.
  503. ^ Xuanyu Zhou; Rodrigo V. Pêgas; Maria E.C. Leal; Niels Bonde (2019). "Nurhachius luei, a new istiodactylid pterosaur (Pterosauria, Pterodactyloidea) from the Early Cretaceous Jiufotang Formation of Chaoyang City, Liaoning Province (China) and comments on the Istiodactylidae". PeerJ. 7: e7688. doi:10.7717/peerj.7688. PMC 6754973. PMID 31579592.
  504. ^ Fabio Marco Dalla Vecchia (2019). "Seazzadactylus venieri gen. et sp. nov., a new pterosaur (Diapsida: Pterosauria) from the Upper Triassic (Norian) of northeastern Italy". PeerJ. 7: e7363. doi:10.7717/peerj.7363. PMC 6661147. PMID 31380153.
  505. ^ Rodrigo Pêgas; Borja Holgado; Maria Eduarda C. Leal (2019). "On Targaryendraco wiedenrothi gen. nov. (Pterodactyloidea, Pteranodontoidea, Lanceodontia) and recognition of a new cosmopolitan lineage of Cretaceous toothed pterodactyloids". Historical Biology: An International Journal of Paleobiology. 33 (8): 1266–1280. doi:10.1080/08912963.2019.1690482. S2CID 209595986.
  506. ^ Maurício S. Garcia; Rodrigo T. Müller; Átila A.S. Da-Rosa; Sérgio Dias-da-Silva (2019). "The oldest known co-occurrence of dinosaurs and their closest relatives: A new lagerpetid from a Carnian (Upper Triassic) bed of Brazil with implications for dinosauromorph biostratigraphy, early diversification and biogeography". Journal of South American Earth Sciences. 91: 302–319. Bibcode:2019JSAES..91..302G. doi:10.1016/j.jsames.2019.02.005. S2CID 133873065.
  507. ^ Christopher T. Griffin; Lauren S. Bano; Alan H. Turner; Nathan D. Smith; Randall B. Irmis; Sterling J. Nesbitt (2019). "Integrating gross morphology and bone histology to assess skeletal maturity in early dinosauromorphs: new insights from Dromomeron (Archosauria: Dinosauromorpha)". PeerJ. 7: e6331. doi:10.7717/peerj.6331. PMC 6375289. PMID 30775169.
  508. ^ Federico L. Agnolin; Martín D. Ezcurra (2019). "The validity of Lagosuchus talampayensis Romer, 1971 (Archosauria, Dinosauriformes), from the Late Triassic of Argentina" (PDF). Breviora. 565: 1–21. doi:10.3099/0006-9698-565.1.1. S2CID 201949710.
  509. ^ Jordi Alexis Garcia Marsà; Federico L. Agnolín; Fernando Novas (2019). "Bone microstructure of Lewisuchus admixtus Romer, 1972 (Archosauria, Dinosauriformes)". Historical Biology: An International Journal of Paleobiology. 31 (2): 157–162. Bibcode:2019HBio...31..157M. doi:10.1080/08912963.2017.1347646. S2CID 90318682.
  510. ^ Martín D. Ezcurra; Sterling J. Nesbitt; Lucas E. Fiorelli; Julia B. Desojo (2019). "New specimen sheds light on the anatomy and taxonomy of the early Late Triassic dinosauriforms from the Chañares Formation, NW Argentina". The Anatomical Record. 303 (5): 1393–1438. doi:10.1002/ar.24243. hdl:11336/129047. PMID 31444989. S2CID 201644543.
  511. ^ Sterling J. Nesbitt; Max C. Langer; Martin D. Ezcurra (2019). "The anatomy of Asilisaurus kongwe, a dinosauriform from the Lifua Member of the Manda Beds (~Middle Triassic) of Africa". The Anatomical Record. 303 (4): 813–873. doi:10.1002/ar.24287. hdl:11336/135536. PMID 31797580. S2CID 208621389.
  512. ^ Rafał Piechowski; Grzegorz Niedźwiedzki; Mateusz Tałanda (2019). "Unexpected bird-like features and high intraspecific variation in the braincase of the Triassic relative of dinosaurs". Historical Biology: An International Journal of Paleobiology. 31 (8): 1065–1081. Bibcode:2019HBio...31.1065P. doi:10.1080/08912963.2017.1418339. S2CID 89917573.
  513. ^ Martin Qvarnström; Joel Vikberg Wernström; Rafał Piechowski; Mateusz Tałanda; Per E. Ahlberg; Grzegorz Niedźwiedzki (2019). "Beetle-bearing coprolites possibly reveal the diet of a Late Triassic dinosauriform". Royal Society Open Science. 6 (3): Article ID 181042. Bibcode:2019RSOS....681042Q. doi:10.1098/rsos.181042. PMC 6458417. PMID 31031991.
  514. ^ Fábio Hiratsuka Veiga; Jennifer Botha-Brink; Ana Maria Ribeiro; Jorge Ferigolo; Marina Bento Soares (2019). "Osteohistology of the silesaurid Sacisaurus agudoensis from southern Brazil (Late Triassic) and implications for growth in early dinosaurs". Anais da Academia Brasileira de Ciências. 91 (Suppl. 2): e20180643. doi:10.1590/0001-3765201920180643. PMID 31241650.
  515. ^ Baron, Matthew G. (2019). "Pisanosaurus mertii and the Triassic ornithischian crisis: could phylogeny offer a solution?". Historical Biology: An International Journal of Paleobiology. 31 (8): 967–981. Bibcode:2019HBio...31..967B. doi:10.1080/08912963.2017.1410705. ISSN 0891-2963. S2CID 89924902.
  516. ^ Erin L. Patrick; David I. Whiteside; Michael J. Benton (2019). "A new crurotarsan archosaur from the Late Triassic of South Wales". Journal of Vertebrate Paleontology. 39 (3): e1645147. Bibcode:2019JVPal..39E5147P. doi:10.1080/02724634.2019.1645147. S2CID 202848499.
  517. ^ Jeffrey W. Martz; Bryan J. Small (2019). "Non-dinosaurian dinosauromorphs from the Chinle Formation (Upper Triassic) of the Eagle Basin, northern Colorado: Dromomeron romeri (Lagerpetidae) and a new taxon, Kwanasaurus williamparkeri (Silesauridae)". PeerJ. 7: e7551. doi:10.7717/peerj.7551. PMC 6730537. PMID 31534843.