Jump to content

2024 in paleontology

From Wikipedia, the free encyclopedia

List of years in paleontology (table)
In paleobotany
2021
2022
2023
2024
2025
2026
2027
In arthropod paleontology
2021
2022
2023
2024
2025
2026
2027
In paleoentomology
2021
2022
2023
2024
2025
2026
2027
In paleomalacology
2021
2022
2023
2024
2025
2026
2027
In reptile paleontology
2021
2022
2023
2024
2025
2026
2027
In archosaur paleontology
2021
2022
2023
2024
2025
2026
2027
In paleomammalogy
2021
2022
2023
2024
2025
2026
2027
In paleoichthyology
2021
2022
2023
2024
2025
2026
2027

Paleontology or palaeontology is the study of prehistoric life forms on Earth through the examination of plant and animal fossils.[1] This includes the study of body fossils, tracks (ichnites), burrows, cast-off parts, fossilised feces (coprolites), palynomorphs and chemical residues. Because humans have encountered fossils for millennia, paleontology has a long history both before and after becoming formalized as a science. This article records significant discoveries and events related to paleontology that occurred or were published in the year 2024.

Flora

[edit]

Plants

[edit]

"Algae"

[edit]

Fungi

[edit]

Newly named fungi

[edit]
Name Novelty Status Authors Age Type locality Location Notes Images

Asterina siwalika[2]

Sp. nov

Mahato & Khan

Miocene to Pliocene

Chunabati Formation

 India

A species of Asterina.

Inapertisporites lacrimaformis[3]

Sp. nov

Valid

Martínez, Bianchinotti & Cornou

Paleogene

El Foyel Group

 Argentina

Spores of a fungus.

Marasmiamimum[4]

Gen. et sp. nov

Mao, Guo & Huang in Guo et al.

Cretaceous

Burmese amber

 Myanmar

A member of Agaricales of uncertain affinities, a possible member of Marasmiineae. The type species is M. cretaceum.

Meliolinites miocenicus[5]

Sp. nov

Kundu & Khan

Miocene

 India

A member of the family Meliolaceae.

Meliolinites miopanici[6]

Sp. nov

Valid

Kundu & Khan

Miocene

 India

A member of the family Meliolaceae. Announced in 2023; the final version of the article naming it was published in 2024.

Meliolinites tengchongensis[7]

Sp. nov

Wang et al.

Pliocene

Mangbang Formation

 China

A member of the family Meliolaceae.

Mesoagaracites[4]

Gen. et sp. nov

Guo et al.

Cretaceous

Burmese amber

 Myanmar

A member of Agaricales of uncertain affinities, a possible member of Marasmiineae. The type species is M. burmitis.

Palaeomeliola[8]

Gen. et sp. nov

Kundu & Khan

Miocene

 India

A member of the family Meliolaceae. The type species is P. indica.

Rhizophydites shutei[9]

Sp. nov

Valid

Krings

Devonian

Rhynie chert

 United Kingdom

A member of Chytridiomycota.

Tungusia[10]

Gen. et sp. nov

Kolosov & Okhlopkova

Ediacaran

Byuk Formation

 Russia
( Sakha Republic)

A fungus of uncertain affinities. The type species is T. mane.

Zygosporium himachalensis[11]

Sp. nov

Valid

Kundu & Khan

Miocene

 India

A member of Xylariales belonging to the family Zygosporiaceae.

Zygosporium palaeogibbum[12]

Sp. nov

Mahato et al.

Miocene

Chunabati Formation

 India

A member of Xylariales belonging to the family Zygosporiaceae.

Zygosporium stromaticum[13]

Sp. nov

Kundu & Khan

Miocene

 India

A member of Xylariales belonging to the family Zygosporiaceae.

Mycological research

[edit]
  • Garcia Cabrera & Krings (2024) describe fungi colonizing bulbils of Palaeonitella cranii from the Devonian Rhynie chert, interpreted as distinct from fungi colonizing the axes and branchlets of P. cranii, which might indicate organ-specific colonization.[14]

Cnidarians

[edit]

New taxa

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Bothrophyllum crassiseptatum[15]

Sp. nov

Valid

Luo et al.

Carboniferous

Shiqiantan Formation

 China

A rugose coral belonging to the group Stauriida and the family Bothrophyllidae.

Bothrophyllum junggarense[15]

Sp. nov

Valid

Luo et al.

Carboniferous

Shiqiantan Formation

 China

A rugose coral belonging to the group Stauriida and the family Bothrophyllidae.

Caninophyllum pseudotimaniforme[15]

Sp. nov

Valid

Luo et al.

Carboniferous

Shiqiantan Formation

 China

A rugose coral belonging to the group Stauriida and the family Cyathopsidae.

Hexangulaconularia amylofacialis[16]

Sp. nov

Liu et al.

Cambrian (Fortunian)

Kuanchuanpu Formation

 China

A medusozoan belonging to the possible conulatan family Hexangulaconulariidae.

?Holoconularia poletaevi[17]

Sp. nov

Valid

Ohar & Dernov

Carboniferous (Moscovian)

Almazna Formation

 Ukraine

A member of Conulariida.

Kuhnastraea rara[18]

Sp. nov

Valid

Punina

Late Triassic

 Russia
( Primorsky Krai)

A stony coral.

Lindaphylon[19]

Gen. et sp. nov

Rozhnov

Ordovician

 Estonia

A colonial coral. The type species is L. solovjevi.

Mamsetia[20]

Gen. et sp. nov

McIlroy et al.

Ediacaran

Trepassey Formation

 Canada
( Newfoundland and Labrador)

A staurozoan. The type species is M. manunis.

Monophyllum maxima[21]

Sp. nov

Valid

El-Desouky

Carboniferous (Kasimovian)

Aheimer Formation

 Egypt

A rugose coral belonging to the group Stauriida and the family Antiphyllidae.

Mucophyllum toomae[22]

Sp. nov

Valid

Kazantseva in Kazantseva, Koromyslova & Krutykh

Silurian

Kuressaare Formation

 Estonia

A rugose coral.

Paraconularia lata[17]

Sp. nov

Valid

Ohar & Dernov

Carboniferous (Moscovian)

Almazna Formation

 Russia
( Bashkortostan)
 Ukraine

A member of Conulariida.

Sociophyllum koenigshofi[23]

Sp. nov

Valid

Denayer

Devonian

Couvin Formation

 Belgium

A rugose coral.

Yuanophylloides molestus[24]

Sp. nov

Fedorowski & Chwieduk

Carboniferous

Gaptank Formation

 United States
( Texas)

A rugose coral belonging to the group Stauriida and the family Neokoninckophyllidae.

Yuanophylloides parcus[24]

Sp. nov

Fedorowski & Chwieduk

Carboniferous

Gaptank Formation

 United States
( Texas)

A rugose coral belonging to the group Stauriida and the family Neokoninckophyllidae.

Cnidarian research

[edit]
  • Yong et al. (2024) report evidence of presence of a thin, transverse wall spanning the internal thecal cavity of specimens of Olivooides mirabilis and O. multisulcatus from the Cambrian Kuanchuanpu Formation (Shaanxi, China), representing the earliest known transverse exoskeletal element in cnidarians reported to date.[25]
  • A study on the phylogenetic relationships of Hexangulaconulariidae, based on data from new specimens from the Cambrian strata from the Yangtze Platform (China), is published by Song et al. (2024), who interpret hexangulaconulariids as members of the stem group of Medusozoa related to carinachitids, conulariids and olivooids.[26]
  • Bruthansová et al. (2024) study a sample of specimens of Conularia fragilis from the Devonian (Pragian) Koněprusy Limestone (Czech Republic), and interpret the bending of the studied specimens as occurring while the studied conulariids were alive.[27]
  • A study on coral samples from Givetian reefs, providing evidence of Devonian tabulate and rugose corals hosting active photosymbionts that likely supported coral productivity under warm climatic conditions, is published by Jung et al. (2024).[28]
  • Echevarría et al. (2024) study the development of the Pliensbachian coral reef from the Puesto Araya Formation (Mendoza, Argentina), reporting evidence of dominance of corals with cerioid corallite arrangement in later stages of the development of the reef, unlike other known Early Jurassic reefs.[29]
  • A study on the phylogenetic relationships of extant and extinct scleractinians, focusing on the Triassic and Jurassic members of the group, is published by Lathuilière et al. (2024).[30]
  • A study on the diversity of corals from the Burdigalian to Langhian Wadi Waqb Member of the Jabal Kibrit Formation (Saudi Arabia) is published by Pisapia et al. (2024), who interpret the composition of the studied assemblages as indicating that young Red Sea had a connection to the Mediterranean Sea, but did not have a direct connection to the Indian Ocean.[31]

Arthropods

[edit]

Bryozoans

[edit]

New taxa

[edit]
Name Novelty Status Authors Age Type locality Location Notes Images

Akatopora oviaviculata[32]

Sp. nov

Valid

Håkansson, Gordon & Taylor

Late Cretaceous (Maastrichtian)

Korojon Formation

 Australia

A member of Cheilostomata belonging to the family Antroporidae.

Aspidostoma enchiridium[32]

Sp. nov

Valid

Håkansson, Gordon & Taylor

Late Cretaceous (Maastrichtian)

Korojon Formation

 Australia

A member of the family Aspidostomatidae.

Aspidostoma duoavicularia[32]

Sp. nov

Valid

Håkansson, Gordon & Taylor

Late Cretaceous (Maastrichtian)

Korojon Formation

 Australia

A member of the family Aspidostomatidae.

Aspidostoma gleddeni[32]

Sp. nov

Valid

Håkansson, Gordon & Taylor

Late Cretaceous (Maastrichtian)

Korojon Formation

 Australia

A member of the family Aspidostomatidae.

Aspidostoma obesum[32]

Sp. nov

Valid

Håkansson, Gordon & Taylor

Late Cretaceous (Maastrichtian)

Korojon Formation

 Australia

A member of the family Aspidostomatidae.

Aspidostoma titan[32]

Sp. nov

Valid

Håkansson, Gordon & Taylor

Late Cretaceous (Maastrichtian)

Korojon Formation

 Australia

A member of the family Aspidostomatidae.

Bubnoffiella? ambigua[32]

Sp. nov

Valid

Håkansson, Gordon & Taylor

Late Cretaceous (Maastrichtian)

Korojon Formation

 Australia

Possibly a member of the family Bryocryptellidae.

Cardabiella[32]

Gen. et sp. nov

Valid

Håkansson, Gordon & Taylor

Late Cretaceous (Maastrichtian)

Korojon Formation

 Australia

A member of Cheilostomata belonging to the group Flustrina and the superfamily Microporoidea; the type genus of the new family Cardabiellidae. The type species is C. ovicellata.

Cheethamia dividia[32]

Sp. nov

Valid

Håkansson, Gordon & Taylor

Late Cretaceous (Maastrichtian)

Korojon Formation

 Australia

A member of the family Onychocellidae.

Cianotremella dimorpha[32]

Sp. nov

Valid

Håkansson, Gordon & Taylor

Late Cretaceous (Maastrichtian)

Korojon Formation

 Australia

A member of the family Microporidae.

Cianotremella pilbara[32]

Sp. nov

Valid

Håkansson, Gordon & Taylor

Late Cretaceous (Maastrichtian)

Korojon Formation

 Australia

A member of the family Microporidae.

Conopeum foliorum[33]

Sp. nov

Taboada, Pagani & Cúneo

Late Cretaceous (Maastrichtian)

Lefipán Formation

 Argentina

A species of Conopeum.

Cryptostomella? aspinosa[32]

Sp. nov

Valid

Håkansson, Gordon & Taylor

Late Cretaceous (Maastrichtian)

Korojon Formation

 Australia

A member of the family Lepraliellidae.

Cryptostomella? giralia[32]

Sp. nov

Valid

Håkansson, Gordon & Taylor

Late Cretaceous (Maastrichtian)

Korojon Formation

 Australia

A member of the family Lepraliellidae.

Dionella dimartinoae[32]

Sp. nov

Valid

Håkansson, Gordon & Taylor

Late Cretaceous (Maastrichtian)

Korojon Formation

 Australia

A member of the family Calloporidae.

Dyoidophragma bigeyae[34]

Sp. nov

Valid

Ernst & Buttler

Devonian (Frasnian)

Ferques Formation

 France

A trepostome belonging to the family Stenoporidae.

Eomacropora[32]

Gen. et sp. nov

Valid

Håkansson, Gordon & Taylor

Late Cretaceous (Maastrichtian)

Korojon Formation

 Australia

A member of the family Macroporidae. The type species is E. molesta.

Filifascigera invenusta[32]

Sp. nov

Valid

Håkansson, Gordon & Taylor

Late Cretaceous (Maastrichtian)

Korojon Formation

 Australia

A member of Cyclostomata belonging to the family Frondiporidae.

Filisinella[32]

Gen. et sp. nov

Valid

Håkansson, Gordon & Taylor

Late Cretaceous (Maastrichtian)

Korojon Formation

 Australia

A member of Cheilostomata belonging to the superfamily Microporoidea and the family Pyrisinellidae. The type species is F. tenuiaviculata.

Haigina[32]

Gen. et sp. nov

Valid

Håkansson, Gordon & Taylor

Late Cretaceous (Maastrichtian)

Korojon Formation

 Australia

A member of Cheilostomata of uncertain affinities, with similarities to members of the families Brydonellidae, Peedeesellidae and Romancheinidae. The type species is H. distincta.

Heterothoa[32]

Gen. et sp. nov

Valid

Håkansson, Gordon & Taylor

Late Cretaceous (Maastrichtian)

Korojon Formation

 Australia

A member of the family Hippothoidae. The type species is H. repens.

Idmonea perforata[32]

Sp. nov

Valid

Håkansson, Gordon & Taylor

Late Cretaceous (Maastrichtian)

Korojon Formation

 Australia

A species of Idmonea.

Idmonea perpendiculata[32]

Sp. nov

Valid

Håkansson, Gordon & Taylor

Late Cretaceous (Maastrichtian)

Korojon Formation

 Australia

A species of Idmonea.

Isocardabiella[32]

Gen. et sp. nov

Valid

Håkansson, Gordon & Taylor

Late Cretaceous (Maastrichtian)

Korojon Formation

 Australia

A member of the family Cardabiellidae. The type species is I. clavata.

Kololophos? jenkinsae[32]

Sp. nov

Valid

Håkansson, Gordon & Taylor

Late Cretaceous (Maastrichtian)

Korojon Formation

 Australia

A member of the family Lichenoporidae.

Korojonella[32]

Gen. et sp. nov

Valid

Håkansson, Gordon & Taylor

Late Cretaceous (Maastrichtian)

Korojon Formation

 Australia

A member of the family Arachnopusiidae. The type species is K. kenozooidea.

Melychocella cretacea[32]

Sp. nov

Valid

Håkansson, Gordon & Taylor

Late Cretaceous (Maastrichtian)

Korojon Formation

 Australia

A member of the family Aspidostomatidae.

Microeciella sparsipora[32]

Sp. nov

Valid

Håkansson, Gordon & Taylor

Late Cretaceous (Maastrichtian)

Korojon Formation

 Australia

A member of the family Oncousoeciidae.

Monoceratopora adventitia[32]

Sp. nov

Valid

Håkansson, Gordon & Taylor

Late Cretaceous (Maastrichtian)

Korojon Formation

 Australia

A member of the family Cribrilinidae.

Monoceratopora thraneae[32]

Sp. nov

Valid

Håkansson, Gordon & Taylor

Late Cretaceous (Maastrichtian)

Korojon Formation

 Australia

A member of the family Cribrilinidae.

Monoceratopora transversa[32]

Sp. nov

Valid

Håkansson, Gordon & Taylor

Late Cretaceous (Maastrichtian)

Korojon Formation

 Australia

A member of the family Cribrilinidae.

Nudicella dissidens[32]

Sp. nov

Valid

Håkansson, Gordon & Taylor

Late Cretaceous (Maastrichtian)

Korojon Formation

 Australia

A member of the family Onychocellidae.

Orbignyella moyerokanensis[35]

Sp. nov

Valid

Koromyslova & Dronov

Ordovician (Katian)

Dzheromo Formation

 Russia

Paraechmellina[32]

Gen. et sp. nov

Valid

Håkansson, Gordon & Taylor

Late Cretaceous (Maastrichtian)

Korojon Formation

 Australia

A member of the family Onychocellidae. The type species is P. simulata.

Paraflustrella[32]

Gen. et 2 sp. nov

Valid

Håkansson, Gordon & Taylor

Late Cretaceous (Maastrichtian)

Korojon Formation

 Australia

A member of the family Calloporidae. The type species is P. berningi; genus also includes P. lacunosa.

Parainversiula gordoni[36]

Sp. nov

López-Gappa, Ezcurra & Rust

Miocene (Aquitanian-Burdigalian)

Waitiiti Formation

 New Zealand

Paramphiblestrum[32]

Gen. et 2 sp. nov

Valid

Håkansson, Gordon & Taylor

Late Cretaceous (Maastrichtian)

Korojon Formation

 Australia

A member of the family Calloporidae. The type species is P. cardabiense; genus also includes P. secundum.

Peedeesella mckinneyi[32]

Sp. nov

Valid

Håkansson, Gordon & Taylor

Late Cretaceous (Maastrichtian)

Korojon Formation

 Australia

A member of the family Peedeesellidae.

Platonea sagitta[32]

Sp. nov

Valid

Håkansson, Gordon & Taylor

Late Cretaceous (Maastrichtian)

Korojon Formation

 Australia

A member of the family Tubuliporidae.

Protofoveolaria[32]

Gen. et sp. nov

Valid

Håkansson, Gordon & Taylor

Late Cretaceous (Maastrichtian)

Korojon Formation

 Australia

A member of the family Foveolariidae. The type species is P. fortunata.

Reptofascigera batsoni[32]

Sp. nov

Valid

Håkansson, Gordon & Taylor

Late Cretaceous (Maastrichtian)

Korojon Formation

 Australia

A member of Cyclostomata belonging to the family Frondiporidae.

Rhagasostoma infelix[32]

Sp. nov

Valid

Håkansson, Gordon & Taylor

Late Cretaceous (Maastrichtian)

Korojon Formation

 Australia

A member of the family Onychocellidae.

Stichomicropora australis[32]

Sp. nov

Valid

Håkansson, Gordon & Taylor

Late Cretaceous (Maastrichtian)

Korojon Formation

 Australia

A member of the family Monoporellidae.

Stomatopora lata[32]

Sp. nov

Valid

Håkansson, Gordon & Taylor

Late Cretaceous (Maastrichtian)

Korojon Formation

 Australia

A species of Stomatopora.

Stomatopora longicauda[32]

Sp. nov

Valid

Håkansson, Gordon & Taylor

Late Cretaceous (Maastrichtian)

Korojon Formation

 Australia

A species of Stomatopora.

Taractopora nova[32]

Sp. nov

Valid

Håkansson, Gordon & Taylor

Late Cretaceous (Maastrichtian)

Korojon Formation

 Australia

A member of the family Cribrilinidae.

Tricephalopora crassa[32]

Sp. nov

Valid

Håkansson, Gordon & Taylor

Late Cretaceous (Maastrichtian)

Korojon Formation

 Australia

A member of the family Cribrilinidae.

Voigtopora giraliensis[32]

Sp. nov

Valid

Håkansson, Gordon & Taylor

Late Cretaceous (Maastrichtian)

Korojon Formation

 Australia

A member of the family Stomatoporidae.

Voigtopora magna[32]

Sp. nov

Valid

Håkansson, Gordon & Taylor

Late Cretaceous (Maastrichtian)

Korojon Formation

 Australia

A member of the family Stomatoporidae.

Voigtopora pauciramia[32]

Sp. nov

Valid

Håkansson, Gordon & Taylor

Late Cretaceous (Maastrichtian)

Korojon Formation

 Australia

A member of the family Stomatoporidae.

Wilbertopora grandis[32]

Sp. nov

Valid

Håkansson, Gordon & Taylor

Late Cretaceous (Maastrichtian)

Korojon Formation

 Australia

A member of the family Calloporidae.

Wilbertopora kavazosi[32]

Sp. nov

Valid

Håkansson, Gordon & Taylor

Late Cretaceous (Maastrichtian)

Korojon Formation

 Australia

A member of the family Calloporidae.

Bryozoan research

[edit]
  • He et al. (2024) describe fossil material of Orbiramus ovalis, O. minus, O. normalis and Nekhorosheviella semisphaerica from the Ordovician Honghuayuan Formation (China), expanding known geographical and stratigraphical range of these taxa and preserving probable evidence of their contribution to the development of Early Ordovician patch reefs.[37]

Brachiopods

[edit]

New taxa

[edit]
Name Novelty Status Authors Age Type locality Location Notes Images

Afanasjevispirifer[38]

Gen. et comb. nov

Valid

Baranov & Nikolaev

Devonian (Lochkovian and Pragian)

Solovyikha Limestone

 Russia

A member of Spiriferida belonging to the family Delthyrididae and the subfamily Howellellinae. The type species is "Howellella" mercuriformis Kulkov (1963); genus also includes A. propria (Modzalevskaya, 1974).

Aldanispirifer selennyakhensis[38]

Sp. nov

Valid

Baranov & Nikolaev

Devonian (Pragian)

 Russia

A member of Spiriferida belonging to the subfamily Howellellinae.

Alichovella[39]

Gen. et comb. nov

Valid

Hints

Ordovician (Sandbian)

 Estonia
 Latvia
 Lithuania
 Russia

A member of Orthida belonging to the group Enteletoidea and the family Draboviidae. The type species is "Dalmanella" kegelensis Alichova (1953).

Ancillotoechia bicostata[40]

Sp. nov

Popov et al.

Silurian

Dahaneh-Kalut Formation

 Iran

Anechinotsia[41]

Gen. et comb. nov

Valid

Waterhouse

Permian

Tiverton Formation

 Australia

A member of Productida belonging to the family Aulostegidae. The type species is "Taeniothaerus" anotos Briggs (1983).

Aperispirifer initialis[42]

Sp. nov

Valid

Waterhouse

Permian

Brunel Formation

 New Zealand

A member of Spiriferida belonging to the family Neospiriferidae.

Apurimella[43]

Gen. et sp. nov

Valid

Colmenar, Chacaltana & Gutiérrez-Marco

Ordovician

San José Formation

 Peru

A member of Orthida belonging to the group Enteletoidea and the family Draboviidae. The type species is A. santiagoi.

Borealoides[44]

Gen. et sp. nov

Valid

Jin et al.

Silurian (Rhuddanian)

Odins Fjord Formation

 Greenland

A member of Pentamerida belonging to the superfamily Pentameroidea and the family Virgianidae. The type species is B. balderi.

Brachythyrinella simplicitas[42]

Sp. nov

Valid

Waterhouse

Permian

Beckers Formation

 Australia

A member of the family Trigonotretidae.

Branzodiscus[45]

Gen. et sp. nov

Mergl

Devonian (Lochkovian)

Lochkov Formation

 Czech Republic

A discinid brachiopod. The type species is B. porosus.

Bronzoria[46]

Gen. et sp. et comb. nov

Valid

Ishizaki & Shiino

Permian to Middle Jurassic

Osawa Formation

 Austria
 Bosnia and Herzegovina
 France
 Germany
 Japan
 Norway
 Russia
 Slovenia
 United Kingdom

A member of the family Discinidae. The type species is B. recta; genus also includes "Orbiculoidea" taskrestensis Dagys in Dagys & Kurushin (1985), "Discinisca" sibirica (Moisseiev, 1947), "Discinisca" bosniaca (Kittl, 1904), "Discinisca" discoides (Schlotheim, 1820), "Discinisca" townshendi (Davidson, 1851), "Discinisca rhaetica (Andreae, 1893), "Discinisca" zapfei Radwański & Summesberger (2001) and "Discinisca" spitsbergensis Biernat (1995).

Chenshichonetes[47]

Nom. nov

Valid

Gaudin

Carboniferous

 Australia
 China

A member of the family Rugosochonetidae; a replacement name for Robertsella Chen & Shi (2003).

Cleiothyridina planus[48]

Sp. nov

Valid

Waterhouse

Permian

Barfield Formation

 Australia

A member of Athyridida belonging to the family Athyrididae.

Craniops brussai[49]

Sp. nov

Benedetto, Lavié & Salas

Silurian (Ludfordian-Pridolian)

Los Espejos Formation

 Argentina

A craniopsid brachiopod.

Craniops speculum[49]

Sp. nov

Benedetto, Lavié & Salas

Silurian (Gorstian)

Los Espejos Formation

 Argentina

A craniopsid brachiopod.

Deloprosopus dawesi[44]

Sp. nov

Valid

Jin et al.

Ordovician (Katian)

Merqujoq Formation

 Greenland

A member of Pentamerida belonging to the family Virgianidae.

Dicoelosia paratenua[50]

Sp. nov

Valid

Gallagher & Harper

Silurian

 United Kingdom

Fenyveskutella fallax[51]

Sp. nov

Valid

Vörös

Middle Jurassic (Bajocian)

Tölgyhát Limestone Formation

 Hungary

A member of Rhynchonellida belonging to the superfamily Norelloidea and the family Norellidae.

Fenyveskutella ? paronai[51]

Nom. nov

Valid

Vörös

Middle Jurassic

 Hungary
 Italy

A member of Rhynchonellida belonging to the superfamily Norelloidea and the family Norellidae; a replacement name for Rhynchonella latifrons Parona (1896).

Galatirhynchia[51]

Gen. et comb. nov

Valid

Vörös

Middle Jurassic

 Hungary
 Italy

A member of Rhynchonellida belonging to the superfamily Hemithyrididoidea and the family Cyclothyrididae. The type species is "Rhynchonella" galatensis Di Stefano (1884); genus also includes G. baldaccii (Di Stefano, 1884)

Gasconsia gigantea[52]

Sp. nov

Valid

Hints & Jiayu

Ordovician (Katian)

Adila Formation

 Estonia

A member of the family Trimerellidae.

Gilcurriella[53]

Gen. et comb. nov

Valid

Waterhouse

Permian

Gilgurry Mudstone

 Australia

A member of Spiriferida belonging to the superfamily Ambocoelioidea and the family Ambocoeliidae. The type species is "Attenuatella" multispinosa Waterhouse (1967).

Glyptorthis papillosa[54]

Sp. nov

Valid

Jin & Harper

Ordovician (Hirnantian)

Whittaker Formation

 Canada
( Northwest Territories)

A member of Orthida belonging to the family Glyptorthidae.

Golestanirhynchus golestanicus[55]

Sp. nov

Baranov, Kebria-Ee Zadeh & Blodgett

Devonian (Famennian)

Khoshyeilagh Formation

 Iran

A member of Rhynchonellida.

Hajagithyris[51]

Gen. et comb. nov

Valid

Vörös

Middle Jurassic

 Hungary
 Italy
 Spain

A member of Terebratulida belonging to the superfamily Loboidothyridoidea and the family Muirwoodellidae. The type species is "Terebratula" fylgia Oppel (1863); genus also includes "Pygope" seguenzae Di Stefano (1887) and possibly "Pygope" mykonionensis Di Stefano (1884) and ?H. alamanni (Di Stefano, 1884).

Isorthis (Ovalella) clarksoni[50]

Sp. nov

Valid

Gallagher & Harper

Silurian

 United Kingdom

Isorthis (Ovalella) equimulticostellata[40]

Sp. nov

Popov et al.

Silurian

Dahaneh-Kalut Formation

 Iran

Jagoellus[56]

Gen. et comb. nov

Brock, Zhang & Holmer

Cambrian Stage 4

Wirrealpa Limestone

 Australia

A member of Obolellata belonging to the family Obolellidae; a new genus for "Obolella" wirrialpensis Etheridge (1905).

Johnsoniana[57]

Nom. nov

Valid

Poletaev

Carboniferous

 Belgium
 Russia

A member of Spiriferida belonging to the superfamily Paeckelmanelloidea; a replacement name for Oceania Poletaev (2015).

Katastrophomena mackenzii[54]

Sp. nov

Valid

Jin & Harper

Ordovician (Hirnantian)

Whittaker Formation

 Canada
( Northwest Territories)

A member of Strophomenida belonging to the family Strophomenidae.

Kulumbella heimdali[44]

Sp. nov

Valid

Jin et al.

Silurian (Aeronian)

Odins Fjord Formation

 Greenland

A member of Pentamerida belonging to the superfamily Stricklandioidea and the family Kulumbellidae.

Kyrtatrypa pauli[58]

Sp. nov

Valid

Halamski & Baliński in Halamski, Baliński & Kondas

Devonian (Givetian)

Nieczulice beds

 Poland

A member of Atrypida belonging to the family Atrypidae.

Lacunites punctum[59]

Sp. nov

Candela, Harper & Mergl

Ordovician

Fezouata Formation

 Morocco

Leptaena eska[50]

Sp. nov

Valid

Gallagher & Harper

Silurian

 United Kingdom

Lipanteris enigmosus[41]

Sp. nov

Valid

Waterhouse

Permian

Tiverton Formation

 Australia

A member of Productida belonging to the family Aulostegidae.

Lissatrypa scotica[50]

Sp. nov

Valid

Gallagher & Harper

Silurian

 United Kingdom

Macropleura kuhestanensis[40]

Sp. nov

Popov et al.

Silurian

Dahaneh-Kalut Formation

 Iran

Marginalosia sulcata[60]

Sp. nov

Valid

Waterhouse

Permian

Nemo Formation

 New Zealand

A member of Productida belonging to the group Strophalosiidina and the family Echinalosiidae.

Megalopterorhynchus chanakchiensis giganteus[55]

Ssp. nov

Baranov, Kebria-Ee Zadeh & Blodgett

Devonian (Famennian)

Khoshyeilagh Formation

 Iran

A member of Rhynchonellida.

Nocturnellia ashaninka[43]

Sp. nov

Valid

Colmenar, Chacaltana & Gutiérrez-Marco

Ordovician

San José Formation

 Peru

A member of Orthida belonging to the group Enteletoidea and the family Draboviidae.

Oglupes scotia[50]

Sp. nov

Valid

Gallagher & Harper

Silurian

 United Kingdom

Orbaspina involuta[61]

Sp. nov

Valid

Mergl

Silurian (Sheinwoodian)

Motol Formation

 Czech Republic

A siphonotretid brachiopod.

Orbithele tazagurta[59]

Sp. nov

Candela, Harper & Mergl

Ordovician

Fezouata Formation

 Morocco

Paralinguithyris[51]

Gen. et comb. nov

Valid

Vörös

Middle Jurassic

 Hungary
 Italy
 Spain

A member of Terebratulida belonging to the superfamily Dielasmatoidea and the family Zugmayeriidae. The type species is "Aulacothyris" pygopoides Di Stefano (1884); genus might also include ?P. redii (Di Stefano, 1884), ?P. gemmellaroi (Di Stefano, 1884) and ?P. chydas (Di Stefano, 1884).

Paropamisorhynchus lytvensis[62]

Sp. nov

Valid

Pakhnevich

Paterula postsilurica[45]

Sp. nov

Mergl

Devonian (Lochkovian)

Lochkov Formation

 Czech Republic

A paterulid brachiopod.

Petasmaria sartenaeri[55]

Sp. nov

Baranov, Kebria-Ee Zadeh & Blodgett

Devonian (Famennian)

Khoshyeilagh Formation

 Iran

A member of Rhynchonellida.

Phragmorthis henrylunae[43]

Sp. nov

Valid

Colmenar, Chacaltana & Gutiérrez-Marco

Ordovician

San José Formation

 Peru

A member of Orthida belonging to the group Plectorthoidea and the family Phragmorthidae.

Plicogypa kayseri alaskensis[63]

Ssp. nov

Baranov & Blodgett

Devonian (Pragian)

Soda Creek Limestone

 United States
( Alaska)

Published online in 2024, but the issue date is listed as December 2023.

Praethele[61]

Gen. et comb. et sp. nov

Valid

Mergl

Silurian (Sheinwoodian to Ludfordian)

Motol Formation

 Czech Republic

A discinid brachiopod. The type species is "Discina" vexata Barrande (1879); genus also includes new species P. postvexata.

Protathyris amsdeni[63]

Sp. nov

Baranov & Blodgett

Devonian (Pragian)

Soda Creek Limestone

 United States
( Alaska)

Published online in 2024, but the issue date is listed as December 2023.

Protathyris golshanensis[40]

Sp. nov

Popov et al.

Silurian

Dahaneh-Kalut Formation

 Iran

Pseudocyrtiopsis areniensis[64]

Sp. nov

Serobyan, Vinn & Mottequin

Devonian (Famennian)

 Armenia

Pseudopapodina[51]

Gen. et comb. nov

Valid

Vörös

Middle Jurassic

 Hungary
 Italy
 Spain

A member of Terebratulida belonging to the superfamily Dielasmatoidea and the family Zugmayeriidae. The type species is "Terebratula" laticoxa Oppel (1863); genus might also include "Terebratula" recuperoi Di Stefano (1884).

Pustuloplica ovulata[65]

Sp. nov

Valid

Waterhouse

Permian

 New Zealand

A member of Spiriferida belonging to the superfamily Martinioidea and the family Brachythyridae.

Rafanoglossa inversa[59]

Sp. nov

Candela, Harper & Mergl

Ordovician

Fezouata Formation

 Morocco

Rarepora[45]

Gen. et sp. nov

Mergl

Devonian (Lochkovian)

Lochkov Formation

 Czech Republic

An obolid brachiopod. The type species is R. tumulamen.

Rzhonsnitskayaella[63]

Gen. et sp. nov

Baranov & Blodgett

Devonian (Pragian)

Soda Creek Limestone

 United States
( Alaska)

Genus includes new species R. lata. Published online in 2024, but the issue date is listed as December 2023.

Schellwienella amazonensis[66]

Sp. nov

Corrêa, Ramos & Rezende

Devonian (Lochkovian)

Manacapuru Formation

 Brazil

A member of Orthotetida belonging to the family Pulsiidae.

Schizotreta elegantia[61]

Sp. nov

Valid

Mergl

Silurian (Sheinwoodian)

Motol Formation

 Czech Republic

A discinid brachiopod.

Skadarirhynchia[67]

Gen. et sp. nov

Radulović, Sandy & Schaaf

Early Jurassic (Pliensbachian)

Budoš Limestone

 Montenegro

A member of Rhynchonellida. The type species is S. semicostata.

Sulciplica pauciplicus[42]

Sp. nov

Valid

Waterhouse

Permian

Snapper Point Formation

 Australia

A member of Spiriferida belonging to the family Georginakingiidae.

Syrella confusa[68]

Sp. nov

Valid

Waterhouse

Permian

Flat Top Formation

 Australia

A member of Spiriferidina belonging to the superfamily Syringothyridoidea.

Taeniothaerus subquadratus quadratus[41]

Ssp. nov

Valid

Waterhouse

Permian

Roses Pride Formation

 Australia

A member of Productida belonging to the family Aulostegidae.

Talyndzhaspirifer[38]

Gen. et sp. et comb. nov

Valid

Baranov & Nikolaev

Devonian

 Russia

A member of Spiriferida belonging to the subfamily Howellellinae. The type species is T. latus; genus also includes T. pseudoconcinnus (Nikiforova, 1960) and T. gurjevskensis (Rzhonsnitskaya, 1952).

Tigillumia calamata[69]

Sp. nov

Valid

Waterhouse

Permian

Hilton Limestone

 New Zealand

A member of Spiriferida belonging to the family Ingelarellidae.

Tigillumia planeria[69]

Sp. nov

Valid

Waterhouse

Permian

South Curra Limestone

 Australia

A member of Spiriferida belonging to the family Ingelarellidae.

Tilabadirhynchus[55]

Gen. 2 sp. nov

Baranov, Kebria-Ee Zadeh & Blodgett

Devonian (Famennian)

Khoshyeilagh Formation

 Iran

A member of Rhynchonellida. Genus includes new species T. azadshahrensis and T. qeshlaqensis.

Tinzoulinorthis[59]

Gen. et comb. nov

Candela, Harper & Mergl

Ordovician

Fezouata Formation

 Morocco

The type species is T. fasciata (Havlíček, 1971).

Tiramnia davidi[57]

Sp. nov

Valid

Poletaev

Carboniferous (Bashkirian)

Smolyanynivka Formation

 Ukraine

A member of Spiriferida belonging to the family Martiniidae.

Tumulosulcus abelensis[69]

Sp. nov

Valid

Waterhouse

Permian

 Australia

A member of Spiriferida belonging to the family Ingelarellidae.

Tumulosulcus mckellari[69]

Sp. nov

Valid

Waterhouse

Permian

Mangarewa Formation

 New Zealand

A member of Spiriferida belonging to the family Ingelarellidae.

Undispiriferoides qujingensis[70]

Sp. nov

Liu et al.

Devonian

Qujing Formation

 China

A member of Spiriferida belonging to the family Reticulariidae.

Virgiana hursti[44]

Sp. nov

Valid

Jin et al.

Silurian (Rhuddanian)

Turesø Formation

 Greenland

A member of Pentamerida belonging to the family Virgianidae.

Wosekella maghribi[59]

Sp. nov

Candela, Harper & Mergl

Ordovician

Fezouata Formation

 Morocco

Brachiopod research

[edit]
  • Evidence from the study of the fossil record from South China, interpreted as indicative of diverse environmental settings of the Hirnantia brachiopod fauna during the Late Ordovician mass extinction, is presented by Huang & Rong (2024).[71]
  • Evidence of a relationships between changes of diversity and geographic distribution of brachiopods during and after the Late Ordovician mass extinction is presented by Shi & Huang (2024), who report evidence of greater vulnerability of endemic brachiopods to the extinction and its aftermath compared to cosmopolitan brachiopods.[72]
  • A study on evolution of Terebratulida, Rhynchonellida, Spiriferinida and Athyridida from Permian to Quaternary is published by Guo et al. (2024), who find that after the Permian–Triassic extinction event, in spite of lower taxonomic diversity, brachiopods regained pre-extinction levels of morphological diversity.[73]
  • Liang et al. (2024) describe fossil material of Anomaloglossa porca from the Ordovician (Sandbian) Pingliang Formation (China), extending known geographical range of the species from Gondwana and Tarim to North China Platform, and interpret the studied fossils as indicative of an infaunal lifestyle of A. porca.[74]
  • A study on muscle scars and the hinge structure of Rafinesquina is published by Dattilo et al. (2024), who find that the studied brachiopod was able to gape widely, which eliminated constraints on its feeding orientation and enabled effective valve clearing.[75]
  • Shapiro (2024) describes fossil material of Dzieduszyckia from the Devonian Slaven Chert (Nevada, United States), possibly indicative of the presence of a species distinct from D. sonora in Nevada, and interprets Dzieduszyckia as capable of survival in both seep and non-seep settings, which enabled it be primed for the Famennian biotic crises and give rise to later dimerelloids adapted to living in seep or vent settings.[76]
  • Popov (2024) reports the discovery of fossil material of a member of the genus Heterelasma from the Olenekian strata in southern Primorye (Russia), potentially representing evidence that members of this genus survived the Permian–Triassic extinction event.[77]
  • Harper & Peck (2024) present evidence of disappearance of large brachiopods from shallow tropical waters after the Jurassic period, interpreted as mainly caused by increase of durophagous predation in these environments.[78]

Molluscs

[edit]

Echinoderms

[edit]

New taxa

[edit]
Name Novelty Status Authors Age Type locality Location Notes Images

Absensoblastus[79]

Gen. et comb. nov

Valid

Bohatý, Macurda & Waters

Devonian (Emsian)

Santa Lucía Formation

 Spain

A blastoid belonging to the group Pentremitida and the family Hyperoblastidae. The type species is "Hyperoblastus" batheri Breimer & Dop (1975).

Altusoblastus[79]

Gen. et comb. et 2 sp. nov

Valid

Bohatý, Macurda & Waters

Devonian (Emsian to Eifelian)

Junkerberg Formation

 Germany
 Spain

A blastoid belonging to the group Pentremitida and the family Hyperoblastidae. The type species is "Pentatrematites" eifeliensis Roemer (1855); genus also includes Pentremitidea roemeri Etheridge & Carpenter (1886) and Pentremitidea clavata var. schultzei Etheridge & Carpenter (1886; raised to the rank of the species Altusoblastus schultzei), as well as new species A. eremitus and A. palliolatus.

Arabicodiadema jafariani[80]

Sp. nov

Gholamalian, Kamali & Wood

Cretaceous

 Iran

A sea urchin belonging to the family Diadematidae.

Bockeliecrinites[81]

Gen. et comb. nov

Valid

Paul

Ordovician (Sandbian)

Furuberget Formation

 Norway

A member of Diploporita belonging to the group Ambulacralia and the family Protocrinitidae. The type species is "Protocrinites" rugatus Bockelie (1984).

Cheirocystis liexiensis[82]

Sp. nov

Liu et al.

Ordovician

Madaoyu Formation

 China

A rhombiferan belonging to the group Dichoporita and the family Cheirocrinidae.

Componaster[83]

Gen. et sp. nov

Valid

Glass, Blake & Lefebvre

Ordovician (Katian)

Lower Ktaoua Formation

 Morocco

A brittle star of uncertain affinities. The type species is C. spurius.

Copernicrinus[84]

Gen. et sp. nov

Valid

Płachno et al.

Middle Jurassic (Bajocian)

Kérdacha Formation

 Algeria

A crinoid belonging to the group Comatulida and the family Thiolliericrinidae. The type species is C. zamori.

Cortinaster[85]

Gen. et 2 sp. nov

Gale

Late Triassic (Carnian)

San Cassiano Formation

 Italy

A starfish belonging to the group Neoasteroidea and the family Trichasteropsidae. The type species is C. papillifera; genus also includes C. zardinii.

Cyathidium chiampoensis[86]

Sp. nov

Valid

Martinez-Soares et al.

Eocene (Lutetian)

 Italy

A crinoid belonging to the family Holopodidae.

Cyathidium phosphaticola[87]

Sp. nov

Gale & Jagt

Late Cretaceous (Campanian)

 France
 United Kingdom

A crinoid belonging to the family Holopodidae.

Dissimiloblastus[79]

Gen. et sp. nov

Valid

Bohatý, Macurda & Waters

Devonian (Eifelian)

Hohenhof Formation

 Germany

A blastoid of uncertain affinities. The type species is D. inequalis.

Euspirocrinus varbolaensis[88]

Sp. nov

Valid

Ausich, Wilson & Toom

Silurian (Rhuddanian)

Varbola Formation

 Estonia

A cladid crinoid belonging to the group Cyathoformes.

Eutaxocrinus striatus[89]

Sp. nov

Valid

Bohatý, Ausich & Becker

Devonian (Frasnian)

Prüm Syncline

 Germany

A crinoid.

Forbesasterias[90]

Gen. et comb. nov

Valid

Fau et al.

Early Jurassic (Pliensbachian)

 United Kingdom

A starfish belonging to the group Forcipulatacea. The type species is "Uraster" gaveyi Forbes (1850).

Freisoblastus[79]

Gen. et sp. nov

Valid

Bohatý, Macurda & Waters

Devonian (Eifelian)

Ahbach Formation

 Germany

A blastoid of uncertain affinities. The type species is F. hemisphaericus.

Gauthieria pumilio[91]

Sp. nov

Valid

Schlüter

Late Cretaceous (Campanian)

 Germany

A sea urchin belonging to the family Phymosomatidae.

Hagdornaster[85]

Gen. et comb. nov

Gale

Middle Triassic

 Germany

A starfish belonging to the group Neoasteroidea and the family Trichasteropsidae. The type species is "Trichasteropsis" bieletorum Blake & Hagdorn (2003).

Hattopsis muradi[92]

Sp. nov

Abdelhamid et al.

Late Cretaceous

Simsima Formation

United Arab Emirates/Oman border region

A sea urchin.

Holopus fabianii[86]

Sp. nov

Valid

Martinez-Soares et al.

Eocene (Lutetian)

 Italy

A species of Holopus.

Hreggoblastus[79]

Gen. et sp. nov

Valid

Bohatý, Macurda & Waters

Devonian (Emsian)

Aguión Formation

 Spain

A blastoid belonging to the group Pentremitida and the family Conuloblastidae. The type species is H. differentialis.

Hyattechinus stauroporus[93]

Sp. nov

Valid

Pauly & Haude

Devonian (Famennian)

Velbert Formation

 Germany

A sea urchin belonging to the family Hyattechinidae.

Hyattechinus velbertensis[93]

Sp. nov

Valid

Pauly & Haude

Devonian (Famennian)

Velbert Formation

 Germany

A sea urchin belonging to the family Hyattechinidae.

Hyperoblastus ludwigi[79]

Sp. nov

Valid

Bohatý, Macurda & Waters

Devonian

Gerolstein Syncline

 Germany

A blastoid belonging to the group Pentremitida and the family Hyperoblastidae.

Isselicrinus baldoensis[94]

Sp. nov

Valid

Roux et al.

Eocene (Lutetian)

 Italy

A crinoid belonging to the group Isocrinida and the family Balanocrinidae.

Karavankecrinus[95]

Gen. et sp. nov

Valid

Ausich et al.

Permian (Artinskian)

Trogkofel Group

 Slovenia

A cladid crinoid belonging to the group Cyathoformes and the family Stachyocrinidae. The type species is K. bedici.

Lacosteaster[96]

Gen. et comb. nov

Gale & Ward

Miocene

 France

A starfish belonging to the family Solasteridae. The type species is L. lauerorum.

Lepidechinoides fragilis[93]

Sp. nov

Valid

Pauly & Haude

Devonian (Famennian)

Velbert Formation

 Germany

A sea urchin belonging to the family Lepidocentridae.

Lotusoblastus[79]

Gen. et comb. nov

Valid

Bohatý, Macurda & Waters

Devonian (Emsian)

Kaub Formation

 Germany

A blastoid of uncertain affinities. The type species is "Pentremitidea" medusa Jaekel (1895).

Marbleaster[90]

Gen. et comb. nov

Valid

Fau et al.

Middle Jurassic (Bathonian)

Forest Marble Formation

 United Kingdom

A starfish belonging to the group Forcipulatacea. The type species is "Uraster" spiniger Wright (1880).

Melocrinites bialasi[89]

Sp. nov

Valid

Bohatý, Ausich & Becker

Devonian (Frasnian)

Prüm Syncline

 Germany

A eucamerate crinoid.

Micraster ernsti[97]

Sp. nov

Valid

Schlüter

Late Cretaceous (Campanian)

 Germany

Moapacrinus dovjensis[95]

Sp. nov

Valid

Ausich et al.

Permian (Artinskian)

Trogkofel Group

 Slovenia

A cladid crinoid belonging to the group Cyathoformes and the family Cromyocrinidae.

Ophiactis hex[98]

Sp. nov

Valid

Thuy et al.

Late Jurassic (Kimmeridgian)

Nusplingen Limestone

 Germany

A species of Ophiactis.

Ophiolofsson[99]

Gen. et 5 sp. nov

Valid

Thuy et al.

Silurian

Högklint Formation

 Sweden

A brittle star. The type species is O. obituary; genus also includes O. joelmciveri, O. immolation, O. archspire and O. hendersonorum.

Ophiopetagno bonzo[99]

Sp. nov

Valid

Thuy et al.

Silurian (Telychian)

Lower Visby Formation

 Sweden

A brittle star.

Ophiopetagno doro[99]

Sp. nov

Valid

Thuy et al.

Silurian

Eke Formation

 Sweden

A brittle star.

Ophiopetagno kansas[99]

Sp. nov

Valid

Thuy et al.

Silurian

Slite Group

 Sweden

A brittle star.

Ophiotitanos moravica[100]

Sp. nov

Valid

Štorc & Žítt

Early Cretaceous (Hauterivian–Barremian)

?Hradiště Formation

 Czech Republic

A brittle star belonging to the group Ophiacanthida.

Parastachyocrinus sloveniaensis[95]

Sp. nov

Valid

Ausich et al.

Permian (Artinskian)

Trogkofel Group

 Slovenia

A cladid crinoid belonging to the group Cyathoformes and the family Stachyocrinidae.

Parastachyocrinus wanneri[95]

Sp. nov

Valid

Ausich et al.

Permian

Timor

A cladid crinoid belonging to the group Cyathoformes and the family Stachyocrinidae.

Pentagonopentagonalis (col.) annulus[101]

Sp. nov

Donovan et al.

Silurian (Llandovery)

Mulloch Hill Sandstone Formation

 United Kingdom

A crinoid columnal.

Pentahedronoblastus[79]

Gen. et sp. nov

Valid

Bohatý, Macurda & Waters

Devonian (Eifelian)

Junkerberg Formation

 Germany

A blastoid belonging to the group Pentremitida and the family Hyperoblastidae. The type species is P. giesdorfensis.

Petraster caidramiensis[102]

Sp. nov

Valid

Blake & Lefebvre

Ordovician (Katian)

Lower Ktaoua-Upper Tiouririne formations

 Morocco

Phyllocystis baltica[103]

Sp. nov

Valid

Rozhnov & Anekeeva

Ordovician

 Russia

A cornutan.

Phyllocystis cellularis[103]

Sp. nov

Valid

Rozhnov & Anekeeva

Ordovician

 Russia

A cornutan.

Pycnocrinus mohonkensis[104]

Sp. nov

Valid

Brower, Brett & Feldman

Ordovician (Katian)

Martinsburg Formation

 United States
( New York)

A glyptocrinid camerate crinoid.

Semiometra algeriana[105]

Sp. nov

Valid

Salamon et al.

 Algeria

A feather star.

Sinocrinus websteri[95]

Sp. nov

Valid

Ausich et al.

Permian (Artinskian)

Trogkofel Group

 Slovenia

A cladid crinoid belonging to the group Cyathoformes and the family Erisocrinidae.

Soleaaster[85]

Gen. et sp. nov

Gale

Late Triassic (Carnian)

San Cassiano Formation

 Italy

A starfish belonging to the group Trichasteropsida. The type species is S. thuyi.

Striacrinus[106]

Gen. et comb. et sp. nov

Valid

Gale

Late Cretaceous (Turonian)

 France
 Morocco
 United Kingdom

A crinoid belonging to the family Roveacrinidae. The type species is "Drepanocrinus" striatulus Gale (2019); genus also includes "Drepanocrinus" marocensis Gale (2019) and "Roveacrinus" communis Douglas (1908), as well as new species S. ornatus.

Thielechinus[93]

Gen. et sp. nov

Valid

Pauly & Haude

Devonian (Famennian)

Velbert Formation

 Germany

A sea urchin belonging to the family Proterocidaridae. The type species is T. multiserialis.

Velbertechinus[93]

Gen. et 2 sp. nov

Valid

Pauly & Haude

Devonian (Famennian)

Velbert Formation

 Germany

A sea urchin belonging to the family Archaeocidaridae. The type species is V. mirabilis; genus might also include V? helios.

Vyscystis? spinosa[107]

Sp. nov

Wang et al.

Cambrian Stage 4

Mantou Formation

 China

A lepidocystid blastozoan.

Research

[edit]
  • A review of the early evolution of echinoderms is published by Rahman and Zamora (2024). [108]
  • Evidence of increase of diversity of adaptations to different life habits throughout the evolutionary history of Cambrian and Ordovician echinoderms is presented by Novack-Gottshall et al. (2024).[109]
  • Redescription of Rhombifera bohemica is published by Paul et al. (2024).[110]
  • A study on the morphological variation of members of Eublastoidea, and on its implications for the validity of recognized eublastoid subgroups, is published by Anderson & Bauer (2024).[111]
  • Evidence from the study of blastoid specimens from the Devonian Hunsrück Slate and from Nümbrecht-Wirtenbach (Germany), interpreted as indicative of the presence of mutable collagenous tissue in the feeding structures of blastoids, is presented by Waters, Bohatý & Macurda (2024).[112]
  • A study on the microstructure of the brachiole and the theca ossicles of eocrinoids, as indicated by data from Sinoeocrinus lui from the Cambrian Kaili Formaton (China), is published by Yu, Lan & Zhao (2024).[113]
  • Bohatý et al. (2024) describe new fossil material of Monstrocrinus from the Devonian strata in Germany, and reinterpret Monstrocrinus as an attached, stalked echinoderm.[114]
  • A study on the phylogenetic relationships and morphological diversity of members of Paracrinoidea is published by Limbeck et al. (2024).[115]
  • García-Penas et al. (2024) provide evidence of the presence of stalked crinoids belonging to the group Isocrinida in the shallow lagoon environment in northeast Spain during the Aptian, and interpret the absence of extant stalked crinoids from shallow-marine habitats as likely caused by predation pressure.[116]
  • The youngest fossil material of shallow-sea stalked crinoids reported to date is described from the middle Miocene shallow nearshore marine facies in Poland by Salamon et al. (2024).[117]
  • Thompson & Nebelsick (2024) describe new fossil material of Lepidocentrus eifelianus from the Givetian Ahbach Formation and from the Frasnian Büdersheim Formation (Germany) and fossil material of Rhenechinus hopstaetteri from the Givetian Ahbach Formation, and interpret the studied fossils of R. hopstaetteri as evidence of survival of echinocystitid sea urchins at least to the Middle Devonian.[118]
  • Blake (2024) reviews the asterozoan class Stenuroidea, and names new families Hystrigasteridae, Stuertzasteridae, Erinaceasteridae and Ptilonasteridae.[119]

Hemichordates

[edit]
Name Novelty Status Authors Age Type locality Location Notes Images

Calyxdendrum amicabilis[120]

Sp. nov

Gutiérrez-Marco & Maletz

Ordovician (Tremadocian)

Fezouata Formation

 Morocco

A graptolite belonging to the family Dendrograptidae.

Cambrobranchus[121]

Gen. et sp. nov

Disputed

Yang et al.

Cambrian Stage 3

Chiungchussu Formation

 China

The type species is C. pelagobenthos. Originally described as an acorn worm; Maletz (2024) contested this identification, arguing that the fossil material of C. pelagobenthos might represent algal remains, a faecal string or a coprolite.[122]

Sphenoecium marjumensis[123]

Sp. nov

Lerosey-Aubril et al.

Cambrian (Drumian)

Marjum Formation

 United States
( Utah)

A pterobranch.

Tarnagraptus cupidus[123]

Sp. nov

Lerosey-Aubril et al.

Cambrian (Drumian)

Marjum Formation

 United States
( Utah)

A pterobranch.

Uncinatograptus elsae[124]

Sp. nov

Valid

Lopez et al.

Silurian (Gorstian)

Los Espejos Formation

 Argentina

A graptolite belonging to the family Monograptidae.

Uncinatograptus lisandroi[124]

Sp. nov

Valid

Lopez et al.

Silurian (Gorstian)

Los Espejos Formation

 Argentina

A graptolite belonging to the family Monograptidae.

Hemichordate research

[edit]
  • Review of the fossil record and evolutionary history of acorn worms and pterobranchs is published by Maletz (2024).[122]
  • A study on the locomotion of members of the graptolite genus Demirastrites, providing evidence of rotating locomotory pattern and evolution of morphology in the Demirastrites lineage resulting in increased stability and higher rotation velocity, is published by Shijia, Tan & Wang (2024).[125]
  • Maletz & Gutiérrez-Marco (2024) argue that purported rhabdopleurid-like epibionts from the Ordovician Fezouata Formation (Morocco) reported by Nanglu et al. (2023)[126] might be pseudo-colonial tubaria of cephalodiscid-like epibenthic pterobranchs instead, and argue that Webbyites felix might be a hydrozoan rather than a graptolite.[127]

Conodonts

[edit]

New taxa

[edit]
Name Novelty Status Authors Age Type locality Location Notes Images

Ancyrogondolella manueli[128]

Sp. nov

Valid

Karádi

Late Triassic (Norian)

 Hungary
 China?

A member of the family Gondolellidae.

Columbitella dagisi[129]

Sp. nov

Valid

Kilic

Early Triassic

 Russia
( Krasnoyarsk Krai)

A member of the family Gondolellidae.

Icriodus multidentatus[130]

Sp. nov

Valid

Nazarova & Soboleva

Devonian (Frasnian)

Ust'-Yarega Formation

 Russia
( Komi Republic)

Icriodus quartadecimensis[130]

Sp. nov

Valid

Nazarova & Soboleva

Devonian (Frasnian)

Ust'-Yarega Formation

 Russia
( Komi Republic)

Lochriea monocarinata[131]

Sp. nov

Valid

Zhuravlev

Carboniferous (Serpukhovian)

 Germany
 Ireland
 Russia
 United Kingdom

A member of the family Spathognathodontidae.

Neogondolella excentrica primitiva[132]

Ssp. nov

Valid

Orchard & Golding

Middle Triassic

 United States
( Nevada)

Neogondolella excentrica sigmoidalis[132]

Ssp. nov

Valid

Orchard & Golding

Middle Triassic

 United States
( Nevada)

Neogondolella quasiconstricta[132]

Sp. nov

Valid

Orchard & Golding

Middle Triassic

 United States
( Nevada)

Neogondolella quasicornuta[132]

Sp. nov

Valid

Orchard & Golding

Middle Triassic

 United States
( Nevada)

Palmatolepis abramovae[133]

Sp. nov

Valid

Tagarieva

Devonian (Famennian)

 Russia
( Bashkortostan)

Research

[edit]
  • Evidence of increased control over biomineralization throughout the early evolution of the conodont feeding apparatus is presented by Shirley et al. (2024).[134]
  • A study on changes of composition of Ordovician conodont assemblages from the Baltic region is published by Dzik (2024).[135]
  • Redescription of Stiptognathus borealis is published by Zhen (2024).[136]
  • Voldman et al. (2024) report the discovery of Moscovian conodonts from the Río del Peñón Formation (La Rioja Province, Argentina) representing the southernmost occurrence of members of the group in the high latitudes of Gondwana from the Late Paleozoic.[137]
  • Evidence indicating that the morphological and taxonomic diversity of conodonts was more affected by the Capitanian mass extinction event than by Permian–Triassic extinction event, and that both extinction events were followed by morphological innovation in conodonts, is presented by Xue et al. (2024).[138]
  • Huang et al. (2024) describe new assemblages of fossils of Hindeodus parvus from the Lower Triassic (Induan) Feixianguan Formation (Sichuan, China), providing new information on the morphology and arrangement of elements of the feeding apparatus of this conodont.[139]
  • Evidence from the study of conodont-bearing bromalites from the Lower Triassic Qinglong Formation (China), interpreted as indicating that conodonts were an important food source for Early Triassic crustaceans, ammonites, ray-finned fishes and coelacanths, is presented by Yao et al. (2024).[140]
  • Evidence from the study of Early Triassic conodont material from the Nanzhang-Yuan'an Lagerstätte (Hubei, China), indicative of selective preservation of conodont elements related to their morphologies and methods used to obtain them from the fossil strata, is presented by Wu et al. (2024).[141]
  • Ye et al. (2024) provide a redescription and revised diagnosis of Triassospathodus anhuinensis.[142]
  • A study on the multielement apparatus of Gladigondolella tethydis is published by Golding & Kılıç (2024), who interpret their findings as supporting the interpretation of Cratognathodus elements as belonging to the apparatus of G. tethydis.[143]

Fish

[edit]

Amphibians

[edit]

New taxa

[edit]
Name Novelty Status Authors Age Type locality Location Notes Images

Acheloma cryptatheria[144]

Sp. nov

Valid

Osterling Arias et al.

Early Permian

 United States
( Oklahoma)

A temnospondyl belonging to the family Trematopidae.

Bromerpeton[145]

Gen. et sp. nov

MacDougall et al.

Early Permian

Tambach Formation

 Germany

A recumbirostran belonging to the family Brachystelechidae. The type species is B. subcolossus.

Diadectes dreigleichenensis[146]

Sp. nov

Valid

Ponstein, MacDougall & Fröbisch

Early Permian

Tambach Formation

 Germany

A member of the family Diadectidae.

Dvinosaurus gubini[147]

Sp. nov

Valid

Uliakhin & Golubev

Permian

 Russia
( Mari El)

Gaiasia[148]

Gen. et sp. nov

Valid

Marsicano et al.

Early Permian

Gai-As Formation

 Namibia

A stem tetrapod related to colosteids. The type species is G. jennyae.

Kermitops[149]

Gen. et sp. nov

Valid

So, Pardo & Mann

Early Permian

Clear Fork Formation

 United States
( Texas)

An amphibamiform temnospondyl. The type species is K. gratus.

Kuwavaatakdectes[146]

Gen. et comb. nov

Valid

Ponstein, MacDougall & Fröbisch

Permian

Cutler Formation

 United States
( Colorado)

A member of the family Diadectidae. The type species is "Diadectes" sanmiguelensis Lewis & Vaughn (1965).

Kwatisuchus[150] Gen. et sp. nov Pinheiro et al. Early Triassic Sanga do Cabral Formation  Brazil A benthosuchid temnospondyl. The type species is K. rosai.

Memonomenos amelangi[151]

Sp. nov

Valid

Werneburg & Schoch

Permian (Asselian)

Goldlauter Formation

 Germany

A stereospondylomorph temnospondyl.

Ninumbeehan[152]

Gen. et sp. nov

Valid

So et al.

Late Triassic

Jelm Formation

 United States
( Wyoming)

A stereospondyl temnospondyl. The type species is N. dookoodukah.

Ostrombatrachos[153]

Gen. et sp. nov

Oreska et al.

Early Cretaceous (Albian)

Cloverly Formation

 United States
( Wyoming)

A frog. The type species is O. nodos.

Parotosuchus decumanticus[154]

Sp. nov

Valid

Schoch & Moreno

Early Triassic (Olenekian)

Volpriehausen Formation

 Germany

Stenokranio[155]

Gen. et sp. nov

Valid

Werneburg et al.

Carboniferous-Permian transition (Gzhelian/Asselian)

Remigiusberg Formation

 Germany

An eryopid temnospondyl. The type species is S. boldi.

Telmatobius achachila[156]

Sp. nov

Gómez et al.

Miocene

Mauri Formation

 Bolivia

A species of Telmatobius.

Volgerpeton[157]

Gen. et sp. nov

Valid

Bulanov

Permian

 Russia
( Tatarstan)

A member of Seymouriamorpha belonging to the family Karpinskiosauridae. The type species is V. exspectatus.

Ymboirana[158]

Gen. et sp. nov

Valid

Santos et al.

Oligocene

Tremembé Formation

 Brazil

A typhlonectid caecilian. The type species is Y. acrux.

Research

[edit]
  • A study on the fossils and paleosols of the Devonian Hervey Group (New South Wales, Australia) is published by Retallack (2024), who interprets his findings as indicating that Metaxygnathus lived within streams among subhumid woodlands, and argues that tetrapod limbs and necks most likely evolved in woodland streams.[159]
  • Porro, Martin-Silverstone & Rayfield (2024) redescribe the anatomy of the skull of Eoherpeton watsoni and present a new, three-dimensional reconstruction of the skull.[160]
  • Review of the origin of the amphibian metamorphosis, as indicated by data from the fossil record of larvae of temnospondyls, is published by Schoch & Witzmann (2024).[161]
  • A study on changes of the diversity of the temnospondyls from India and South-East Asia throughout the Triassic period is published by Chakravorti, Roy & Sengupta (2024).[162]
  • A study on changes in the geographical distribution of temnospondyls in the Middle and Late Triassic is published by Moreno et al. (2024), who interpret the Central European Basin as a likely focal point for diversification and further spread of temnospondyls.[163]
  • Gee & Sidor (2024) describe new fossil material of temnospondyls from the Triassic Fremouw Formation (Antarctica), including remains of the relict dissorophoid Micropholis stowi and remains of immature capitosaurs representing some of the smallest known members of the group.[164]
  • Evidence from the study the mandibles of specimens of Metoposaurus krasiejowensis, interpreted as indicative of different lifestyles of members of a single population of this species (some more aquatic and some more terrestrial), is presented by Quarto & Antczak (2024).[165]
  • Redescription of the skeletal anatomy and a study on the affinities of Plagiosaurus depressus is published by Witzmann & Schoch (2024).[166]
  • So & Mann (2024) revise temnospondyl fossils from the Moenkopi Formation (Arizona, United States), and report evidence of the presence of a member of Brachyopoidea with large, robust teeth, distinct from Hadrokkosaurus bradyi and Vigilius wellesi.[167]
  • Redescription and a study on the affinities of Hyperokynodon keuperinus is published by Schoch (2024).[168]
  • A study on the affinities of Chinlestegophis jenkinsi is published by Marjanović et al. (2024), whose phylogenetic analysis doesn't support the interpretation of C. jenkinsi and stereospondyls in general as stem caecilians.[169]
  • Serra Silva (2024) reevaluates evidence from the study of Pardo, Small & Huttenlocker (2017) supporting the origin of caecilians and other extant amphibians from different temnospondyl lineages,[170] and reports that the morphological data matrix from that study is not robust to changes in analytical parameters.[171]
  • A study on the morphology and histology of the humerus and femora of Kulgeriherpeton ultimum is published by Skutschas et al. (2024).[172]
  • A study on the morphology and histology of the femora of Kiyatriton krasnolutskii and K. leshchinskiyi is published by Skutschas et al. (2024), who find evidence of similarity in the structure of the femora of the Middle Jurassic and Early Cretaceous members of the genus Kiyatriton.[173]
  • Syromyatnikova et al. (2024) describe fossil material of a member of the genus Andrias from the Pliocene Belorechensk Formation (Krasnodar Krai, Russia), representing one of the geologically youngest and easternmost records of giant salamanders in Europe reported to date.[174]
  • Redescription and a study on the affinities of Bishara backa is published by Skutschas et al. (2024), who recover this species as a crown proteid.[175]
  • Chuliver et al. (2024) describe a late-stage tadpole of Notobatrachus degiustoi from the Middle Jurassic La Matilde Formation (Argentina), representing the oldest tadpole reported to date.[176]
  • A specimen of Gansubatrachus qilianensis preserved with eggs within its body, interpreted as a skeletally immature gravid female, is described from the Lower Cretaceous Zhonggou Formation (China) by Du et al. (2024).[177]
  • Santos, Carvalho & Zaher (2024) describe fossil material of an indeterminate neobatrachian frog from the Eocene–Oligocene Aiuruoca Basin (Brazil), expanding known diversity of frogs from the studied unit.[178]
  • A study on the taphonomy of Eocene frog fossils from the Geiseltal Lagerstätte (Germany) is published by Falk et al. (2024), who find no evidence of silicification of soft tissues, as well as no evidence of preservation of most of the soft tissues reported as preserved in earlier studies, interpret the fossil microbodies preserved with the frogs as more likely to be melanosomes than bacteria, and interpret the mode of soft tissue preservation in frogs from Geiseltal as similar to those of other fossil vertebrates from lacustrine ecosystems.[179]
  • Evidence from the study of gut contents of a tadpole of Pelobates cf. decheni from the Enspel Lagerstätte (Germany), indicating that European spadefoot toad tadpoles were already feeding on pollen in the late Oligocene, is presented by Wuttke et al. (2024).[180]
  • New assemblage of frog fossils, including possible brachycephaloids, odontophrynids and hemiphractids, is described from the Eocene Geste Formation (Argentina) by Gómez et al. (2024).[181]
  • Zimicz et al. (2024) describe remains of Ceratophrys from the Palo Pintado Formation (Salta, Argentina), interpreted as evidence of climatic conditions in the late Miocene resembling those in the semiarid Gran Chaco.[182]
  • Description of amphibian assemblages from the late Eocene – early Oligocene strata from the Transylvanian Basin (Romania) is published by Venczel et al. (2024).[183]
  • A diverse assemblage of amphibian fossils is described from the Miocene and Pliocene strata from the Hambach surface mine (Germany) by Villa, Macaluso & Mörs (2024), who interpret the studied fossils as indicative of a humid climate persisting in the area throughout the Neogene.[184]
  • New fossil material of amphibians, including two salamander and seven frog taxa, is described from the Miocene and Pliocene localities in Greece by Georgalis et al. (2024).[185]
  • Description of the fossil material of Pleistocene amphibians from the Taurida Cave (Crimea) is published by Syromyatnikova & Tarasova (2024).[186]
  • New information on the morphology and distribution of Kotlassia prima, based on the study of remains from five localities in Eastern Europe, is published by Bulanov (2024), who interprets the studied remains as extending the stratigraphic range of Kotlassia up to the terminal Permian, as well as suggestive of more terrestrial ecology for the adult state of K. prima compared to its late Permian relatives, and indicating that K. prima was a predator with a wide trophic niche.[187]
  • Reisz, Maho & Modesto (2024) reevaluate the affinities of recumbirostrans and lysorophians, arguing that the studied tetrapods were not amniotes.[188]
  • Modesto (2024) reviews the phylogenetic studies that recovered diadectomorphs or recumbirostrans within the crown group of Amniota, and argues that the data presented so far is not sufficient to confidently classify both groups as amniotes.[189]
  • Voigt et al. (2024) described diadectid footprints associated with a partial scaly body impression from the Permian strata in Poland, providing evidence of the presence of horned scales in tetrapods close to the origin of amniotes.[190]

Reptiles

[edit]

Synapsids

[edit]

Non-mammalian synapsids

[edit]

New taxa

[edit]
Name Novelty Status Authors Age Type locality Location Notes Images

Dianoconodon[191]

Gen. et sp. nov

Valid

Mao et al.

Early Jurassic

Lufeng Formation

 China

A morganucodontan-like mammaliaform. The type species is D. youngi.

Docodon hercynicus[192]

Sp. nov

Valid

Martin et al.

Late Jurassic (Kimmeridgian)

Süntel Formation

 Germany

Ergetiis[193]

Gen. et sp. nov

Averianov et al.

Early Cretaceous

Batylykh Formation

 Russia
( Sakha Republic)

A tegotheriid docodont. The type species is E. ichchi.

Feredocodon[194]

Gen. et sp. nov

Valid

Mao et al.

Middle Jurassic (Bathonian–Callovian)

 China

A shuotheriid mammaliaform. The type species is F. chowi.

Impumlophantsi[195]

Gen. et sp. nov

Valid

Matlhaga, Benoit & Rubidge

Permian

Abrahamskraal Formation

 South Africa

A biarmosuchian belonging to the group Burnetiamorpha. The type species is I. boonstrai.

Jiucaiyuangnathus[196]

Gen. et sp. nov

Valid

Liu & Abdala

Early Triassic

Jiucaiyuan Formation

 China

A therocephalian belonging to the group Baurioidea. The type species is J. confusus.

Nyaphulia[197]

Gen. et comb. nov

Valid

Duhamel et al.

Permian (Guadalupian)

Abrahamskraal Formation

 South Africa

A basal dicynodont. New genus for "Eodicynodon" oelofseni, the type species.

Paratraversodon[198]

Gen. et sp. nov

Valid

Kerber et al.

Triassic

 Brazil

A traversodontid cynodont. The type species is P. franciscaensis.

Riojanodon[199]

Gen. et sp. nov

Valid

Martinelli et al.

Triassic

Chañares Formation

 Argentina

A chiniquodontid cynodont. The type species is R. nenoi.

Research

[edit]
  • Singh et al. (2024) provide evidence of a dramatic shift in the jaw functional morphology of carnivorous synapsids across the early-middle Permian transition, and interpret their findings as indicative of changes of feeding ecologies of predatory synapsids related to increasingly dynamic behaviors and interactions in the studied time interval.[200]
  • A study on the evolution of tooth morphology of non-mammalian synapsids, providing evidence of independent evolution of morphologically complex teeth in multiple synapsid lineages and evidence of independent secondary simplification of teeth in at least two lineages of non-mammalian cynodonts, is published by Harano & Asahara (2024).[201]
  • Miyamae et al. (2024) study maxillary and mandibular canal morphology in extant and fossil tetrapods, and interpret the evolution of the studied canals in synapsids as correlated with a shift from increased sensitivity of the rostral tip of the jaws to touch in early nonmammalian synapsids to the use of mobile whiskers as sensory organs emerging in Triassic cynodonts.[202]
  • Jones, Angielczyk & Pierce (2024) reconstruct the range of motion of intervertebral joints of eight non-mammalian synapsids, and argue that several key aspects of mammalian vertebral function first evolved before the appearance of the mammalian crown group.[203]
  • Bishop & Pierce (2024) present reconstructions of the hindlimb musculature of Ophiacodon retroversus, Dimetrodon milleri, Oudenodon bainii, Lycaenops ornatus, Regisaurus jacobi, Massetognathus pascuali, Megazostrodon and Vincelestes neuquenianus.[204]
  • Bishop & Pierce (2024) study the locomotor evolution of synapsids, providing evidence of a complex history of changes of locomotor versatility during the synapsid evolution (including temporary increases of hindlimb performance in non-cynodont therapsids and early cynodonts, followed by a reversal in locomotor performance in later diverging synapsids), and report evidence indicating that therian-like erect hindlimb function only evolved shortly before the origin of the crown group of therians themselves.[205]
  • Evidence of functional differentiation of teeth of Mesenosaurus efremovi is presented by Maho et al. (2024).[206]
  • Maho, Holmes & Reisz (2024) describe new fossil material of large-bodied synapsids from the Richards Spur locality (Oklahoma, United States), including fossil material of a sphenacodontid which might be distinct from known members of the group and the first ophiacodontid material from this locality; the authors use photography, stipple drawings and coquille drawings for visual representation of the studied material, and argue that three forms of visual representation provide more information about the specimens compared to only using photographs.[207]
  • Benoit et al. (2024) report evidence of neurological adaptations of Cistecynodon parvus to low-frequency hearing and low-light conditions, evidence that facial bosses of Pachydectes elsi were likely richly innervated and better suited for display, communication or species recognition than physical combat, and evidence of a healed braincase injury in a specimen of Moschognathus whaitsi, interpreted as likely head-butting related injury resulting from play-fighting of juveniles.[208]
  • Benoit & Midzuk (2024) provide new estimates of the endocranial volume and body size of Anteosaurus magnificus, Jonkeria truculenta and Moschops sp.[209]
  • Description of the cranial morphology of Jonkeria truculenta is published by Jirah, Rubidge & Abdala (2024), who also revise the family Titanosuchidae and interpret is as including two valid species (Jonkeria truculenta and Titanosuchus ferox).[210]
  • Purported bolosaurid Davletkulia gigantea is reinterpreted as a dinocephalian belonging to the group Tapinocephaloidea by Bulanov (2024).[211]
  • Evidence of significant shape differences between juvenile and adult skulls of Diictodon feliceps, likely caused by the development of the musculature of the jaw related to a dietary shift later in ontogeny, is published by Rabe et al. (2024).[212]
  • Taxonomic revision of the genus Endothiodon is published by Maharaj et al. (2024).[213]
  • Shi & Liu (2024) describe new specimens of Turfanodon bogdaensis from the Permian Guodikeng Formation (Turpan, Xinjiang, China), providing new information on the skeletal anatomy of this species.[214]
  • Description of the skull anatomy and a study on the affinities of Gordonia is published by George et al. (2024).[215]
  • Pinto et al. (2024) tested for sexual dimorphism in Placerias, finding statistical evidence for two morphs of the size and length of the caniniform process but in no other studied elements, and suggest this is a secondary sexual trait.[216]
  • A study on the skeletal anatomy and phylogenetic relationships of Lisowicia bojani is published by Sulej (2024).[217]
  • Matamales-Andreu et al. (2024) describe fossil material of an indeterminate gorgonopsian from the Permian (Cisuralian–Guadalupian) strata of the Port des Canonge Formation (Mallorca, Spain), representing the oldest record of the group reported to date, and interpret this finding as evidence of presence of therapsids in the equatorial areas of Pangaea during early–middle Permian transition.[218]
  • Sidor & Mann (2024) describe an articulated sternum and interclavicle of a specimen of Aelurognathus tigriceps from the upper Madumabisa Mudstone Formation (Zambia), providing new information on the anatomy of the sternum in gorgonopsians.[219]
  • Brant & Sidor (2024) describe a premaxilla of a member of the genus Inostrancevia from the Permian Usili Formation (Tanzania), representing the oldest record of the genus from the Southern Hemisphere reported to date.[220]
  • Benoit et al. (2024) reevaluate the provenance of three gorgonopsian specimens from purported Lower Triassic strata in the Karoo Basin (South Africa), and interpret the studied fossils as expanding the range of the genus Cyonosaurus higher up in the extinction zone, but don't confirm the survival of gorgonopsians past the Permian–Triassic extinction event.[221]
  • A study on the phylogeny of the Eutheriodontia and on the character evolution within the group is published by Pusch, Kammerer & Fröbisch (2024), who recover therocephalians as paraphyletic with regards to cynodonts.[222]
  • Stuart, Huttenlocker & Botha (2024) describe the anatomy of the postcranial skeleton of Moschorhinus kitchingi.[223]
  • Evidence from the study on the type locality of Nythosaurus larvatus, interpreted as indicative of distinctiveness of this taxon and its late Olenekian age, is presented by Benoit et al. (2024).[224]
  • A study on dental complexity in gomphodont cynodonts through time, indicating that the peak in postcanine complexity was reached early in the gomphodont evolution, is published by Hendrickx et al. (2024).[225]
  • Müller et al. (2024) report the first discovery of fossils of Protuberum cabralense from the late Ladinian to early Carnian Linha Várzea 1 site (Brazil), and find that Protuberum is absent in fossiliferous sites that yielded fossils of Luangwa, which might be indicative of a subdivision within the Dinodontosaurus Assemblage Zone.[226]
  • Schmitt et al. (2024) revise the skull anatomy of Protuberum cabralense, reinterpret it as nested outside Gomphodontosuchinae, and report new occurrences of the species that expand its geographical distribution within the Dinodontosaurus Assemblage Zone.[227]
  • Roese-Miron et al. (2024) report the discovery of a specimen of Siriusgnathus niemeyerorum from Upper Triassic strata from the Várzea do Agudo site (Candelária Sequence of the Santa Maria Supersequence, Brazil), found above the layers yielding Exaeretodon riograndensis, and evaluate the implications of this finding for the biostratigraphy of the sites of the Candelária Sequence.[228]
  • Figueiredo et al. (2024) describe a new concentration of fossils of Exaeretodon riograndensis from the Várzea do Agudo site, preserving specimens representing various ontogenetic stages, and interpret this concentration as suggestive of gregarious behavior in E. riograndensis.[229]
  • Kaiuca et al. (2024) provide new body mass estimates for multiple cynodont taxa, and report that rates of body size evolution were lower in prozostrodontians ancestral to the first Mammaliaformes than in other lineages.[230]
  • A study on nasal cavities of Thrinaxodon, Chiniquodon, Prozostrodon, Riograndia and Brasilodon is published by Fonseca et al. (2024), who find no evidence of the presence of ossified turbinals in the nasal cavities of the studied cynodonts, but report evidence of increase in the anatomical complexity of the structures anchoring the cartilages in the nasal region in cynodont lineages closer to mammaliaforms.[231]
  • A study on the jaw joint anatomy of Brasilodon quadrangularis, Riograndia guaibensis and Oligokyphus major is published by Rawson et al. (2024), who find that a dentary–squamosal contact evolved independently in ictidosaurs before its first appearance in mammaliaforms.[232]
  • Description of the anatomy of the maxillary canal of Riograndia guaibensis is published by Fonseca et al. (2024), who report evidence of the presence of pneumatization in the anterior region of the skull.[233]
  • Szczygielski et al. (2024) redescribe Saurodesmus robertsoni, interpreting it as a valid cynodont taxon, possibly belonging to the family Tritylodontidae.[234]
  • Hurtado, Harris & Milner (2024) describe possible eucynodont tracks from the Lower Jurassic Moenave Formation (Utah, United States), probably made in fine-grained sand on a flat lake shore (thus representing rare finding of early Mesozoic synapsid tracks outside eolian settings), and expanding known diversity of Early Jurassic animals from the Whitmore Point Member of the Moenave Formation.[235]
  • New information on the morphology of the inner ear and stapes of Morganucodon is presented by Hoffmann et al. (2024).[236]
  • Martin et al. (2024) describe new molars of Storchodon cingulatus from the Kimmeridgian Süntel Formation (Germany), and interpret the studied fossils as confirming the morganucodontan affinities of S. cingulatus, as well as confirming it as one of the largest morganucodontans.[237]
  • Averianov & Voyta (2024) reinterpret fossil material of a putative Triassic stem mammal Tikitherium copei as a tooth of a Neogene shrew.[238]
  • Panciroli et al. (2024) describe new juvenile and adult specimens of Krusatodon kirtlingtonensis from the Kilmaluag Formation (United Kingdom), and interpret the studied fossils as indicating that K. kirtlingtonensis had longer development and lifespan than extant mammals of comparable adult body mass.[239]
  • A study on the growth of dental cementum in Jurassic mammaliaforms from the Hettangian Hirmeriella fissure suite (Wales, United Kingdom), Bathonian Forest Marble fauna (Oxfordshire, United Kingdom) and the Kimmeridgian Guimarota fauna (Portugal) is published by Newham et al. (2024), who find that none of the studied mammaliaforms (including early crown mammals) reached growth rates and metabolic levels of extant mammals of similar size, but also find evidence of faster growth of early crown mammals compated to earlier mammaliaforms, and argue that the modern mammalian growth strategy evolved at the time of the mid-Jurassic radiation of crown mammals.[240]
  • A study on synapsid species richness and distribution throughout the Mesozoic is published by Brocklehurst (2024), who finds evidence of two phases of decline of non-mammalian synapsids – a restriction of their geographic range between the Triassic and Middle Jurassic, and a decline in species richness during the Early Cretaceous.[241]

Mammals

[edit]

Other animals

[edit]

New taxa

[edit]
Name Novelty Status Authors Age Type locality Location Notes Images

Aerobius[242]

Gen. et sp. nov

Mapalo, Wolfe & Ortega-Hernández

Late Cretaceous (Campanian)

 Canada
( Manitoba)

A tardigrade belonging to the superfamily Hypsibioidea. The type species is A. dactylus.

Annulitubus fernandesi[243]

Sp. nov

Scheffler et al.

Devonian

Pimenteira Formation

 Brazil

An annelid.

Archiasterella acuminata[244]

Sp. nov

Valid

Zhang & Wang in Zhang et al.

Cambrian Stage 4

Balang Formation

 China

A chancelloriid.

Arimasia[245]

Gen. et sp. nov

Valid

Runnegar et al.

Ediacaran

Urusis Formation

 Namibia

A sponge, possibly a member of Archaeocyatha and Monocyathida. The type species is A. germsi.

Aulacera vohilaidia[246]

Sp. nov

Valid

Jeon & Toom

Ordovician (Katian)

Adila Formation

 Estonia

A member of Stromatoporoidea belonging to the group Labechiida and the family Aulaceratidae.

Australolithes[247]

Gen. et sp. nov

Valid

Burrow & Smith

Devonian (Lochkovian)

Connemarra Formation

 Australia

A member of Hyolitha belonging to the family Hyolithidae. The type species is A. troffsensis.

Beretella[248]

Gen. et sp. nov

Valid

Han, Guo, Wang and Qiang in Wang et al.

Cambrian Stage 2

Yanjiahe Formation

 China

A member of Saccorhytida. The type species is B. spinosa.

Brigoconus[249]

Gen. et sp. nov

Valid

Malinky & Geyer

Cambrian

Brigus Formation

 Canada
( Newfoundland and Labrador)

A hyolith. Genus includes new species B. greavesi.

Camptodictyon contortus[250]

Sp. nov

Valid

Jeon & Kershaw in Jeon et al.

Ordovician (Hirnantian)

Shiqian Formation

 China

A member of Stromatoporoidea.

Conchicolites corbalengus[251]

Sp. nov

Vinn et al.

Ordovician (Hirnantian)

 Estonia

A member of Cornulitida.

Cornulites leonei[252]

Sp. nov

Vinn et al.

Ordovician

Portixeddu Formation

 Italy

A member of Cornulitida.

Cornulites levigatus[251]

Sp. nov

Vinn et al.

Ordovician (Hirnantian)

 Estonia

A member of Cornulitida.

Cretacimermis dolor[253]

Sp. nov

Fang, Poinar & Luo in Fang et al.

Cretaceous

Burmese amber

 Myanmar

A nematode belonging to the family Mermithidae.

Cystostroma rallus[250]

Sp. nov

Valid

Jeon in Jeon et al.

Ordovician (Hirnantian)

Shiqian Formation

 China

A member of Stromatoporoidea.

Ecclimadictyon ancipitum[250]

Sp. nov

Valid

Jeon in Jeon et al.

Ordovician (Hirnantian)

Shiqian Formation

 China

A member of Stromatoporoidea.

Entothyreos[254]

Gen. et sp. nov

Valid

Aria & Caron

Cambrian (Wuliuan)

Burgess Shale

 Canada
( British Columbia)

A luolishaniid lobopodian. The type species is E. synnaustrus.

Fouanoucyathus[255]

Gen. et sp. nov

Valid

El Bakhouch & Kerner in El Bakhouch et al.

Cambrian

Issafen Formation

 Morocco

A member of Archaeocyatha belonging to the group Ajacicyathida and the family Carinacyathidae. The type species is F. tafraoutiensis.

Gaparella elenae[256]

Sp. nov

Valid

Luzhnaya

Cambrian

 Mongolia

A problematic microfossil, possibly a sponge.

Gzhelistella[257]

Gen. et sp. nov

Valid

Davydov et al.

Carboniferous (Gzhelian)

Kosherovo Formation

 Russia
( Moscow Oblast)

A calcareous sponge. The type species is G. cornigera. Published online in 2024, but the issue date is listed as December 2023.

Helicolocellus[258]

Gen. et sp. nov

Valid

Wang et al.

Ediacaran

Dengying Formation

 China

A sponge related to the Hexactinellida. The type species is H. cantori.

Keithospongos[259]

Gen. et sp. nov

Kolesnikov et al.

Cambrian

Sinsk Lagerstätte

 Russia

A sponge. Genus includes new species K. loricatus.

Levinoconus[249]

Gen. et sp. nov

Valid

Malinky & Geyer

Cambrian

Brigus Formation

 Canada
( Newfoundland and Labrador)

A hyolith. Genus includes new species L. florencei.

Lobodiscus[260]

Gen. et sp. nov

Zhao et al.

Ediacaran

Dengying Formation

 China

A possible member of Trilobozoa. The type species is L. tribrachialis.

Mianxiantubus[261]

Gen. et 3 sp. nov

Luo et al.

Cambrian Stage 3

Guojiaba Formation

 China

A tubicolous animal with possible affinities with cloudinomorph fossils, possibly a cnidarian. The type species is M. cyathiformis; genus also includes M. obconicus and M. varius.

Neomenispongia[259]

Gen. et sp. nov

Kolesnikov et al.

Cambrian

Sinsk Lagerstätte

 Russia

An early heteroscleromorph demosponge. Genus includes N. plexa and N. diazoma.

Neomicrorbis israelicus[262]

Sp. nov

Vinn et al.

Middle Jurassic (Callovian)

 Israel

A spirorbine polychaete.

Nuucichthys[263]

Gen. et sp. nov

Valid

Lerosey-Aubril & Ortega-Hernández

Cambrian (Drumian)

Marjum Formation

 United States
( Utah)

A soft-bodied stem-vertebrate. The type species is N. rhynchocephalus.

Omnidens qiongqii[264]

Sp. nov

Li et al.

Cambrian

 China

Paradeningeria magna[265]

Sp. nov

Valid

Malysheva

Permian

 Russia
( Primorsky Krai)

A sponge.

Polygoniella[266]

Gen. et sp. nov

Valid

Del Mouro et al.

Cambrian (Drumian)

Marjum Formation

 United States
( Utah)

A sponge, a member of the total group of Hexactinellida. The type species is P. turrelli.

Porkuniconchus[267]

Gen. et sp. nov

Valid

Vinn, Wilson & Toom

Ordovician (Hirnantian)

Ärina Formation

 Estonia

A member of Cornulitida. The type species is P. fragilis.

Poutinella[249]

Gen. et sp. nov

Valid

Malinky & Geyer

Cambrian

Brigus Formation

 Canada
( Newfoundland and Labrador)

A hyolith. Genus includes new species P. crispenae.

Quaestio[268]

Gen. et sp. nov

Evans et al.

Ediacaran

 Australia

A motile animal preserving evidence of left-right asymmetry of its body. The type species is Q. simpsonorum.

Saccus[269]

Gen. et 2 sp. nov

Liu et al.

Cambrian (Fortunian)

Kuanchuanpu Formation

 China

An ecdysozoan described on the basis of fossil embryos. Genus includes S. xixiangensis and S. necopinus.

Selkirkia tsering[270]

Sp. nov

Valid

Nanglu & Ortega-Hernández

Ordovician (Tremadocian)

Fezouata Formation

 Morocco

Serpula? alicecooperi[271]

Sp. nov

Valid

Kočí et al.

Early Jurassic (Pliensbachian)

Hasle Formation

 Denmark

A polychaete belonging to the family Serpulidae.

Sororistirps altynensis[272]

Sp. nov

Valid

Pervushov

Late Cretaceous (Maastrichtian)

 Russia
( Saratov Oblast)

A hexactinellid sponge belonging to the family Ventriculitidae.

Sororistirps antetubiforme[272]

Sp. nov

Valid

Pervushov

Late Cretaceous (Santonian)

 Kazakhstan
 Russia
( Samara Oblast
 Saratov Oblast
 Volgograd Oblast)

A hexactinellid sponge belonging to the family Ventriculitidae.

Sororistirps postradiatum[272]

Sp. nov

Valid

Pervushov

Late Cretaceous (Santonian)

 Kazakhstan
 Russia
( Samara Oblast
 Saratov Oblast)

A hexactinellid sponge belonging to the family Ventriculitidae.

Spirorbis? hagadolensis[262]

Sp. nov

Vinn et al.

Middle Jurassic (Callovian)

 Israel

Possibly a species of Spirorbis.

Spitiprion[273]

Gen. et sp. nov

Valid

Tonarová, Suttner, & Hints in Tonarová et al.

Ordovician (Katian)

Takche Formation

 India

A polychaete belonging to the family Ramphoprionidae. The type species is S. khannai.

Timorebestia[274]

Gen. et sp. nov

Park et al.

Cambrian

Sirius Passet Lagerstätte

 Greenland

A member of the stem group of Chaetognatha. The type species is T. koprii.

Toutonella[249]

Gen. et sp. nov

Valid

Malinky & Geyer

Cambrian

Brigus Formation

 Canada
( Newfoundland and Labrador)

A hyolith. Genus includes new species T. chaddockae.

Tribrachidium gehlingi[275]

Sp. nov

Valid

Botha & García-Bellido

Ediacaran

Rawnsley Quartzite

 Australia

Uncus[276]

Gen. et sp. nov

Valid

Hughes, Evans & Droser

Ediacaran

 Australia

A bilaterian with ecdysozoan affinities. The type species is U. dzaugisi.

Vetus naomi[277]

Sp. nov

Poinar

Eocene

Baltic amber

Europe (Baltic Sea region)

A nematode.

Wiwaxia douposiensis[278]

Sp. nov

Sun et al.

Cambrian Stage 4

Douposi Formation

 China

Xiaoshibachaeta[279]

Gen. et sp. nov

Valid

Yang et al.

Cambrian Stage 3

Hongjingshao Formation

 China

An annelid. The type species is X. biodiversa.

Research

[edit]
  • Morais et al. (2024) report the discovery of approximately 571-million-years-old microfossils from the Bocaina Formation (Brazil), sharing anatomical similarities with sections of cloudinids, protoconodonts, anabaritids and hyolithids, and interpreted as likely remains of early animals.[280]
  • Delahooke et al. (2024) study frondose specimens from Ediacaran strata in Newfoundland (Canada) found forming closely spaced, linear arrangements, and interpret them as likely formed by runner-like stolons, providing possible evidence of a previously unknown reproductive strategy of rangeomorphs.[281]
  • Cao, Meng & Cai (2024) use electrochemical methods to simulate the process of tube generation of Cloudina under the same phosphorus content as modern seawater.[282]
  • Fossil evidence from the Terreneuvian blue clays of Estonia, indicative of survival of the Ediacaran cloudinid Conotubus hemiannulatus into the early Cambrian, is presented by Vinn et al. (2024).[283]
  • Wang et al. (2024) describe fossil material of two distinct types of archaeocyaths from the Cambrian Shuijingtuo and Xiannüdong formations (China), including fossils with complicated interior network of canals which might be remains of a water filtration mechanism more complex and efficient than the ones seen in sponges.[284]
  • Pruss et al. (2024) describe fossil material of Archaeocyathus from the Cambrian Mule Spring Limestone (Nevada) and Carrara Formation (California, United States), representing some of the latest record of archaeocyaths and providing evidence of local survival of members of the group after the disappearance of diverse archaeocyath reefs in western Laurentia, into the later Cambrian Age 4; the authors interpret their findings as an example of the dead clade walking phenomenon.[285]
  • Review of events of decline in the evolutionary history of stromatoporoids is published by Kershaw & Jeon (2024).[286]
  • Botha et al. (2024) compare the morphology of Tribrachidium heraldicum and T. gehlingi, confirming that the two species were distinct.[287]
  • A study on the functional morphology of Tribrachidium heraldicum is published by Olaru et al. (2024), who interpret Tribrachidium as a macroscopic suspension feeder.[288]
  • Zhao et al. (2024) redescribe Calathites spinalis, and interpret it as a stem-ctenophore belonging to the family Dinomischidae.[289]
  • Peel (2024) describes phosphatised central ray canals preserved within rays of a sclerite of Chancelloria from the Cambrian Henson Gletscher Formation (Greenland), sharing similarities with the robust central canal of the halkieriid Sinosachites, and interprets this finding as adding support to the notion that coeloscleritophorans are a paraphyletic group and that pre-bilaterian and bilaterian coeloscleritophorans underwent parallel episodes of calcareous mineralization.[290]
  • Turk et al. (2024) redescribe the type material of Archaeichnium haughtoni, and interpret it as one of the earliest examples of marine worm burrow linings in the fossil record reported to date.[291]
  • A specimen of Cricocosmia jinningensis preserved in the act of moulting is described from the Cambrian Chengjiang Lagerstätte (China) by Yu, Wang & Han (2024), who present a reconstruction of the moulting process of C. jinningensis.[292]
  • Howard et al. (2024) redescribe "Protoscolex" latus and transfer this species to the genus Radnorscolex.[293]
  • Turk et al. (2024) describe trace fossils similar to modern and Cambrian priapulid worm burrows from the Ediacaran Urusis Formation (Namibia), interpreted as likely produced by a total-group scalidophoran tracemaker, and name a new ichnotaxon Himatiichnus mangano.[294]
  • Vannier (2024) interprets Saccorhytus as a possible larval stage of one of the scalidophoran worms from the Kuanchuanpu biota.[295]
  • Chen et al. (2024) describe new fossil material of Microdictyon from the Cambrian Qiongzhusi Formation (China), providing new information on the molting process of lobopodians, and evidence of similarities of the sclerites of Microdictyon and extant armored tardigrades.[296]
  • A body fossil resembling tentacles of extant trypanorhynch tapeworms is described from the Cretaceous amber from Myanmar by Luo et al. (2024).[297]
  • Yang et al. (2024) describe new fossil material of Gaoloufangchaeta bifurcus from the Cambrian Wulongqing Formation (China), and interpret G. bifurcus as the earliest known errantian annelid.[298]
  • Tubular fossils which might belong to early sabellids are described from the Upper Permian deposits in southern China by Słowiński, Clapham & Zatoń (2024), potentially expanding known range of sabellids during the late Paleozoic.[299]
  • Jamison-Todd et al. (2024) describe boring produced by members of the genus Osedax in marine reptile bones from the Cenomanian Lower Chalk (United Kingdom), Campanian Marlbrook Marl and Mooreville Chalk (Arkansas and Alabama, United States) and Maastrichtian Mons Basin (Belgium), providing evidence of the presence of Osedax on both sides of the northern Atlantic Ocean in the Cretaceous, as well as evidence of the presence of different morphotypes of borings which were possibly produced by different species.[300]
  • Zhang & Huang (2024) report the discovery of serpulid polychaete dwelling tubes from the Cretaceous amber from Myanmar, expanding known diversity of marine animals preserved in this amber.[301]
  • Vinn et al. (2024) describe serpulid fossil material assigned to Parsimonia antiquata from the Maastrichtian Beyobası Formation (Turkey), representing the first record of Parsimonia from the Cretaceous of the Middle East reported to date.[302]
  • A study on the taxonomic and morphological diversity of Cambrian hyoliths, providing evidence of increase in diversity in the early Cambrian followed by decline in the Miaolingian, is published by Liu et al. (2024).[303]
  • Vinn et al. (2024) describe fossil material of tentaculitids with fossilized soft tissues from Devonian strata in Armenia, and interpret the studied soft tissues as refuting molluscan affinities of tentaculitoids, and indicating that tentaculitids shared a common ancestor with bryozoans.[304]
  • Mussini et al. (2024) report evidence for the presence of a gut canal and a dorsal nerve chord in Pikaia, and recover vetulicolians, Yunnanozoon and Pikaia as early-diverging stem chordates.[305]
  • The most diverse assemblage of fossil ascidian spicules in the world reported to date is described from the Miocene strata from Bogutovo Selo (Bosnia and Herzegovina) by Łukowiak et al. (2024), who find that the studied assemblage had closer resemblance to Eocene ascidians from Australia than to Miocene ascidians from Eastern Paratethys, providing evidence of wide distribution of Eocene ascidian fauna and its persistence into the Miocene.[306]

Other organisms

[edit]

New taxa

[edit]
Name Novelty Status Authors Age Type locality Location Notes Images

Alienum[307]

Gen. et sp. nov

Liu et al.

Ediacaran

 China

A sail-shaped organism of uncertain affinities, with similarities to vetulicolians. The type species is A. velamenus.

Angochitina monstrosa[308]

Sp. nov

De Backer et al.

Devonian

Sweetland Creek Shale

 United States
( Iowa)

A chitinozoan.

Cingulochitina chacoparanaense[309]

Sp. nov

Valid

Camina et al.

Copo Formation

 Argentina

A chitinozoan.

Colum tekini[310] sp. nov Valid Sashida & Ito in Sashida et al. Upper Triassic (lower Norian)  Thailand A pseudodictyomitrid radiolarian. Published online in 2023, but the issue date is listed as January 2024.

Ghoshia januarensis[311]

Sp. nov

Valid

Denezine et al.

Ediacaran

Sete Lagoas Formation

 Brazil

An organic-walled microfossil.

Lagenochitina tacobensis[312]

Sp. nov

Camina et al.

Devonian (Givetian)

Los Monos Formation

 Bolivia

A chitinozoan.

Lititzina[313]

Gen. et sp. nov

Valid

Raevskaya & Iskül

Ordovician

 Russia
( Leningrad Oblast)

An acritarch. Genus includes new species L. cornuta.

Membranospinosphaera[314]

Nom. et sp. nov

Shang & Liu

Ediacaran

Doushantuo Formation

 China

An acritarch; a replacement name for Membranosphaera Liu & Moczydłowska (2019). Genus includes the type species M. formosa Liu & Moczydłowska (2019), as well as a new species M. copia.

Octahedronoides[315]

Gen. et sp. nov

Valid

Granier

Early Cretaceous (Berriasian to Valanginian)

 Spain

An acritarch. The type species is O. tethysianus.

Palaeorhopalon[316]

Gen. et sp. nov

Dai et al.

Ediacaran

Dengying Formation

 China

A tubular organism of uncertain affinities. The type species is P. spiniferum.

Paniculaferum prodigiosum[313]

Sp. nov

Valid

Raevskaya & Iskül

Ordovician

 Russia
( Leningrad Oblast)

An acritarch.

Ramochitina candelariaensis[312]

Sp. nov

Camina et al.

Devonian (Givetian)

 Bolivia

A chitinozoan.

Sandbica[313]

Gen. et 2 sp. nov

Valid

Raevskaya & Iskül

Ordovician

 Russia
( Leningrad Oblast)

An acritarch. Genus includes new species S. clavata and S. ornata.

Shufangtubulus[316]

Gen. et sp. nov

Dai & Hua in Dai et al.

Ediacaran

Dengying Formation

 China

A tubular organism of uncertain affinities. The type species is S. inornatus.

Spinomargosphaera[314]

Nom. nov

Shang & Liu

Ediacaran

Doushantuo Formation

 China

An acritarch; a replacement name for Verrucosphaera Liu & Moczydłowska (2019).

Tadasum[313]

Gen. et sp. nov

Valid

Raevskaya & Iskül

Ordovician

 Russia
( Leningrad Oblast)

An acritarch. Genus includes new species T. florigerum.

Tanaisina[317]

Gen. et sp. nov

Valid

Dernov in Dernov & Poletaev

Carboniferous (Bashkirian)

Dyakove Group

 Ukraine

An organism of uncertain affinities, with similarities to Escumasia, Caledonicratis and the hydrozoan Drevotella proteana. The type species is T. mavka.

Research

[edit]
  • Kanaparthi et al. (2024) compare Archean microfossils from the Pilbara iron formation (Australia) and Barberton Greenstone Belt (South Africa) with extant microbes grown under conditions similar to possible environmental conditions of Archean Earth, and propose that the studied Archean microfossils were liposome-like protocells that had mechanisms for energy conservation, but not for regulating cell morphology and replication.[318]
  • Demoulin et al. (2024) interpret Polysphaeroides filiformis from the Proterozoic Mbuji-Mayi Supergroup (Democratic Republic of the Congo) as a photosynthetic cyanobacterium representing the oldest unambiguous complex fossil member of Stigonemataceae known to date.[319]
  • Evidence of preservation of thylakoid membranes within 1.78- to 1.73-billion-year-old fossils of Navifusa majensis from the McDermott Formation (Tawallah Group; Australia) and in 1.01- to 0.9-billion-year-old specimens from the Grassy Bay Formation (Shaler Supergroup; Canada) is reported by Demoulin et al. (2024).[320]
  • Kolesnikov et al. (2024) describe new fossil material of "Beltanelliformis" konovalovi from the Ediacaran Chernyi Kamen Formation (Perm Krai, Russia), providing evidence of morphological differences with members of the genus Beltanelliformis, and question the assignment of "B." konovalovi to this genus.[321]
  • Palacios (2024) describes a diverse assemblage of acritarchs from the Ediacaran Tentudía Formation (Spain), representing the oldest fossils from the Iberian Peninsula reported to date.[322]
  • A study comparing the preservation of fossils of cyanobacterial assemblages from the Ediacaran Gaojiashan biota and from the Cambrian Kuanchuanpu biota (China) is published by Min et al. (2024), who interpret the differences of preservation modes of the studied fossils as resulting from changes of atmospheric CO2 levels, which may have risen to approximately ten times present atmospheric level during the Ediacaran–Cambrian transition, and from related changes in marine chemical conditions.[323]
  • McMahon et al. (2024) describe fossil material of a colony-forming entophysalid cyanobacterium from the Devonian Rhynie chert (Scotland, United Kingdom) with similarities to extant Entophysalis and mostly Proterozoic Eoentophysalis, and interpret this finding as suggestive of persistence of a single lineage with a broad environmental tolerance across 2 billion years.[324]
  • Miao et al. (2024) describe 1.63-billion-year-old fossils of Qingshania magnifica from the Chuanlinggou Formation (China), and interpret the studied fossils as indicating that simple multicellularity evolved early in eukaryote history.[325]
  • Evidence indicating that multicellular eukaryotic fossils from the Gaoyuzhuang Formation (China) date to the beginning of the Mesoproterozoic is presented by Chen et al. (2024).[326]
  • A study on the depositional setting of the strata of the Diabaig and Loch na Dal formations (Scotland, United Kingdom) preserving approximately 1-billion-year-old eukaryotic microfossils is published by Nielson, Stüeken & Prave (2024), who interpret their findings as indicating that early eukaryotes from the studied formations lived in estuaries rather than lakes, and were likely exposed to frequently changing water conditions.[327]
  • A study on the evolutionary history of Arcellinida, as indicated by molecular data and fossil record, is published by Porfirio-Sousa et al. (2024), who determine that nodes leading to extant microbial eukaryote lineages originated in the latest Mesoproterozoic and Neoproterozoic, but the divergence of modern subclades of Arcellinida postdates the Silurian.[328]
  • Evidence indicating that larger foraminifera were more affected by the Capitanian, Permian–Triassic and Cretaceous–Paleogene extinctions than their smaller relatives is presented by Feng et al. (2024).[329]
  • A study on the impact of the climatic and environmental changes across the Cenozoic on the distribution and diversity of planktonic marine foraminifera is published by Swain et al. (2024).[330]
  • Evidence indicating that at the end of the Last Glacial Maximum foraminifera without symbionts migrated polewards, while foraminifera with algal symbionts adapted to warming, is presented by Ying et al. (2024).[331]
  • Surprenant & Droser (2024) compile a database of all occurrences of non-biomineral Ediacaran tubular organisms, and report evidence of previously unrecognized morphological diversity of the studied organisms.[332]
  • Schiffbauer et al. (2024) revise the latest Ediacaran skeletal materials from the La Ciénega Formation (Mexico), providing evidence of the presence of Sinotubulites, cloudinomorphs and smooth-walled organisms of uncertain affinities.[333]
  • Sun et al. (2024) provide new information on the developmental biology of Spiralicellula, and reject the interpretation of Spiralicellula and other components of the early Ediacaran Weng'an biota (Doushantuo Formation, China) as members of the animal crown group.[334]
  • Mccandless & Droser (2024) intepret fossils of Attenborites janeae as deflated form of living organisms, and interpret A. janeae as likely pelagic organism.[335]
  • Some foraminifera have begun migrating to cooler waters in an attempt to adapt, but environmental changes are occurring faster than they can keep up with, as reported in Chaabane et al. (2024).[336]

History of life in general

[edit]
  • Moody et al. (2024) interpret the last universal common ancestor as a prokaryote-grade anaerobic acetogen that lived approximately 4.2 billion years ago, had an early immune system and was a part of an established ecological system.[337]
  • A study on the diversity of eukaryotes from the Paleoproterozoic to early Cambrian is published by Tang et al. (2024), who report evidence of consistently low diversity before the Cryogenian and its rapid increase in the Ediacaran and early Cambrian.[338]
  • Evidence of impact of ocean oxygenation events from Cryogenian to Cambrian on early evolution of animals is presented by Kaiho et al. (2024).[339]
  • Crockett et al. (2024) argue that environmental changes at the time of the Snowball Earth generated selective pressures for multicellular morphologies that, combined with constraints caused by different biological organization, gave multicellular eukaryotes an evolutionary advantage not shared by bacteria.[340]
  • Carlisle et al. (2024) present a new timescale of metazoan diversification, based on revised fossil calibrations for the major animal groups, and estimate an Ediacaran origin of animals in general, Eumetazoa and Bilateria, with many animal phyla originating across the Ediacaran-Cambrian interval or in the Cambrian.[341]
  • Evidence indicating that Ediacaran and Cambrian animal radiations were related to oxygenation events that were linked to major sea level cycles is presented by Bowyer, Wood & Yilales (2024).[342]
  • Gutarra et al. (2024) find that Ediacaran marine animal communities from the Mistaken Point Formation (Newfoundland, Canada) were capable of strongly mixing the surrounding water, and might have contributed to the ventilation of the oceans.[343]
  • Ediacaran shallow-marine macrofossils from the Llangynog Inlier (Wales, United Kingdom) are determined to be approximately 564.09 million years old by Clarke et al. (2024).[344]
  • New silicified fossil assemblage is described from the Ediacaran Dengying Formation (Shaanxi, China) by Dai et al. (2024), who interpret fossil material of Cloudina from this assemblage as indicating that Cloudina had a worldwide distribution in different paleoecologies and biofacies.[345]
  • A study on changes of the structure of Ediacaran communities is published by Craffey et al. (2024).[346]
  • A study on the Ediacaran and Cambrian trace fossils, providing evidence of diversification and progressive niche partitioning of early animals, is published by Wang, Rahman & Zhang (2024).[347]
  • Evidence indicative of existence of long-term factors driving changes of diversity of skeletonized marine invertebrates throughout the Phanerozoic is presented by Wilson, Reitan & Liow (2024).[348]
  • A study on the history of bioturbation and reef-building throughout the Phanerozoic is published by Cribb & Darroch (2024), who find evidence of continued increase in dominance of bioturbating ecosystem engineers during the Phanerozoic, while also finding that reef-builders reached their peak dominance in the early Devonian.[349]
  • Mángano et al. (2024) review evidence from the fossil record of the significance of bioturbators as ecosystem engineers throughout the history of life, as well as ichnological approaches that can be used to determine ecosystem engineering by bioturbators at different spatial and temporal scales.[350]
  • Review of fossil evidence of impact of abrupt climatic changes on marine communities is published by Kiessling et al. (2024).[351]
  • Cui et al. (2024) describe approximately 535-million-years-old microbial fossils from the Yuhucun Formation (China), interpreted as comparable to modern cyanobacteria, microalgae and fungi (including mold- and yeast-like morphotypes), and interpret the studied microorganisms as building symbiotic mats composed of decomposers and producers.[352]
  • Evidence from the strata of the Dengying, Yanjiahe and Shuijingtuo formations (China), interpreted as indicative of the existence of a relationship between variable oceanic oxygenation, nitrogen supply and the evolution of early Cambrian life, is presented by Wei et al. (2024).[353]
  • Slater (2024) describes a diverse assemblage of arthropod and molluscan microfossil from the Cambrian Stage 3 Mickwitzia Sandstone (Sweden), providing evidence of diversification of molluscan radulae which happened by the early Cambrian.[354]
  • Evidence indicating that the Emu Bay Shale biota lived in a fan delta complex within a tectonically active, nearshore basin is presented by Gaines et al. (2024).[355]
  • Weng et al. (2024) report the discovery of a new assemblage of soft-bodied fossils from the Cambrian Balang Formation (China), including remains of sponges, chancelloriids, cnidarians, hyoliths, brachiopods, arthropods, priapulids and vetulicolians.[356]
  • Evidence indicating that pulse of supracrustal deformation along the edge of west Gondwana caused a series of environmental changes that resulted in the Cambrian Stage 4 Sinsk event (the first major extinction of the Phanerozoic) is presented by Myrow et al. (2024).[357]
  • Evidence indicating that patterns of extinctions of marine invertebrates over the past 485 million years were affected by physiological traits of invertebrates and by climate changes is presented by Malanoski et al. (2024).[358]
  • Saleh et al. (2024) report the discovery of a new Early Ordovician Lagerstätte from Montagne Noire (France), preserving fossils of a diverse polar assemblage of both biomineralized and soft-bodied organisms (the Cabrières Biota);[359] Muir & Botting (2024) subsequently argue that exceptionally preserved non-arthropod taxa reported from this assemblage (purported sponges, algae, a worm, a hemichordate tube and a lobopod) are actually trace fossils (mostly burrows containing faecal pellets),[360] while Saleh et al. (2024) reaffirm their original interpretation of the studied assemblage.[361]
  • The Devonian vertebrate assemblage from the Cloghnan Shale at Jemalong (New South Wales, Australia), including fossil material of Metaxygnathus, is interpreted as more likely GivetianFrasnian than Famennian in age by Young (2024).[362]
  • Triques & Christoffersen (2024) argue that the functional vertebrate neck is not an adaptation for land, but rather is a result of progressive shortening of the rear of the skull that happened before the vertebrate land invasion.[363]
  • Knecht et al. (2024) report the discoveries of a diverse assemblage of body and trace fossils of plants, invertebrates and vertebrates living approximately 320–318 million years ago from the Lantern North site (Wamsutta Formation; Massachusetts, United States), including some of the oldest records of non-cryptogam gall damage and insect oviposition reported to date.[364]
  • Faure-Brac et al. (2024) study the size of the primary vascular canals in early amniotes and non-amniote tetrapods, interpreted as a proxy for the size of red blood cells and for thermophysiology of the studied taxa, and argue that amniotes were ancestrally ectotherms, with different amniote group evolving endothermy independently.[365]
  • Review of the anatomy, function and evolution of the temporal region of the skull in extant and extinct tetrapods is published by Abel & Werneburg (2024).[366]
  • The first vertebrate body fossils from the Carboniferous–Permian Maroon Formation (Colorado, United States) are described by Huttenlocker et al. (2024).[367]
  • Evidence from strata from the Permian–Triassic transition from southwest China, interpreted as indicative of temporal decoupling of the terrestrial and marine extinctions in Permian tropics during the Permian–Triassic extinction event and of a protracted terrestrial extinction spanning approximately 1 million years, is presented by Wu et al. (2024).[368]
  • Evidence interpreted as indicative of two-stage pattern of the end-Permian extinction of the deep water organisms from the Dongpan Section (Guangxi, China), likely related to the upward and downward expansion of an oxygen minimum zone in the studied area, is presented by He et al. (2024).[369]
  • A study on the extinction selectivity of marine animals during the Permian–Triassic extinction event is published by Song et al. (2024), who find that animal groups with hemoglobin and hemocyanin were less affected by the extinction than animals with hemerythrin or relying on diffusion of oxygen.[370]
  • Liu et al. (2024) study the extinction selectivity of six marine animal groups during the Permian–Triassic extinction event, finding evidence of selective loss of complex and ornamented forms among ammonites, brachiopods and ostracods, but not bivalves, gastropods and conodonts.[371]
  • Zhou et al. (2024) report the discovery of a new Early Triassic fossil assemblage dominated by ammonites and arthropods (the Wangmo biota) from the Luolou Formation (China), interpreted as evidence of the presence of a complex marine ecosystem that was rebuilt after the Permian–Triassic extinction event.[372]
  • A study on the fossil record of Early Triassic conodonts and palynomorphs from the Vikinghøgda Formation (Svalbard, Norway), providing evidence of a shift from lycophyte-dominated to a gymnosperm-dominated vegetation related to the onset of a cooling episode, as well evidence indicating that temperature wasn't the main regulator for the distribution of segminate conodonts in the Early Triassic, is published by Leu et al. (2024).[373]
  • Revision of the fossil record of the Triassic tetrapods from Russia is published by Shishkin et al. (2024).[374]
  • Klein et al. (2024) report the discovery of a new locality in the Holbrook Member of the Moenkopi Formation (Anisian; Arizona, United States), likely representing the most extensive Middle Triassic tetrapod tracksite in North America reported to date.[375]
  • Simms & Drost (2024) interpret Triassic caves within Carboniferous limestone outcrops in south-west Britain as Carnian in age, and consider terrestrial vertebrate fossils preserved in those caves to be Carnian or at least significantly pre-Rhaetian in age.[376]
  • Campo et al. (2024) describe fossil material of Carnian tetrapods from the Faixa Nova-Cerrito I site, and evaluate its implications for the knowledge of the biostratigraphy of the Brazilian Upper Triassic record.[377]
  • A study on the femoral histology of amniotes from the Triassic Ischigualasto Formation (Argentina) is published by Curry Rogers et al. (2024), who find that early dinosaurs known from this formation grew at least as quickly as sauropodomorph and theropod dinosaurs from the later Mesozoic, and that their elevated growth rates did not set them apart from other amniotes living at the same time.[378]
  • Qvarnström et al. (2024) reconstruct food webs from five tetrapod communities from the Late Triassic and Early Jurassic of Poland on the basis of data from bromalites, and interpret changes in bromalite morphologies and their contents as related to shifts in faunal composition, with increased abundance of dinosaurs coinciding with decline of formerly dominant tetrapod groups, and with the greatest reduction in diversity of Triassic tetrapod groups such as phytosaurs, rauisuchians, aetosaurs and dicynodonts happening during the Norian-Rhaetian transition; the authors also interpret their findings as indicating that early herbivorous dinosaurs had different feeding habits than dicynodonts and aetosaurs, and interpret the studied fossils as recording stepwise rise of dinosaurs to supremacy across 30 million years of evolution.[379]
  • A study on the Hettangian and Sinemurian benthic marine communities from southern Germany, providing evidence of changes of the faunal composition of the studied communities likely associated with the recovery from the Triassic–Jurassic extinction event, is published by Kropf, Jäger & Hautmann (2024).[380]
  • A new fossil assemblage (the Yuzhou Biota), providing evidence of the presence of a trophically complex lacustrine ecosystem including diversified aquatic vertebrates, is reported from the Sinemurian Dongyuemiao Member of the Ziliujing Formation (Chongqing, China) by Ren et al. (2024).[381]
  • Dunhill et al. (2024) study the impact of the Early Toarcian Extinction Event on the marine communities from the Cleveland Basin (Yorkshire, United Kingdom), and report evidence indicative of secondary extinction cascades after the primary extinctions, as well as evidence indicating that diversity and ecosystem structure took up to 7 million years to return to pre-extinction levels.[382]
  • Taphonomic revision of Jurassic marine reptile fossils from the Rosso Ammonitico Veronese (Italy) is published by Serafini et al. (2024), who find similarities between the studied fossil material and modern whale falls in pelagic-bathyal zones, and interpret those similarities as consistent with a bathyal, deep-water interpretation of the Rosso Ammonitico Veronese depositional setting.[383]
  • A study on patterns of diversity changes of Late Jurassic tetrapods from the Morrison Formation through time and space is published by Maidment (2024).[384]
  • Aouraghe et al. (2024) report the discovery of a new fossiliferous locality from the TithonianBerriasian interval of the Anoual Syncline (Morocco), preserving remains of plants and aquatic reptiles, and interpret the taxonomic composition of the studied assemblage as similar to the composition of contemporaneous Laurasian assemblages, potentially indicating that Laurasian and Gondwanan biotas diverged after the Jurassic-Cretaceous transition.[385]
  • Blake et al. (2024) describe assemblages of vertebrate remains (dominated by sharks, bony fishes and crocodyliforms) from two localities from the London–Brabant Massif (Lower Greensand; United Kingdom), including the youngest occurrences of Vectiselachos gosslingi and V. ornatus reported to date, as well as including remains of at least five cartilaginous fish taxa interpreted as likely reworked from the underlying Jurassic or Wealden strata.[386]
  • Evidence from the Lower Cretaceous Xiagou Formation (China), interpreted as indicative of the existence of methane-fueled pelagic food webs across the Selli Event (with expansion of both methanogens and methane-oxidizing bacteria during the event), is presented by Sun et al. (2024).[387]
  • Revision of trace fossils from the deposits of the Aptian-Cenomanian Dakota Group along the Colorado Front Range (Colorado, United States) is published by Oligmueller & Hasiotis (2024).[388]
  • Evidence from calcareous nannofossils and small foraminifera from the Transylvanian Basin (Romania), interpreted as indicative of the appearance of a diverse continental vertebrate faunal assemblage on Hațeg Island by the second half of the late Campanian, presence of kogaionid multituberculates in the earliest known Hațeg faunas, and post-Campanian arrival of hadrosauroids and titanosaur sauropods on the island, is presented by Bălc et al. (2024).[389]
  • A study on the body size evolution of Mesozoic dinosaurs (including birds) and mammaliaforms is published by Wilson et al. (2024), who find no evidence that Bergmann's rule applied to the studied taxa.[390]
  • Sarr et al. (2024) describe Maastrichtian micro- and macrofossils from a new locality from the Cap de Naze Formation, including fossil material of the first Cretaceous dyrosaurid from Senegal.[391]
  • Otero (2024) reviews two assemblages of marine vertebrates from the Maastrichtian strata from the Arauco Basin (Chile), including remains of cartilaginous fishes, sea turtles (including the first record of Mesodermochelys outside Japan), plesiosaurs and mosasaurs, and providing evidence of diversity changes throughout the Maastrichtian.[392]
  • Boles et al. (2024) describe a new assemblage of vertebrate microfossils from the Cretaceous-Paleogene transition from the Hornerstown Formation (New Jersey, United States), providing evidence of slow recovery of elasmobranchs and ray-finned fish after the Cretaceous–Paleogene extinction event.[393]
  • Fossil material of a reef biota that survived the Cretaceous–Paleogene extinction event, including scleractinian corals and domical and bulbous growth forms which might be fossils of calcified sponges, is described from the Maastrichtian and Paleocene strata from the Adriatic islands Brač and Hvar (Croatia) by Martinuš et al. (2024).[394]
  • A study on changes of the diversity of ostracods from the Indo-Australian Archipelago region throughout the Cenozoic, aiming to determine factors responsible for recorded changes, is published by Tian et al. (2024), who argue that the studied region became the richest marine biodiversity hotspot mostly as a result of immunity to major extinction events during the Cenozoic, shift towards colder climate and the increase in habitat size (shelf area).[395]
  • Brandoni et al. (2024) describe new vertebrate remains from the Miocene Ituzaingó Formation (Entre Ríos Province, Argentina), including the oldest record of the genus Leptodactylus and remains of a member of the genus Chelonoidis representing the first record of a tortoise from the late Miocene of the Entre Ríos Province.[396]
  • A study on the environment of the Quebrada Honda Basin (Bolivia) during the late Middle Miocene is published by Strömberg et al. (2024), who report evidence of the presence of a mosaic landscape with two broad vegetation types (probable forests and open-habitat grasses) representing distinct plant communities within a broader biome, as well as evidence of variability of mammal abundances among well-sampled local areas and stratigraphic intervals.[397]
  • New Miocene and Pleistocene vertebrate assemblages are described from the Sin Charoen sandpit (Nakhon Ratchasima province, Thailand) by Naksri et al. (2024), who intepret the Pleistocene assemblage as having strong faunal relationships with the Early-Middle Pleistocene faunas of Java (Indonesia).[398]
  • A study on the fossil record of the Mediterranean marine biota from the Tortonian-Zanclean, providing evidence of changes in the taxonomic diversity indicative of disruption and reorganization of the ecosystem that began even before the Messinian salinity crisis and resulted from climate cooling and the basin's restriction from the Atlantic Ocean, is published by Agiadi et al. (2024).[399]
  • A study on the biodiversity changes associated with the Messinian salinity crisis, as indicated by the Mediterranean fossil record, is published by Agiadi et al. (2024).[400]
  • Tattersfield et al. (2024) study the ecological associations of extant terrestrial gastropods from the Laetoli-Endulen area (Tanzania) and compare them with Pliocene gastropod assemblages from Laetoli, interpreting gastropods from the Lower Laetolil beds as indicative of semi-arid environment, those from the Upper Laetolil Beds as indicative of a mosaic of forest, woodland and bushland habitats, and gastropods from the Upper Ndolanya Beds as indicative of humid environment.[401]
  • Ramírez-Pedraza et al. (2024) report evidence from the Guefaït-4 fossil site (Morocco) indicative of the presence of a mosaic landscape with open grasslands, forested areas, wetlands and seasonal aridity close to the Pliocene-Pleistocene transition, which might have facilitated the dispersal of mammals (including hominins) from central or eastern Africa to northern Africa.[402]
  • A study on changes of the composition of the Caribbean frugivore communities throughout the Quaternary is published by Kemp (2024).[403]
  • Antoine et al. (2024) report the discovery of fossil material from Kourou (French Guiana) providing evidence of the presence of diverse foraminifer, plant and animal communities near the equator in the 130,000-115,000 years ago time interval, as well as evidence of marine retreat and dryer conditions with a savanna-dominated landscape and episodes of fire during the onset of the Last Glacial Period.[404]

Other research

[edit]
  • Drabon et al. (2024) study the environmental effects of a giant meteorite impact during the Paleoarchean, based on data from the Fig Tree Formation (South Africa, and find that in short term the effects of the impact likely harmed shallow-water photosynthetic microbes, while in the medium term it provided influx of phosphorus and the injection of iron-rich deep water into shallow waters that initiated a bloom of iron-cycling microbes.[405]
  • Evidence from the study of the nitrogen isotopic composition of 2.68-billion-years-old marine sedimentary deposits of the Serra Sul Formation (Brazil), interpreted as likely resulting from oxygenic photosynthesis that predated the Great Oxidation Event, is presented by Pellerin et al. (2024).[406]
  • A study on the Paleoproterozoic seawater biogeochemical conditions in the Francevillian sub-basin (Gabon) is published by Chi Fru et al. (2024), who report evidence of enrichment of seawater with phosphorus approximately 2.1 billion years ago, of comparable magnitude to Ediacaran seawater levels that supported the rise of the Ediacaran biota, and argue that this previously unrecognized seawater nutrient enrichment initiated the emergence of the Francevillian biota.[407]
  • A study on the oxygenation of atmosphere and oceans and on marine productivity during the Neoproterozoic and Paleozoic is published by Stockey et al. (2024), who find no evidence of the wholesale oxygenation of Earth's oceans in the Neoproterozoic, but report evidence of a late Neoproterozoic increase in atmospheric oxygen and marine productivity, which likely increased oxygenation and food supply in shallow marine habitats at the time of the first radiation of major animal groups.[408]
  • Huang et al. (2024) report evidence of a period in the Ediacaran when Earth's magnetic field was weakened, lasting 26 million years, overlapping temporally with atmospheric and oceanic oxygenation and potentially causing it and ultimately allowing diversification of the Ediacara Fauna.[409]
  • 563-million-year-old horizontal markings with similarities to horizontal animal trace fossils, reported from the Itajaí Basin (Brazil), are interpreted as pseudofossils of tectonic origin by Becker Kerber et al. (2024), who propose a set of criteria which can be used to evaluate the identity of putative trace fossils.[410]
  • Evidence of preservation of internal organs of soft-bodied organisms from the interbedded background mudstone beds of the Cambrian Yu'anshan Formation (China) as carbonaceous compressions is presented by Lei et al. (2024).[411]
  • A study on the variations of preservation of animal fossils from the Ordovician Fezouata Formation (Morocco) is published by Saleh et al. (2024), who report evidence of better preservation of predators/scavengers compared to animals with other feeding strategies, as wells as evidence of better preservation of Tremadocian animals than Floian ones.[412]
  • Smelror et al. (2024) report the discovery of trace fossils of polychaetes associated with cold to temperate waters in marine deposits in the Central Norwegian Caledonides, and interpret this finding as evidence of previously unrecognized deep-ocean circulation and upwelling of cold water along the subtropical Laurentian margin of the Iapetus Ocean in the early to mid-Ordovician.[413]
  • A study on silicified fossils from the Ordovician Edinburg Formation (Virginia, United States), aiming to determine sources of potential bias in fossil recovery, is published by Jacobs et al. (2024).[414]
  • Purported Precambrian trace fossil Rugoinfractus ovruchensis is interpreted as mud cracks preserved in Devonian strata by Dernov (2024).[415]
  • Stacey et al. (2024) report possible evidence that Devonian and early Carboniferous oceanic oxygenation was related to the evolution of large vascular plants and the first forests, as well as evidence of susceptibility of shallow marine settings to redox instability, possibly related to extinctions and reef collapse events in the studied time interval.[416]
  • Evidence from the Bicheno-5 core in eastern Tasmania (Australia), interpreted as indicative of carbon cycle perturbations in the middle Permian, Carnian and Norian which triggered climatic and environmental changes within the Permian and Triassic Antarctic circle, is presented by Lestari et al. (2024).[417]
  • A study on mercury concentrations and isotopic compositions of limestones from the Xiongjiachang section of southwestern China is published by Huang et al. (2024), who interpret their findings as indicative of a temporal link between Emeishan Traps volcanism and the Capitanian mass extinction event.[418]
  • Evidence interpreted as indicative of strong ozone depletion of the atmosphere at the onset of the Permian–Triassic extinction event is presented by Li et al. (2024).[419]
  • A study on Permian–Triassic boundary sections in North and South China is published by Chu et al. (2024), who interpret their findings as indicating that the onset of the end-Permian terrestrial biotic crisis in North China preceded that in South China by at least 300,000 years, and that the onset of environmental changes that caused end-Permian extinctions varied regionally.[420]
  • Sun et al. (2024) argue that increase of partial pressure of carbon dioxide at the end of the Permian led to collapse of the meridional overturning circulation, contraction of the Hadley cell and intensification of El Niños, causing environmental changes that ultimately resulted in the Permian–Triassic extinction event.[421]
  • Li et al. (2024) present evidence of existence of persistently active El Niño–Southern Oscillation throughout the past 250 million years, and study the causes of variations in its amplitude throughout the studied time interval.[422]
  • Wang et al. (2024) report the discovery of a fossil forest of Neocalamites plants from the Middle Triassic Yanchang Formation (China), and interpret this finding as evidence of wide-scale intensification of the water cycle during the Triassic prior to the Carnian pluvial episode.[423]
  • A study on the lower Carnian basinal succession from the Polzberg Lagerstätte (Austria), providing evidence of deposition during the onset of the Carnian pluvial episode and of peculiar oceanographic conditions affecting the Reifling Basin at the time, is published by Lukeneder et al. (2024).[424]
  • Rigo et al. (2024) report evidence of a previously unknown oceanic anoxic event of global extent that spanned the Norian-Rhaetian transition, likely related to extinctions and diversity losses among radiolarians, bivalves, ammonites, conodonts and marine vertebrates.[425]
  • Evidence indicating that the Triassic–Jurassic extinction event coincided with the initial major pulse of Central Atlantic magmatic province volcanism is presented by Kent et al. (2024).[426]
  • Evidence from mercury anomalies and fern spores from the Lower Saxony Basin (Germany), interpreted as indicative of persistence of volcanic-induced mercury pollution after the Triassic–Jurassic extinction event resulting in high abundances of malformed fern spores during the Triassic–Jurassic transition and during the Hettangian, is presented by Bos et al. (2024).[427]
  • Evidence of global expansion of marine anoxia during the Toarcian Oceanic Anoxic Event, interpreted as indicating that anoxic waters covered ~6 to 8% of the global seafloor during the peak of the event, is presented by Remírez et al. (2024).[428]
  • Evidence from the study of trace fossils from the earliest Cretaceous Botucatu Formation (Brazil), interpreted as indicative of the presence of dry environment with episodic wet events, is presented by Peixoto et al. (2024).[429]
  • Song et al. (2024) determine the fossil strata of the Baiwan Formation (Henan, China) bearing fossils of the Jehol Biota to be approximately 123.6 million years old.[430]
  • Rangel et al. (2024) describe a vertebrate burrow from the Lower Cretaceous Três Barras Formation (Brazil), likely produced by a lungfish or a lizard, and interpret the studied formation as preserving evidence of periods of flooding in a meandering river zone in the marginal areas of the Early Cretaceous eolian setting.[431]
  • Evidence from the study of microfossils from the Lower Cretaceous Sanfranciscana Basin (Brazil), interpreted as indicative of multiple marine incursions into the continental setting of the southwest Gondwana during the Aptian, is presented by Fauth et al. (2024).[432]
  • Jacobs et al. (2024) study the geological setting of the Early Cretaceous fossiliferous basins of northern Cameroon, preserving dinosaur tracks similar to footprints found in northeastern Brazil, and determine the geographic limits and environmental setting of the land corridor that connected Africa and South America during the pre-Aptian Cretaceous and made faunal exchanges between the continents possible, termed the Borborema-Cameroon Dinosaur Dispersal Corridor by the authors.[433]
  • MacLennan et al. (2024) interpret exceptional preservation of fossils (including early birds and feathered non-avian dinosaurs) from the Lower Cretaceous Yixian Formation (China) as unlikely to be linked to violent volcanic eruptions.[434]
  • Li et al. (2024) constrain the onset of the Selli Event to approximately 119.55 million years ago, and identify the Ontong Java Plateau volcanism as a probable cause of this anoxic event.[435]
  • Evidence interpreted as indicative of impact of emergence of the coastal mountain range in eastern South China during the Early Cretaceous on Asian atmospheric circulation and precipitation patterns, prompting eastward desert expansion in Asia, is presented by Li et al. (2024).[436]
  • Woolley et al. (2024) attempt to quantify the amount of phylogenetic information available in the global fossil records of non-avian theropod dinosaurs, Mesozoic birds and squamates, and find that the studies of the phylogenic relationships of extinct animals are less affected by disproportionate representation of taxa from specific geologic units (especially Lagerstätten) in the evolutionary tree when the entire global fossil record of the studied groups, rather than just fossils from specific geologic units, preserves higher amount of phylogenetic information; the authors also find that Late Cretaceous squamate fossils from the Djadochta and Barun Goyot formations (Mongolia) provide a diproportionally large amount of phylogenetic information available in the squamate fossil record.[437]
  • Almeida et al. (2024) provide new paleocurrent measurements for the Cretaceous and Paleogene in the eastern Amazonia region, and find persistent pattern of the river flow to the East in the Amazonas Basin from the Cretaceous to the present to be more likely than a reversal from the westward river flow to the eastward one.[438]
  • Eberth (2024) revises the stratigraphic architecture of the Campanian Belly River Group (Alberta, Canada).[439]
  • Evidence of a change in nitrogen isotope ratios of the organic matter bound in Campanian and Maastrichtian fish otoliths from the East Coast of the United States, interpreted as related to expansion of oxygen-deficient zones in the ocean during the Campanian-to-Maastrichtian climate cooling, is presented by Rao et al. (2024).[440]
  • A study on the environmental conditions in the Late Cretaceous Western Interior Seaway is published by Wostbrock et al. (2024), who reconstruct δ18O seawater values consistent with open ocean during greenhouse climate for the Campanian and consistent with more evaporative conditions for the Maastrichtian.[441]
  • Evidence of a short-term (lasting less than 10,000 years) cooling event beginning approximately 30,000 years before the Cretaceous-Paleogene transition, interpreted as likely related to Deccan volcanism, is presented by O'Connor et al. (2024).[442]
  • New data interpreted as supporting an impact origin of the Nadir crater is provided by Nicholson et al. (2024).[443]
  • Evidence from the study of ruthenium isotopes in the impact deposits from the Chicxulub crater, interpreted as indicating that the impactor that produced the crater was a carbonaceous asteroid that formed beyond the orbit of Jupiter, is presented by Fischer-Gödde et al. (2024).[444]
  • During et al. (2024) reeavualute data from analyses of fossil fish remains from the Tanis fossil site (North Dakota, United States) performed by DePalma et al. (2021), originally presented as evidence indicating that the end-Cretaceous Chicxulub impact occurred during boreal Spring/Summer,[445] and report anomalies interpreted by the authors as unlikely to be the result of analytical work.[446]
  • Evidence indicating that, in spite of high global temperatures, oxygen availability in the waters of the tropical North Pacific actually rose during the Paleocene–Eocene Thermal Maximum, is presented by Moretti et al. (2024), who argue that this oxygen rise in the ocean might have prevented a mass extinction during the Paleocene–Eocene Thermal Maximum.[447]
  • Crespo & Goin (2024) argue that a biogeographical barrier (called the Weddell Line by the authors) existed between East and West Antarctica during early Paleogene times and prevented eutherian mammals from reaching Australia from South America.[448]
  • Evidence indicating that West Antarctica's Pacific margin was not covered by West Antarctic Ice Sheet during the Early Oligocene Glacial Maximum is presented by Klages et al. (2024).[449]
  • A study on body mass, tooth wear and functional traits of teeth of mammalian herbivores from the Miocene to Pleistocene strata from the Falcón Basin (Venezuela), interpreted as indicative of a gradual decline in precipitation and tree cover in the environment of the studied mammals since the late Miocene, is published by Wilson et al. (2024), who argue that such data from mammal remains can be used of paleoenvironmental reconstructions at other South American localities.[450]
  • Yu et al. (2024) provide new age estimates for the Aves Cave and Milo's Cave deposits (Bolt's Farm cave complex in the Cradle of Humankind, South Africa), and argue that there are no definitive examples of cave deposits in the Cradle of Humankind that are older than 3.2 million years.[451]
  • Bierman et al. (2024) report the discovery of insect, plant and fungal remains collected from below 3 km of ice at Summit, Greenland, providing evidence of ice-free, tundra environment in central Greenland during the Pleistocene.[452]
  • Butiseacă et al. (2024) report evidence from the Pleistocene Marathousa 1 (Megalopolis Basin, Greece) interpreted as indicative of vegetation changes related to the cooling during the Marine Isotope Stage 12, as indicating that the studied area was a refugium during the MIS 12 glaciation and that the hominin presence at the site was associated with the end of the MIS 12 glacial maximum.[453]
  • Evidence of change in fire regime in northern Australia that happened at least 11,000 years ago, resulting in fires becoming more frequent but less intense and interpreted as resulting from Indigenous fire management, is presented by Bird et al. (2024).[454]
  • Evidence from the study of tests of Miocene Ammonia, indicating that fossils of marine calcifiers (studied for reconstructions of deep ocean and sea-surface temperatures in the past) remain more susceptible to diagenetic isotope exchange with seawater than abiotic calcites even millions of years after sedimentation and burial, is presented by Cisneros-Lazaro et al. (2024).[455]
  • Wiseman, Charles & Hutchinson (2024) compare multiple reconstructions of the musculature of Australopithecus afarensis, evaluating the capability of different models to maintain an upright, single-support limb posture, and find that models which are otherwise identical might be either able or unable support the body posed on an extended limb solely as a result of changing the input architectural parameters and including or excluding an elastic tendon.[456]
  • Sullivan et al. (2024) argue that the process of generating rigorous reconstructions of extinct animals can lead to fresh inferences about the anatomy of the studied animals, and support their claims with examples from dinosaur paleontology.[457]
  • Gayford et al. (2024) review problems that affect body size estimations of extinct animals that use extant animals as proxies, and propose precautionary measures that can address these problems.[458]
  • Wright, Cavanaugh & Pierce (2024) compare the accuracy of two body mass estimation methods in extant tetrapods, and apply the compared methods to a sample of Permian and Triassic tetrapods including Eryops megacephalus, Diadectes tenuitectus, Orobates pabsti, Bradysaurus baini, Edaphosaurus boanerges, Ophiacodon uniformis, Dimetrodon milleri, Tapinocaninus pamelae, Dinodontosaurus turpior, Lisowicia bojani, Scaloposaurus constrictus and Procynosuchus delaharpeae.[459]
  • Didier & Laurin (2024) propose a new model-based approach which can be used to study the diversification of fossil taxa, and apply it to the fossil record of ophiacodontids, edaphosaurids and sphenacodontids, finding evidence that the diversification of the studied synapsids slowed down around the Asselian/Sakmarian transition but no evidence of a late Sakmarian or Artinskian extinction event, and interpreting Olson's Extinction as a protracted decline in biodiversity over 20 million years rather than a rapid extinction event.[460]
  • Cooper, Flannery-Sutherland & Silvestro (2024) present a deep learning approach which can be used to estimate biodiversity through time from the incomplete fossil record, and use this approach to estimate global biodiversity dynamics of marine animals from the Late Permian to Early Jurassic and proboscideans.[461]
  • Hauffe, Cantalapiedra & Silvestro (2024) present a Bayesian model that can be used to determine diversification dynamics from fossil occurrence data and apply it to the fossil record of proboscideans.[462]
  • Benoit (2024) interprets the painting of an unidentified animal with two enlarged tusks from the Horned Serpent panel in the Koesberg mountains (South Africa), dated between 1821 and 1835, as possible evidence that the San people discovered dicynodont fossils before the scientific description of the first known dicynodont.[463]
  • Reumer (2024) hypothesizes that Beringer's Lying Stones represent the first recorded case of an intentional paleontological fraud in history, and might have been perpetrated by Johann Beringer himself.[464]

Paleoclimate

[edit]
  • A multibillion-year history of seawater δ18O, temperature, and marine and terrestrial clay abundance is reconstructed by Isson & Rauzi (2024), who report evidence interpreted as indicative of temperate Proterozoic climate, and evidence indicating that declines in clay authigenesis coincided with Paleozoic and Cenozoic cooling, the expansion of siliceous life, and the radiation of land plants.[465]
  • Judd et al. (2024) present a reconstruction of the global mean surface temperature over the past 485 million years, and report evidence of constant change of global mean surface temperature of approximately 8°C in response to a doubling of CO2 in the studied time interval, whether the climate was warm or cold.[466]
  • Evidence from the study of the Ordovician carbonate record from the Baltic Basin, interpreted as indicative of lower values of oxygen isotopic composition of Ordovician seawater than estimated in earlier studies, is presented by Thiagarajan et al. (2024), who interpret their findings as justifying reassessmeny of climate records based on oxygen isotopes.[467]
  • A study on Lower Triassic marine shales and cherts, providing evidence of enhanced reverse weathering which might have contributed to the persistence of elevated temperatures in the aftermath of the Permian–Triassic extinction event, is published by Rauzi et al. (2024).[468]
  • Gurung et al. (2024) use a new vegetation and climate model to study links between plant geographical range, the long-term carbon cycle and climate, and find that reduced geographical range of plants in Pangaea resulted in increased atmospheric CO2 concentration during the Triassic and Jurassic periods, while the expande geographical range of plants after the breakup of Pangaea amplified global CO2 removal.[469]
  • A study on the geochemistry of Jurassic deposits of the External Rif Chain (Morocco), providing evidence of climate changes in northwest Gondwana during the Jurassic period (from cool climate with low rainfall and productivity during the Early Jurassic, to moister, warmer climate during the Middle and Late Jurassic, subsequently returning to arid and cool climate during the Late Jurassic), is published by Kairouani et al. (2024).[470]
  • Evidence indicating that small to large ice sheets were present in Antarctica throughout much of the Early Cretaceous, briefly melting in response to episodic volcanism, is presented by Nordt, Breecker & White (2024).[471]
  • A study on calcite from Early Cretaceous belemnite rostra from the Mahajanga Basin (Madagascar), providing evidence of the Valanginian cooling event in the Southern Hemisphere, is published by Wang et al. (2024).[472]
  • Evidence interpreted as indicative of a link between ocean deoxygenation during the Early Cretaceous Selli Event, volcanic CO2 emissions and the crossing of an associated climate threshold is presented by Bauer et al. (2024).[473]
  • Evidence from oxygen isotope values of shell material of Late Cretaceous ammonites from the Western Interior Seaway, interpreted as indicative of ~18 °C cooling from the Cretaceous Thermal Maximum in the Turonian until the late Maastrichtian, is presented by McCraw et al. (2024).[474]
  • Evidence from the study of late Paleocene and early Eocene planktic foraminifera from the Pacific Ocean, interpreted as indicative of strong coupling between atmospheric CO2 and sea surface temperature over the long- and short-term in the studied time interval, is presented by Harper et al. (2024).[475]
  • Evidence from the study of the middle Cenozoic palynological records across the United Kingdom and Ireland, interpreted as overall indicative of temperate climate in the studied time interval but also as indicative of short-lived appearances of the tropical rainforest during the Priabonian or Rupelian and during the late Oligocene warming event, is presented by McCoy et al. (2024).[476]
  • Clark et al. (2024) present a new reconstruction of global temperature changes over the past 4.5 million years, interpreted as consistent with changes in the carbon cycle.[477]
  • Amarathunga et al. (2024) present evidence indicative of a humid period in North Africa lasting from 3.8 to 3.3 million years ago, possibly sustaining persistent green corridors that facilitated early hominin connectivity and migration.[478]
  • An et al. (2024) present evidence indicating that growth of the Antarctic ice sheets from 2 to 1.25 million years ago preceded and likely induced expansion of ice sheets of the Northern Hemisphere after 1.25 million years ago.[479]

Deaths

[edit]
  • Estella Leopold, paleobotanist and conservation paleontologist passes on February 25, 2024 at 97. Leopold's work as a conservationist included taking legal action to help save the Florissant Fossil Beds in Colorado, and fighting pollution. She was the daughter of Aldo Leopold.[480]

References

[edit]
  1. ^ Gini-Newman, Garfield; Graham, Elizabeth (2001). Echoes from the past: world history to the 16th century. Toronto: McGraw-Hill Ryerson Ltd. ISBN 9780070887398. OCLC 46769716.
  2. ^ Mahato, S.; Khan, M. A. (2024). "A new foliicolous fossil-species of Asterina Lév. (Asterinaceae; Asterinales) associated with Calophyllum L. from the Siwalik of Eastern Himalaya and its implications". Review of Palaeobotany and Palynology. 327. 105143. Bibcode:2024RPaPa.32705143M. doi:10.1016/j.revpalbo.2024.105143.
  3. ^ Martínez, M. A.; Bianchinotti, M. V.; Cornou, M. E. (2024). "Contribution to the knowledge of the fossil fungi record based on palynomycological studies from the El Foyel Group, Ñirihuau Basin, Paleogene from Patagonia Argentina". Publicación Electrónica de la Asociación Paleontológica Argentina. 24 (2): 132–159. doi:10.5710/PEAPA.12.07.2024.508.
  4. ^ a b Guo, S.; Deng, X.; Ma, Z.; Mao, N.; Huang, W. (2024). "Two new species of suspected mushrooms of the suborder Marasmiineae from mid-Cretaceous Burmese amber (Basidiomycota, Agaricales)". Cretaceous Research. 164. 105968. Bibcode:2024CrRes.16405968G. doi:10.1016/j.cretres.2024.105968.
  5. ^ Kundu, S.; Khan, M. A. (2024). "A new epifoliar melioloid fungus from the Siwalik (Miocene) of Himachal sub-Himalaya and its palaeoecological implications". Geobios. 86: 1–10. Bibcode:2024Geobi..86....1K. doi:10.1016/j.geobios.2024.06.001.
  6. ^ Kundu, S.; Khan, M. A. (2023). "Black mildew disease on the Siwalik (Miocene) monocot leaves of Western Himalaya, India caused by Meliolinites". Fungal Biology. 128 (1): 1626–1637. doi:10.1016/j.funbio.2023.12.006. PMID 38341268.
  7. ^ Wang, Z.-E.; Song, Z.-H.; Cao, R.; Li, H.-S.; Chen, G.-H.; Ding, S.-T.; Wu, J.-Y. (2024). "A new fossil species of Meliolinites Selkirk associated with Rhodoleia leaves from the Upper Pliocene of southwestern China". Mycologia. 116 (4): 498–508. doi:10.1080/00275514.2024.2348980. PMID 38848260.
  8. ^ Kundu, S.; Khan, M. A. (2024). "Fossil record of Meliolaceae from India sheds new insight into its taxonomy and life cycle". Review of Palaeobotany and Palynology. 329. 105177. Bibcode:2024RPaPa.32905177K. doi:10.1016/j.revpalbo.2024.105177.
  9. ^ Krings, M. (2024). "Deciphering interfungal relationships in the 410-million-yr-old Rhynie chert: Rhizophydites shutei sp. nov. (fossil Chytridiomycota) on glomeromycotan acaulospores". Fossil Imprint. 80 (1): 77–89. doi:10.37520/fi.2024.008.
  10. ^ Kolosov, P.; Okhlopkova, I. (2024). "Yeast fungi in the Ediacaran stromatolites of the Siberian Platform". Revista Brasileira de Paleontologia. 27 (3). e20240403. doi:10.4072/rbp.2024.3.0403.
  11. ^ Kundu, S.; Khan, M. A. (2024). "First report of fossil representative of Zygosporium Mont. with stacked chained vesicular conidiophores from India". Fungal Biology. 128 (3): 1735–1741. Bibcode:2024FunB..128.1735K. doi:10.1016/j.funbio.2024.03.005. PMID 38796257.
  12. ^ Mahato, S.; Bianchinotti, M. V.; Kundu, S.; Khan, M. A. (2024). "Zygosporium palaeogibbum sp. nov. (Xylariales, Ascomycota) associated with Cinnamomum Schaeff. (Lauraceae) leaves from the Siwalik (Middle Miocene) of eastern Himalaya". Mycological Progress. 23 (1). 27. Bibcode:2024MycPr..23...27M. doi:10.1007/s11557-024-01962-4.
  13. ^ Kundu, S.; Khan, M. A. (2024). "Fossils can reveal a long-vanished combination of character states: Evidence from a mysterious foliicolous anamorphic fungus from the Middle Siwalik (Late Miocene) of Himachal Pradesh, India". Mycologia. 116 (5): 650–658. doi:10.1080/00275514.2024.2367954. PMID 39024179.
  14. ^ Garcia Cabrera, N.; Krings, M. (2024). "Fungi colonizing bulbils of the charophyte green alga Palaeonitella cranii from the Lower Devonian Rhynie chert, Scotland". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 310 (2): 99–117. doi:10.1127/njgpa/2023/1172.
  15. ^ a b c Luo, Z.; Shi, G.; Lin, W.; Chen, J.; Liu, J.; Bai, H.; Liang, K.; Yao, L.; Huang, X.; Qie, W.; Wang, Y. (2024). "Upper Carboniferous Corals from the Junggar Basin, northern Xinjiang, NW China". Acta Palaeontologica Sinica. 63 (1): 66–93. doi:10.19800/j.cnki.aps.2023013.
  16. ^ Liu, M.-J.; Liu, Y.-H.; Zhang, Y.-N.; Shao, T.-Q.; Qin, J.-C. (2024). "The successive evolution of hexangulaconulariids and the growth pattern of carinachitiids revealed by new materials from the lower Cambrian of South China". Palaeoworld. 33 (6): 1478–1488. Bibcode:2024Palae..33.1478L. doi:10.1016/j.palwor.2024.02.003.
  17. ^ a b Ohar, V. V.; Dernov, V. S. (2024). "Carboniferous conulariids (Cnidaria: Scyphozoa) from Ukraine". Spanish Journal of Palaeontology. 39 (2): 195–222. doi:10.7203/sjp.29338.
  18. ^ Punina, T. A. (2024). "A New Species of Scleractinia from the Triassic Limestones of Sikhote-Alin". Paleontological Journal. 58 (6): 630–633. Bibcode:2024PalJ...58..630P. doi:10.1134/S003103012460094X.
  19. ^ Rozhnov, S. V. (2024). "A possible archaic precursor of the octocoral structural plan from the Ordovician of Estonia". Papers in Palaeontology. 10 (5). e1593. Bibcode:2024PPal...10E1593R. doi:10.1002/spp2.1593.
  20. ^ McIlroy, D.; Pasinetti, G.; Pérez-Pinedo, D.; McKean, C.; Dufour, S. C.; Matthews, J. J.; Menon, L. R.; Nicholls, R.; Taylor, R. S. (2024). "The Palaeobiology of Two Crown Group Cnidarians: Haootia quadriformis and Mamsetia manunis gen. et sp. nov. from the Ediacaran of Newfoundland, Canada". Life. 14 (9). 1096. Bibcode:2024Life...14.1096M. doi:10.3390/life14091096. PMC 11432848. PMID 39337880.
  21. ^ El-Desouky, H. (2024). "Revisiting Late Pennsylvanian (Kasimovian) Corals of Egypt: New perspectives and contributions". Egyptian Journal of Geology. 68: 79–95. doi:10.21608/EGJG.2024.281602.1071.
  22. ^ Kazantseva, E. S.; Koromyslova, A. V.; Krutykh, A. A. (2024). "A new species of Mucophyllum rugose coral encrusted by bryozoans, tentaculoid tubeworms, and tabulates from the upper Silurian of Saaremaa, Estonia". Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen. 312 (3): 261–273. doi:10.1127/njgpa/2024/1211.
  23. ^ Denayer, J. (2024). "Rugose corals across the Early-Middle Devonian boundary in southern Belgium". Palaeobiodiversity and Palaeoenvironments. doi:10.1007/s12549-024-00627-0.
  24. ^ a b Fedorowski, J.; Chwieduk, E. (2024). "Some genera and species of dissepimented solitary Rugosa (Anthozoa) from the Pennsylvanian (Carboniferous) and Cisuralian (Permian) of North America. Part 1. Yuanophylloides Fomichev, 1953". Acta Geologica Polonica. 74 (3). e16. doi:10.24425/agp.2024.150008.
  25. ^ Yong, Y.; Wang, X.; Van Iten, H.; Bruthansová, J.; Wang, D.; Yang, X.; Guo, J.; Hao, W.; Sun, J.; Song, X.; Han, J. (2024). "The transverse disc-like diaphragm in the basal Cambrian medusozoan Olivooides: its nature, possible functions and evolutionary implications". Papers in Palaeontology. 10 (6). e1603. Bibcode:2024PPal...10E1603Y. doi:10.1002/spp2.1603.
  26. ^ Song, Z.; Guo, J.; Han, J.; Van Iten, H.; Peng, J.; Qiang, Y.; Zhang, B.; Zhao, X.; Li, G.; Wen, H. (2024). "Phylogenetic affinities and evolution of the Early Cambrian hexangulaconulariids". Journal of Systematic Palaeontology. 22 (1). 2417668. Bibcode:2024JSPal..2217668S. doi:10.1080/14772019.2024.2417668.
  27. ^ Bruthansová, J.; Bruthans, J.; Schweigstillová, J.; Van Iten, H. (2024). "Underwater drunken forest: Changes in growth direction and ornamentation in Conularia fragilis Barrande, 1867 (Lower Devonian, Czech Republic)". Palaeontologia Electronica. 27 (3). 27.3.a54. doi:10.26879/1414.
  28. ^ Jung, J.; Zoppe, S. F.; Söte, T.; Moretti, S.; Duprey, N. N.; Foreman, A. D.; Wald, T.; Vonhof, H.; Haug, G. H.; Sigman, D. M.; Mulch, A.; Schindler, E.; Janussen, D.; Martínez-García, A. (2024). "Coral photosymbiosis on Mid-Devonian reefs". Nature. 636 (8043): 647–653. doi:10.1038/s41586-024-08101-9. PMC 11655356. PMID 39443794.
  29. ^ Echevarría, J.; Harguindeguy, F. M.; Manceñido, M. O.; Carignano, A. P.; Damborenea, S. E. (2024). "Early Jurassic coral reef development outside Tethys: an example from western Argentina". Lethaia. 57 (3): 1–27. Bibcode:2024Letha..57....1E. doi:10.18261/let.57.3.1.
  30. ^ Lathuilière, B.; Huang, D.; The Corallosphere Group (2024). "Deciphering the evolutionary history of early Mesozoic fossil corals". Acta Palaeontologica Polonica. 69 (2): 249–262. doi:10.4202/app.01136.2024.
  31. ^ Pisapia, C.; Vicens, G. M.; Benzoni, F.; Westphal, H. (2024). "Mediterranean imprint on coral diversity in the incipient Red Sea (Burdigalian, Saudi Arabia)". PALAIOS. 39 (7): 233–242. Bibcode:2024Palai..39..233P. doi:10.2110/palo.2023.025.
  32. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av Håkansson, E.; Gordon, D. P.; Taylor, P. D. (2024). Bryozoa from the Maastrichtian Korojon Formation, Western Australia. Fossils and Strata Series. Vol. 70. pp. 1–155. doi:10.18261/9788215072081-2024. ISBN 978-8-215-07207-4.
  33. ^ Taboada, C. A.; Pagani, M. A.; Cúneo, R. (2024). "Encrusting bryozoan attached to terrestrial plant leaves from brackish deposits of the Lefipán Formation (Patagonia, Argentina), close to the K/Pg boundary". Cretaceous Research. 164. 105970. Bibcode:2024CrRes.16405970T. doi:10.1016/j.cretres.2024.105970.
  34. ^ Ernst, A.; Buttler, C. (2024). "Bryozoan fauna from the Ferques Formation (Upper Devonian, Frasnian) of France". Palaeobiodiversity and Palaeoenvironments. Bibcode:2024PdPe..tmp...29E. doi:10.1007/s12549-024-00614-5.{{cite journal}}: CS1 maint: bibcode (link)
  35. ^ Koromyslova, A. V.; Dronov, A. V. (2024). "The Upper Ordovician Katian Stage Bryozoans from the Dzheromo Formation of the Moyerokan River Section (Northern Siberian Platform) and Their Paleogeographical Significance". Stratigraphy and Geological Correlation. 32 (5): 492–519. Bibcode:2024SGC....32..492K. doi:10.1134/S0869593824700126.
  36. ^ López-Gappa, J.; Ezcurra, M. D.; Rust, S. (2024). "A new species of Parainversiula (Bryozoa: Cheilostomatida) from the early Miocene of Northland, New Zealand". Alcheringa: An Australasian Journal of Palaeontology: 1–8. doi:10.1080/03115518.2024.2393905.
  37. ^ He, M.; Yang, Y.; Ma, J.; Zhang, Z.; Chi, X.; Liu, J.; Peng, T.; Zhang, Q.; Yang, L. (2024). "New bryozoans from the Early Ordovician Honghuayuan Formation in Tongzi County, northern Guizhou". Acta Micropalaeontologica Sinica. 41 (3): 204–218. doi:10.16087/j.cnki.1000-0674.20240722.001.
  38. ^ a b c Baranov, V. V.; Nikolaev, A. I. (2024). "New Taxa of Spiriferids (Brachiopoda) from the Lower Devonian Beds of Northeastern Asia". Paleontological Journal. 58 (1): 60–69. Bibcode:2024PalJ...58...60B. doi:10.1134/S0031030124010015.
  39. ^ Hints, L. (2024). "Taxonomy of the Sandbian (Upper Ordovician) brachiopod Dalmanella kegelensis Alichova, 1953 and the new genus Alichovella". Estonian Journal of Earth Sciences. 73 (1): 45–56. doi:10.3176/earth.2024.06.
  40. ^ a b c d Popov, L. E.; Ghobadi Pour, M.; Modzalevskaya, T. L.; Hairapetian, V. (2024). "First late Silurian (Ludfordian–Pridoli?) brachiopods from Iran". Palaeoworld. doi:10.1016/j.palwor.2024.11.002.
  41. ^ a b c Waterhouse, J. B. (2024). "Aulostegid brachiopods from the Permian beds of east Australia and New Zealand". Permian genera and species of Strophalosiidina (Brachiopoda) from east Australia and New Zealand (PDF). Earthwise. Vol. 23. pp. 147–198.
  42. ^ a b c Waterhouse, J. B. (2024). "Trigonotretoid brachiopods from east Australia and New Zealand". Brachiopod species of Spiriferidina from the Permian faunas of east Australia and New Zealand (PDF). Earthwise. Vol. 26. pp. 71–165.
  43. ^ a b c Colmenar, J.; Chacaltana, C. A.; Gutiérrez-Marco, J. C. (2024). "Lower–Middle Ordovician brachiopods from the Eastern Cordillera of Peru: evidence of active faunal dispersal across Rheic and Iapetus oceans". Papers in Palaeontology. 10 (5). e1595. Bibcode:2024PPal...10E1595C. doi:10.1002/spp2.1595.
  44. ^ a b c d Jin, J.; Rasmussen, C. M. Ø.; Sheehan, P. M.; Harper, D. A. T. (2024). "Late Ordovician and early Silurian virgianid and stricklandioid brachiopods from North Greenland: implications for a warm-water faunal province". Papers in Palaeontology. 10 (1). e1544. Bibcode:2024PPal...10E1544J. doi:10.1002/spp2.1544.
  45. ^ a b c Mergl, M. (2024). "Lingulate brachiopods from the Kotýs Limestone (Lochkov Formation, Lochkovian) from Branžovy ridge near Bubovice (Barrandian area, Czech Republic)". Bulletin of Geosciences. 99 (4).
  46. ^ Ishizaki, Y.; Shiino, Y. (2024). "A new genus of Triassic discinid brachiopod and re-evaluating the taxonomy of the group—evolutionary insights into autecological innovation of post-Palaeozoic discinids". Acta Palaeontologica Polonica. 69 (3): 529–548. doi:10.4202/app.01164.2024.
  47. ^ Gaudin, J. (2024). "Chenshichonetes nom. nov., a new replacement name for Robertsella Chen & Shi, 2003 (Brachiopoda, Rugosochonetidae)". Zootaxa. 5403 (2): 293–294. doi:10.11646/zootaxa.5403.2.8. PMID 38480440.
  48. ^ Waterhouse, J. B. (2024). A summary of brachiopod species belonging to the Orthida, Rhynchonellidina, Stenoscismatidina and Athyrida from the Permian faunas of east Australia and New Zealand (PDF). Earthwise. Vol. 24. pp. 1–52.
  49. ^ a b Benedetto, J. L.; Lavié, F. J.; Salas, M. J. (2024). "New Silurian craniopsids (Brachiopoda, Craniiformea) from the Precordillera basin of western Argentina and their associated faunas". Journal of South American Earth Sciences. 138. 104881. Bibcode:2024JSAES.13804881B. doi:10.1016/j.jsames.2024.104881.
  50. ^ a b c d e Gallagher, E. E.; Harper, D. A. T. (2024). "Silurian brachiopods from the Pentland Hills, Scotland". Monographs of the Palaeontographical Society. 177 (666): 1–69. doi:10.1080/02693445.2023.2307703.
  51. ^ a b c d e f Vörös, A. (2024). "The Middle Jurassic brachiopods of the Transdanubian Range, Hungary". Geologica Hungarica Series Palaeontologica. 61: 1–116.
  52. ^ Hints, L.; Jiayu, R. (2024). "Discovery of trimerellide brachiopod Gasconsia from the Ordovician of Estonia". Estonian Journal of Earth Sciences. 73 (2): 124–133. doi:10.3176/earth.2024.12.
  53. ^ Waterhouse, J. B. (2024). "Ambocoelioidea in the Permian of east Australia and New Zealand". Brachiopod species of Spiriferidina from the Permian faunas of east Australia and New Zealand (PDF). Earthwise. Vol. 26. pp. 15–37.
  54. ^ a b Jin, J.; Harper, D. A. T. (2024). "An Edgewood-type Hirnantian fauna from the Mackenzie Mountains, northwestern margin of Laurentia". Journal of Paleontology. 98 (1): 13–39. Bibcode:2024JPal...98...13J. doi:10.1017/jpa.2023.87.
  55. ^ a b c d Baranov, V. V.; Kebria-Ee Zadeh, M.-R.; Blodgett, R. B. (2024). "Late Famennian rhynchonellides (Brachiopoda) of northeast Iran". Historical Biology: An International Journal of Paleobiology: 1–30. doi:10.1080/08912963.2024.2341857.
  56. ^ Brock, G. A.; Zhang, Z.-L.; Holmer, L. E. (2024). "A new obolellid brachiopod from the Wirrealpa Limestone (Cambrian; Stage 4), Flinders Ranges, South Australia". Palaeoworld. doi:10.1016/j.palwor.2024.11.005.
  57. ^ a b Poletaev, V. (2024). "New and revised taxa of Carboniferous spiriferides (Brachiopoda, Spiriferida) from the Donets Basin (Ukraine) and South Urals (Russia)". European Journal of Taxonomy (968): 132–155. doi:10.5852/ejt.2024.968.2723.
  58. ^ Halamski, A. T.; Baliński, A.; Kondas, M. (2024). "Kyrtatrypa pauli sp. nov., a key brachiopod species of post-Taghanic recovery faunas in the Middle Devonian (Givetian) of the Holy Cross Mountains, Poland" (PDF). Annales Societatis Geologorum Poloniae. 94 (3): 225–240. doi:10.14241/asgp.2024.12.
  59. ^ a b c d e Candela, Y.; Harper, D. A. T.; Mergl, M. (2024). "The brachiopod faunas from the Fezouata Shale (Lower Ordovician; Tremadocian–Floian) of the Zagora area, Anti-Atlas, Morocco: evidence for a biodiversity hub in Gondwana". Papers in Palaeontology. 10 (5). e1592. Bibcode:2024PPal...10E1592C. doi:10.1002/spp2.1592.
  60. ^ Waterhouse, J. B. (2024). "A frenzy of evolution: echinalosiin brachiopods in the Permian of east Australia and New Zealand". Permian genera and species of Strophalosiidina (Brachiopoda) from east Australia and New Zealand (PDF). Earthwise. Vol. 23. pp. 23–98.
  61. ^ a b c Mergl, M. (2024). "Lingulates of the Monograptus belophorus Biozone (Motol Formation, Sheinwoodian, Wenlock) of the Barrandian area, Czech Republic: insight into remarkable lingulate brachiopod diversity in the Silurian". Bulletin of Geosciences. 99 (1): 1–42. doi:10.3140/bull.geosci.1897.
  62. ^ Pakhnevich, A. V. (2024). "Systematic Position of the Brachiopods Pugnoides korsakpaica Nalivkin and Leiorhynchus kiselicus Nalivkin (Order Rhynchonellida)". Paleontological Journal. 58 (6): 665–672. Bibcode:2024PalJ...58..665P. doi:10.1134/S0031030124600987.
  63. ^ a b c Baranov, V. V.; Blodgett, R. B. (2023). "Some Early Pragian Brachiopods from Soda Creek Limestone of West-Central Alaska". Paleontological Journal. 57 (1 supplement): S45–S57. doi:10.1134/S0031030123700016.
  64. ^ Serobyan, V.; Vinn, O.; Mottequin, B. (2024). "Cyrtospiriferid (Spiriferida) brachiopods from the lower Famennian recovery interval of Central Armenia: insights on biotic interactions and "blisters"". Bollettino della Società Paleontologica Italiana. 63 (3). doi:10.4435/BSPI.2024.14 (inactive 2024-11-20).{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
  65. ^ Waterhouse, J. B. (2024). "Systematic and stratigraphic summary". Brachiopod genera and species of the suborder Martiniidina from the Permian faunas of east Australia and New Zealand (PDF). Earthwise. Vol. 25. pp. 5–28.
  66. ^ Corrêa, L. F. A.; Ramos, M. I. F.; Rezende, J. M. P. (2024). "Schellwienella amazonensis (Orthotetida, Brachiopoda): new species of the genus in the Lochkovian of the Amazonas Basin (Manacapuru Formation), northern Brazil". Journal of South American Earth Sciences. 150. 105253. Bibcode:2024JSAES.15005253A. doi:10.1016/j.jsames.2024.105253.
  67. ^ Radulović, B. V.; Sandy, M. R.; Schaaf, P. (2024). "A new species and genus of Lower Jurassic rhynchonellide (Brachiopoda) from Livari (Rumija Mountain, Montenegro): taxonomic implications of the shell microstructure". Historical Biology: An International Journal of Paleobiology: 1–18. doi:10.1080/08912963.2024.2403595.
  68. ^ Waterhouse, J. B. (2024). Punctate Spiriferimorph Brachiopoda from the Permian of East Australia and New Zealand (PDF). Earthwise. Vol. 27. pp. 1–69.
  69. ^ a b c d Waterhouse, J. B. (2024). "Permian Ingelarellidae Campbell (Brachiopoda) from east Australia and New Zealand". Brachiopod genera and species of the suborder Martiniidina from the Permian faunas of east Australia and New Zealand (PDF). Earthwise. Vol. 25. pp. 29–138.
  70. ^ Liu, C.-Y.; Qiao, L.; Liang, K.; Li, Y.; Qie, W.-K. (2024). "Middle Devonian brachiopods from Qujing of eastern Yunnan, China and their biostratigraphical and palaeoecological implications". Palaeoworld. 33 (6): 1564–1579. Bibcode:2024Palae..33.1564L. doi:10.1016/j.palwor.2024.02.005.
  71. ^ Huang, B.; Rong, J. (2024). "Heterogeneous palaeo-ecogeography of brachiopods during the Late Ordovician mass extinction in South China". Palaeontology. 67 (5). e12728. Bibcode:2024Palgy..6712728H. doi:10.1111/pala.12728.
  72. ^ Shi, K.; Huang, B. (2024). "Is there synchronicity between brachiopod diversity changes and palaeobiogeographical shifts across the Late Ordovician mass extinction?". Palaeontology. 67 (5). e12730. Bibcode:2024Palgy..6712730S. doi:10.1111/pala.12730.
  73. ^ Guo, Z.; Benton, M. J.; Stubbs, T. L.; Chen, Z.-Q. (2024). "Morphological innovation did not drive diversification in Mesozoic–Cenozoic brachiopods". Nature Ecology & Evolution. 8 (10): 1948–1958. Bibcode:2024NatEE...8.1948G. doi:10.1038/s41559-024-02491-9. PMID 39054349.
  74. ^ Liang, Y.; Fu, R.; Hu, Y.; Liu, F.; Song, B.; Luo, M.; Ren, X.; Wang, J.; Zhang, C.; Fang, R.; Yang, X.; Holmer, L. E.; Zhang, Z. (2024). "Late Ordovician lingulid brachiopods from the Pingliang Formation (Shaanxi Province, North China): Morphological and ecological implications". Journal of Asian Earth Sciences. 263. 106036. Bibcode:2024JAESc.26306036L. doi:10.1016/j.jseaes.2024.106036.
  75. ^ Dattilo, B. F.; Freeman, R. L.; Hartshorn, K.; Peterman, D.; Morse, A.; Meyer, D. L.; Dougan, L. G.; Hagadorn, J. W. (2024). "Paradox lost: wide gape in the Ordovician brachiopod Rafinesquina explains how unattached filter-feeding strophomenoids thrived on muddy substrates". Palaeontology. 67 (2). e12697. Bibcode:2024Palgy..6712697D. doi:10.1111/pala.12697.
  76. ^ Shapiro, R. S. (2024). "Dimerelloid brachiopod Dzieduszyckia from Famennian hydrocarbon seep deposits of Slaven Chert, Nevada, USA, with insights into systematics and paleoecology of the Dimerelloidea". Acta Palaeontologica Polonica. 69 (1): 87–107. doi:10.4202/app.01059.2023.
  77. ^ Popov, A. M. (2024). "First Record of a Cryptonellid Brachiopod ? Heterelasma sp. in the Lower Triassic of Southern Primorye, Russia". Paleontological Journal. 58 (5): 541–545. Bibcode:2024PalJ...58..541P. doi:10.1134/S0031030124600719.
  78. ^ Harper, E. M.; Peck, L. S. (2024). "The demise of large tropical brachiopods and the Mesozoic marine revolution". Royal Society Open Science. 11 (3). 231630. Bibcode:2024RSOS...1131630H. doi:10.1098/rsos.231630. PMC 10966397. PMID 38545611.
  79. ^ a b c d e f g h Bohatý, J.; Macurda, D. B.; Waters, J. A. (2024). "A critical interval in blastoid evolution: the respiratory transition and palaeogeographic dispersion of the spiraculate blastoids in the Devonian". Papers in Palaeontology. 10 (4). e1584. Bibcode:2024PPal...10E1584B. doi:10.1002/spp2.1584.
  80. ^ Gholamalian, H.; Kamali, M. K.; Wood, D. A. (2024). "Albian–Cenomanian echinoids from areas north of Bandar Abbas and south of Fars in the Zagros Mountains, Iran". Cretaceous Research. 166. 106021. doi:10.1016/j.cretres.2024.106021.
  81. ^ Paul, C. R. C. (2024). "Bockeliecrinites, a new name for Protocrinites rugatus Bockelie, 1984 (Diploporita, Blastozoa), and its taxonomic significance". Norwegian Journal of Geology. 104 (2). 202415. doi:10.17850/njg104-2-1.
  82. ^ Liu, Q.; Paul, C. R. C.; Mao, Y.-Y.; Li, Y.; Fang, X.; Huang, D.-Y. (2024). "Cheirocystis liexiensis, a new rhombiferan blastozoan (Echinodermata) from Lower Ordovician of South China Block". Palaeoworld. 33 (6): 1505–1514. Bibcode:2024Palae..33.1505L. doi:10.1016/j.palwor.2024.04.005.
  83. ^ Glass, A.; Blake, D. B.; Lefebvre, B. (2024). "An unusual new ophiuroid (Echinodermata) from the Late Ordovician (early Katian) of Morocco". Comptes Rendus Palevol. 23 (25): 401–415. doi:10.5852/cr-palevol2024v23a25.
  84. ^ Płachno, B. J.; Benyoucef, M.; Mekki, F.; Adaci, M.; Bouchemla, I.; Jain, S.; Krajewski, M.; Salamon, M. A. (2024). "Copernicrinus zamori gen. et sp. nov., the oldest thiolliericrinid crinoid (Crinoidea, Echinodermata) from the Bajocian strata of northwestern Algeria, Africa". Journal of Palaeogeography. 13 (2): 237–251. doi:10.1016/j.jop.2024.02.001.
  85. ^ a b c Gale, A. S. (2024). "New starfish (Asteroidea, Echinodermata) from the Middle Triassic (Lower Carnian) of northern Italy". Acta Geologica Polonica. 74 (3). e15. doi:10.24425/agp.2024.150009.
  86. ^ a b Martinez-Soares, P.; Roux, M.; Giusberti, L.; Gatto, R.; Eléaume, M.; Améziane, N. (2024). "New Eocene species of the crinoid genera Holopus and Cyathidium (Cyrtocrinida: Holopodidae) from north-eastern Italy". Zootaxa. 5541 (4): 401–437. doi:10.11646/zootaxa.5541.4.1. PMID 39646135.
  87. ^ Gale, A. S.; Jagt, J. W. M. (2024). "The aberrant crinoid Cyathidium (Echinodermata, Crinoidea, Cyrtocrinida) from lower Campanian phosphatic chalk in West Sussex (UK) and Picardie (France)". Proceedings of the Geologists' Association. 135 (6): 631–638. doi:10.1016/j.pgeola.2024.07.001.
  88. ^ Ausich, W. I.; Wilson, M. A.; Toom, U. (2024). "Early Silurian crinoid diversification on Baltica: Euspirocrinus varbolaensis sp. nov". Estonian Journal of Earth Sciences. 73 (1): 37–44. doi:10.3176/earth.2024.05.
  89. ^ a b Bohatý, J.; Ausich, W. I.; Becker, R. T. (2024). "Frasnian crinoid associations of the Prüm Syncline (Eifel, Rhenish Massif, Germany) – biostratigraphic framework and macrofossil assemblages". Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen. 312 (1): 31–83. doi:10.1127/njgpa/2024/1200.
  90. ^ a b Fau, M.; Wright, D. F.; Ewin, T. A. M.; Gale, A. S.; Villier, L. (2024). "Phylogenetic and taxonomic revisions of Jurassic sea stars support a delayed evolutionary origin of the Asteriidae". PeerJ. 12. e18169. doi:10.7717/peerj.18169. PMC 11531740. PMID 39494292.
  91. ^ Schlüter, N. (2024). "A paedomorphic dwarf species, Gauthieria pumilio sp. nov. (Echinoidea: Phymosomatidae), from the Campanian (Late Cretaceous) of Hannover, Germany". PalZ. Bibcode:2024PalZ..tmp...37S. doi:10.1007/s12542-024-00702-z.{{cite journal}}: CS1 maint: bibcode (link)
  92. ^ Abdelhamid, M. A. M.; Abdelghany, O.; Saima, M. A.; Asan, A. (2024). "Selected regular echinoids (Echinoidea) from the upper Campanian–Maastrichtian along the western borders of the Northern Oman Mountains, with description of a new species". Cretaceous Research. 167. 106037. doi:10.1016/j.cretres.2024.106037.
  93. ^ a b c d e Pauly, L.; Haude, R. (2024). "New sea urchins (Echinodermata: Echinoidea) from the Famennian of Velbert (W Germany): Evidence for echinoid faunal turnover in the Late Devonian". Palaeobiodiversity and Palaeoenvironments. 104 (3): 571–628. Bibcode:2024PdPe..104..571P. doi:10.1007/s12549-024-00612-7.
  94. ^ Roux, M.; Martinez-Soares, P.; Fornaciari, E.; Gatto, R.; Papazzoni, C. A.; Giusberti, L. (2024). "Eocene stalked crinoids in the genus Isselicrinus (Echinodermata, Crinoidea, Isocrinida) from northeastern Italy". Rivista Italiana di Paleontologia e Stratigrafia. 130 (1): 153–171. doi:10.54103/2039-4942/20885. hdl:11380/1352168.
  95. ^ a b c d e Ausich, W. I.; Križnar, M.; Paszcza, K.; Hoşgör, İ.; Płachno, B. J.; Salamon, M. A. (2024). "Early Permian crinoids from Laurasia and their paleogeographic implications". Acta Palaeontologica Polonica. 69 (3): 447–466. doi:10.4202/app.01159.2024.
  96. ^ Gale, A. S.; Ward, D. J. (2024). "A new sun star (Echinodermata, Asteroidea, Solasteridae) from the mid-Miocene of Lacoste, France". Proceedings of the Geologists' Association. 135 (6): 685–694. doi:10.1016/j.pgeola.2024.10.001.
  97. ^ Schlüter, N. (2024). "One steps out of line—A "modern" Micraster species (Echinoidea, Spatangoida) with some old-fashioned look, Micraster ernsti sp. nov. from the Campanian (Cretaceous)". Zootaxa. 5403 (1): 80–90. doi:10.11646/zootaxa.5403.1.5. PMID 38480453.
  98. ^ Thuy, B.; Numberger-Thuy, L. D.; Härer, J.; Kroh, A.; Winkler, V.; Schweigert, G. (2024). "Fossil evidence for the ancient link between clonal fragmentation, six-fold symmetry and an epizoic lifestyle in asterozoan echinoderms". Proceedings of the Royal Society B: Biological Sciences. 291 (2023). 20232832. doi:10.1098/rspb.2023.2832. PMC 11285804. PMID 38747704.
  99. ^ a b c d Thuy, B.; Eriksson, M. E.; Kutscher, M.; Numberger-Thuy, L. D. (2024). "The beginning of a success story: basalmost members of the extant ophiuroid clade from the Silurian of Gotland, Sweden". European Journal of Taxonomy (947): 216–247. doi:10.5852/ejt.2024.947.2631.
  100. ^ Štorc, R.; Žítt, J. (2024). "Ophiuroids (Echinodermata) from the Lower Cretaceous of Štramberk, Moravia (Czech Republic)". Bulletin of Geosciences. 99 (3): 255–269. doi:10.3140/bull.geosci.1893.
  101. ^ Donovan, S. K.; Hoare, G.; Clark, N. D. L.; Dixon, B.; Fearnhead, F. E. (2024). "A new crinoid morphotaxon from the Silurian (Llandovery) of south-west Scotland (Ayrshire)". Scottish Journal of Geology. doi:10.1144/sjg2024-007.
  102. ^ Blake, D. B.; Lefebvre, B. (2024). "Ordovician Petraster Billings, 1858 (Asteroidea: Echinodermata) and early asteroid skeletal differentiation". Comptes Rendus Palevol. 23 (17): 217–239. doi:10.5852/cr-palevol2024v23a17.
  103. ^ a b Rozhnov, S. V.; Anekeeva, G. A. (2024). "First Specimens of the Cornutan Stylophoran Phyllocystis (Echinodermata) in the Ordovician (Volkhov Regional Stage, Dapingian and Darriwilian) of Baltica and Special Aspects of Stylophoran Axial Symmetry". Paleontological Journal. 58 (2): 181–195. Bibcode:2024PalJ...58..181R. doi:10.1134/S0031030123600300.
  104. ^ Brower, J. C.; Brett, C. E.; Feldman, H. R. (2024). "A crinoid fauna and a new species of Pycnocrinus from the Martinsburg Formation (Upper Ordovician), lower Hudson Valley, New York". Journal of Paleontology. 98 (3): 402–419. Bibcode:2024JPal...98..402B. doi:10.1017/jpa.2024.4.
  105. ^ Salamon, M. A.; Benyoucef, M.; Jain, S.; Benzaggagh, M.; Płachno, B. J.; Abdelhamid, M. A. M.; Ahmad, F.; Azar, D.; Bouchemla, I.; Brachaniec, T.; El Ouali, M.; El Qot, G.; Ferré, B.; Gorzelak, P.; Krajewski, M.; Klompmaker, A. A.; Mekki, F.; Paszcza, K.; Poatskievick-Pierezan, B.; Slami, R. (2024). "Jurassic and Cretaceous crinoids (Crinoidea, Echinodermata) from the southern Tethys margin (northern and eastern Africa, and southern Asia)". Palaeontographica Abteilung A. 328 (1–6): 1–99. doi:10.1127/pala/2024/0148.
  106. ^ Gale, A. S. (2024). "Rapid evolution in Turonian microcrinoids (Crinoidea, Roveacrinidae) and its significance for Late Cretaceous stratigraphy". Acta Geologica Polonica. 75 (1). e34. doi:10.24425/agp.2024.151757.
  107. ^ Wang, D.Z.; Nohejlová, M.; Sun, Z.X.; Zeng, H.; Lefebvre, B.; Yang, X.L.; Zhao, F.C. (2024). "First report of lepidocystid echinoderm in the Cambrian of North China: evolutionary and palaeobiogeographic implications". Palaeogeography, Palaeoclimatology, Palaeoecology. 644. 112194. Bibcode:2024PPP...64412194W. doi:10.1016/j.palaeo.2024.112194.
  108. ^ Rahman, I; Zamora, S (January 2, 2024). "Origin and Early Evolution of Echinoderms". Annual Review of Earth and Planetary Sciences. 52 (1): 295–320. Bibcode:2024AREPS..52..295R. doi:10.1146/annurev-earth-031621-113343. hdl:10141/623070.
  109. ^ Novack-Gottshall, P. M.; Purcell, J.; Sultan, A.; Ranjha, I.; Deline, B.; Sumrall, C. D. (2024). "Ecological novelty at the start of the Cambrian and Ordovician radiations of echinoderms". Palaeontology. 67 (1). e12688. Bibcode:2024Palgy..6712688N. doi:10.1111/pala.12688.
  110. ^ Paul, C. R. C.; Lefebvre, B.; Nohejlová, M.; Zamora, S. (2024). "Rhombifera Barrande, 1867, and the origin of the Blastoidea (Echinodermata, Blastozoa)". Spanish Journal of Palaeontology. 39 (1): 71–90. doi:10.7203/sjp.28729.
  111. ^ Anderson, L. C.; Bauer, J. E. (2024). "Geometric morphometrics as a tool for evaluating Eublastoidea morphological variation". Paleobiology: 1–15. doi:10.1017/pab.2024.14.
  112. ^ Waters, J. A.; Bohatý, J.; Macurda, D. B. (2024). "Feeding postures as indicators of mutable collagenous tissue in extinct echinoderms". Communications Biology. 7 (1). 1516. doi:10.1038/s42003-024-07232-z. PMC 11568118. PMID 39548239.
  113. ^ Yu, X.; Lan, T.; Zhao, Y. (2024). "Research on the stereom in Sinocrinus lui from the Kaili Formation (Cambrian), Guizhou, China". Acta Micropalaeontologica Sinica. 41 (3): 193–203. doi:10.16087/j.cnki.1000-0674.20240731.001.
  114. ^ Bohatý, J.; Poschmann, M. J.; Müller, P.; Ausich, W. I. (2024). "Putting a crinoid on a stalk: new evidence on the Devonian diplobathrid camerate Monstrocrinus". Journal of Paleontology. 97 (6): 1233–1250. doi:10.1017/jpa.2023.84.
  115. ^ Limbeck, M. R.; Bauer, J. E.; Deline, B.; Sumrall, C. D. (2024). "Initial quantitative assessment of the enigmatic clade Paracrinoidea (Echinodermata)". Palaeontology. 67 (3). e12695. Bibcode:2024Palgy..6712695L. doi:10.1111/pala.12695.
  116. ^ García-Penas, Á.; Baumiller, T. K.; Aurell, M.; Zamora, S. (2024). "Intact stalked crinoids from the late Aptian of NE Spain offer insights into the Mesozoic Marine Revolution in the Tethys". Geology. 52 (8): 594–599. Bibcode:2024Geo....52..594G. doi:10.1130/G52179.1.
  117. ^ Salamon, M. A.; Radwańska, U.; Paszcza, K.; Krajewski, M.; Brachaniec, T.; Niedźwiedzki, R.; Gorzelak, P. (2024). "The latest shallow-sea isocrinids from the Miocene of Paratethys and implications to the Mesozoic marine revolution". Scientific Reports. 14 (1). 17932. doi:10.1038/s41598-024-67687-2. PMC 11297034. PMID 39095508.
  118. ^ Thompson, J. R.; Nebelsick, J. H. (2024). "Morphology of the stem group echinoids Lepidocentrus eifelianus and Rhenechinus hopstaetteri from the Devonian of the Eifel region, Germany". PalZ. doi:10.1007/s12542-024-00709-6.
  119. ^ Blake, D. B. (2024). "A review of the class Stenuroidea (Echinodermata: Asterozoa)". Bulletins of American Paleontology. 409: 1–110.
  120. ^ Gutiérrez-Marco, J. C.; Maletz, J. (2024). "Mass occurrence of planktic dendroid graptolite synrhabdosomes (Calyxdendrum) from the Early Ordovician Fezouata biota of Morocco". Geologica Acta. 22. doi:10.1344/GeologicaActa2024.22.4.
  121. ^ Yang, X.; Kimmig, J.; Cameron, C. B.; Nanglu, K.; Kimmig, S. R.; de Carle, D.; Zhang, C.; Yu, M.; Peng, S. (2024). "An early Cambrian pelago-benthic acorn worm and the origin of the hemichordate larva". Palaeontologia Electronica. 27 (1). 27.1.a17. doi:10.26879/1356.
  122. ^ a b Maletz, J. (2024). "The evolutionary origins of the Hemichordata (Enteropneusta & Pterobranchia) - A review based on fossil evidence and interpretations". Bulletin of Geosciences. 99 (2): 127–147. doi:10.3140/bull.geosci.1899.
  123. ^ a b Lerosey-Aubril, R.; Maletz, J.; Coleman, R.; Del Mouro, L.; Gaines, R. R.; Skabelund, J.; Ortega-Hernández, J. (2024). "Benthic pterobranchs from the Cambrian (Drumian) Marjum Konservat-Lagerstätte of Utah". Papers in Palaeontology. 10 (3). e1555. Bibcode:2024PPal...10E1555L. doi:10.1002/spp2.1555.
  124. ^ a b Lopez, F. E.; Conde, O. A.; Braeckman, A. R.; Segura, D. G.; Drovandi, J. M.; Bueno, A. J.; Abarca, U. (2024). "New Ludlovian, upper Silurian, graptolite faunas from the Los Espejos Formation, Central Precordillera, San Juan Province, Argentina: correlations and biostratigraphic remarks". Acta Palaeontologica Polonica. 69 (3): 351–370. doi:10.4202/app.01139.2024.
  125. ^ Shijia, G.; Tan, J.; Wang, W. (2024). "Locomotory and morphological evolution of the earliest Silurian graptolite Demirastrites selected by hydrodynamics". Palaeontology. 67 (3). e12716. Bibcode:2024Palgy..6712716S. doi:10.1111/pala.12716.
  126. ^ Nanglu, K.; Waskom, M. E.; Richards, J. C.; Ortega-Hernández, J. (2023). "Rhabdopleurid epibionts from the Ordovician Fezouata Shale biota and the longevity of cross-phylum interactions". Communications Biology. 6 (1). 1002. doi:10.1038/s42003-023-05377-x. PMC 10567727. PMID 37821659.
  127. ^ Maletz, J.; Gutiérrez-Marco, J. C. (2024). "The purported record of an epibiontic rhabdopleurid in the Early Ordovician Fezouata biota of Morocco, with a discussion about benthic pterobranchs (Hemichordata) in the Lagerstätte". Geobios. 87: 25–35. doi:10.1016/j.geobios.2024.09.001.
  128. ^ Karádi, V. (2024). "Towards a refined Norian (Upper Triassic) conodont biostratigraphy of the western Tethys: revision of the recurrent 'multidentata-issue'". Geological Magazine. 160 (12): 2091–2109. doi:10.1017/S0016756824000104.
  129. ^ Kilic, A. M. (2024). "Note on Lower Triassic Gondolelloid Conodont Rediversifications with Emphasis on the Spathian Recovery". Journal of Earth Science. 35 (4): 1236–1242. Bibcode:2024JEaSc..35.1236K. doi:10.1007/s12583-023-1954-8.
  130. ^ a b Nazarova, V. M.; Soboleva, M. A. (2024). "Icriodus multidentatus sp. nov. and I. quartadecimensis sp. nov.—New Conodont Species from the Frasnian Stage of the Southern Timan". Paleontological Journal. 58 (3): 306–314. Bibcode:2024PalJ...58..306N. doi:10.1134/S0031030124700114.
  131. ^ Zhuravlev, A. V. (2024). "A new species, Lochriea monocarinata n. sp., and its position in the morphospace of the genus Lochriea Scott, 1942 (Conodonta, Mississippian)". Geodiversitas. 46 (18): 955–965. doi:10.5252/geodiversitas2024v46a18.
  132. ^ a b c d Orchard, M. J.; Golding, M. L. (2024). "The Neogondolella constricta (Mosher and Clark, 1965) group in the Middle Triassic of North America: speciation and distribution". Journal of Paleontology. 97 (6): 1161–1191. doi:10.1017/jpa.2023.52.
  133. ^ Tagarieva, R. Ch. (2024). "Palmatolepis abramovae sp. nov.—A New Conodont Species from the Makarovo Regional Substage (Lower Famennian, Upper Devonian) of the Western Slope of the South Urals". Paleontological Journal. 58 (2): 196–203. Bibcode:2024PalJ...58..196T. doi:10.1134/S0031030123600324.
  134. ^ Shirley, B.; Leonhard, I.; Murdock, D. J. E.; Repetski, J.; Świś, P.; Bestmann, M.; Trimby, P.; Ohl, M.; Plümper, O.; King, H. E.; Jarochowska, E. (2024). "Increasing control over biomineralization in conodont evolution". Nature Communications. 15 (1). 5273. Bibcode:2024NatCo..15.5273S. doi:10.1038/s41467-024-49526-0. PMC 11190287. PMID 38902270.
  135. ^ Dzik, J. (2024). "Faunal dynamics and evolution of Ordovician conodonts on the Baltic side of the Tornquist Sea". Earth and Environmental Science Transactions of the Royal Society of Edinburgh: 1–38. doi:10.1017/S1755691024000070.
  136. ^ Zhen, Y. Y. (2024). "Taxonomic revision of the genus Stiptognathus (Conodonta) from the Lower Ordovician of Australia and its biostratigraphical and palaeobiogeographical significance". Alcheringa: An Australasian Journal of Palaeontology. 48 (1): 79–93. Bibcode:2024Alch...48...79Z. doi:10.1080/03115518.2024.2306623.
  137. ^ Voldman, G. G.; Cisterna, G. A.; Sterren, A. F.; Ezpeleta, M.; Barrick, J. E. (2024). "First documentation of Late Paleozoic conodonts from Argentina: Biostratigraphic and paleoclimatic constraints for the Late Paleozoic Ice Age in SW Gondwana". Geology. 52 (8): 583–587. Bibcode:2024Geo....52..583V. doi:10.1130/G52133.1.
  138. ^ Xue, C.; Yuan, D.; Chen, Y.; Stubbs, T. L.; Zhao, Y.; Zhang, Z. (2024). "Morphological innovation after mass extinction events in Permian and Early Triassic conodonts based on Polygnathacea". Palaeogeography, Palaeoclimatology, Palaeoecology. 642. 112149. Bibcode:2024PPP...64212149X. doi:10.1016/j.palaeo.2024.112149.
  139. ^ Huang, J.; Hu, S.; Li, J.; Zhou, C.; Zhang, Q.; Wen, W.; Min, X.; Jiang, H.; Martínez-Pérez, C.; Zhang, K. (2024). "Natural assemblages of the earliest Triassic conodont Hindeodus parvus from the Shangsi section, Sichuan province, Southwest China". Swiss Journal of Palaeontology. 143 (1). 42. doi:10.1186/s13358-024-00337-2.
  140. ^ Yao, M.; Sun, Z.; Ji, C.; Liu, S.; Zhou, M.; Jiang, D. (2024). "Conodont-bearing bromalites from South China: Evidence for multiple predations on conodonts in the Early Triassic marine ecosystem". Palaeogeography, Palaeoclimatology, Palaeoecology. 651. 112377. Bibcode:2024PPP...65112377Y. doi:10.1016/j.palaeo.2024.112377.
  141. ^ Wu, K.; Yang, B.; Zhao, B.; Yang, L.; Zou, Y.; Chen, G.; Li, J. (2024). "Discriminating conodont recording bias: a case study from the Nanzhang-Yuan'an Lagerstätte". PeerJ. 12. e18011. doi:10.7717/peerj.18011. PMC 11404477. PMID 39285922.
  142. ^ Ye, S.-Y.; Wu, K.; Sun, Z.-Y.; Sander, P. M.; Samathi, A.; Sun, Y.-Y.; Ji, C.; Suteethorn, V.; Liu, J. (2024). "Conodonts suggest a late Spathian (late Early Triassic) age for Thaisaurus chonglakmanii (Reptilia: Ichthyosauromorpha) from Thailand". Palaeoworld. doi:10.1016/j.palwor.2024.07.004.
  143. ^ Golding, M. L.; Kılıç, A. M. (2024). "Reconstruction of the multielement apparatus of the conodont Gladigondolella tethydis (Huckriede) using multivariate statistical analysis; implications for taxonomy, stratigraphy, and evolution". Rivista Italiana di Paleontologia e Stratigrafia. 130 (1): 1–18. doi:10.54103/2039-4942/19954.
  144. ^ Osterling Arias, A. F.; Mooney, E. D.; Bevitt, J. J.; Reisz, R. R. (2024). "A new trematopid from the lower Permian of Oklahoma and new insights into the genus Acheloma". PLOS ONE. 19 (10). e0309393. Bibcode:2024PLoSO..1909393O. doi:10.1371/journal.pone.0309393. PMC 11486393. PMID 39418236.
  145. ^ MacDougall, M. J.; Jannel, A.; Henrici, A. C.; Berman, D. S.; Sumida, S. S.; Martens, T.; Fröbisch, N. B.; Fröbisch, J. (2024). "A new recumbirostran 'microsaur' from the lower Permian Bromacker locality, Thuringia, Germany, and its fossorial adaptations". Scientific Reports. 14 (1). 4200. Bibcode:2024NatSR..14.4200M. doi:10.1038/s41598-023-46581-3. PMC 10879142. PMID 38378723.
  146. ^ a b Ponstein, J.; MacDougall, M. J.; Fröbisch, J. (2024). "A comprehensive phylogeny and revised taxonomy of Diadectomorpha with a discussion on the origin of tetrapod herbivory". Royal Society Open Science. 11 (6). 231566. Bibcode:2024RSOS...1131566P. doi:10.1098/rsos.231566. PMC 11257076. PMID 39036512.
  147. ^ Uliakhin, A. V.; Golubev, V. K. (2024). "Ancient Species of the Genus Dvinosaurus (Temnospondyli, Dvinosauria) from the Permian Sundyr Tetrapod Assemblage of Eastern Europe". Paleontological Journal. 58 (2): 204–225. Bibcode:2024PalJ...58..204U. doi:10.1134/S0031030123600336.
  148. ^ Marsicano, C. A.; Pardo, J. D.; Smith, R. M. H.; Mancuso, A. C.; Gaetano, L. C.; Mocke, H. (2024). "Giant stem tetrapod was apex predator in Gondwanan late Palaeozoic ice age". Nature. 631 (8021): 577–582. Bibcode:2024Natur.631..577M. doi:10.1038/s41586-024-07572-0. PMID 38961286.
  149. ^ So, C.; Pardo, J. D.; Mann, A. (2024). "A new amphibamiform from the Early Permian of Texas elucidates patterns of cranial diversity among terrestrial amphibamiforms". Zoological Journal of the Linnean Society. doi:10.1093/zoolinnean/zlae012.
  150. ^ Pinheiro, Felipe L.; Eltink, Estevan; Paes-Neto, Voltaire D.; Machado, Arielli F.; Simões, Tiago R.; Pierce, Stephanie E. (2024-01-19). "Interrelationships among Early Triassic faunas of Western Gondwana and Laurasia as illuminated by a new South American benthosuchid temnospondyl". The Anatomical Record. 307 (4): 726–743. doi:10.1002/ar.25384. ISSN 1932-8486. PMID 38240478.
  151. ^ Werneburg, R.; Schoch, R. R. (2024). "A new large stereospondylomorph temnospondyl from the early Permian (Rotliegend, Lower Goldlauter Fm.) of the Thuringian Forest, Central Germany". Semana. Naturwissenschaftliche Veröffentlichungen des Naturhistorischen Museums Schloss Bertholdsburg Schleusingen. 39: 29–53.
  152. ^ So, C.; Kufner, A. M.; Pardo, J. D.; Edwards, C. L.; Price, B. R.; Bevitt, J. J.; LeClair-Diaz, A.; St. Clair, L.; Mann, J.; Teran, R.; Lovelace, D. M. (2024). "Fossil amphibian offers insights into the interplay between monsoons and amphibian evolution in palaeoequatorial Late Triassic systems". Proceedings of the Royal Society B: Biological Sciences. 291 (2033). 20241041. doi:10.1098/rspb.2024.1041. PMC 11521612. PMID 39471852.
  153. ^ Oreska, M. P. J.; DeMar, D. G.; Gardner, J. D.; Carrano, M. T. (2024). "Vertebrate paleontology of the Cloverly Formation (Lower Cretaceous), IV: the oldest edentulous frog (Salientia) from Laurasia". Journal of Vertebrate Paleontology. 44 (1). e2399102. Bibcode:2024JVPal..44E9102O. doi:10.1080/02724634.2024.2399102.
  154. ^ Schoch, R. R.; Moreno, R. (2024). "Synopsis on the temnospondyls from the German Triassic". Palaeodiversity. 17 (1): 9–48. doi:10.18476/pale.v17.a2.
  155. ^ Werneburg, R.; Witzmann, F.; Rinehart, L.; Fischer, J.; Voigt, S. (2024). "A new eryopid temnospondyl from the Carboniferous–Permian boundary of Germany". Journal of Paleontology. 97 (6): 1251–1281. doi:10.1017/jpa.2023.58.
  156. ^ Gómez, R. O.; Ventura, T.; Turazzini, G. F.; Marivaux, L.; Flores, R. A.; Boscaini, A.; Fernández-Monescillo, M.; Mamani Quispe, B.; Prámparo, M. B.; Fauquette, S.; Martin, C.; Münch, P.; Pujos, F.; Antoine, P.-O. (2024). "A new early water frog (Telmatobius) from the Miocene of the Bolivian Altiplano" (PDF). Papers in Palaeontology. 10 (1). e1543. Bibcode:2024PPal...10E1543G. doi:10.1002/spp2.1543.
  157. ^ Bulanov, V. V. (2024). "New Data on the Evolution and Ontogeny of Karpinskiosauridae (Tetrapoda, Seymouriamorpha). Part 1. Cranial Morphology of Volgerpeton exspectatus gen. et sp. nov". Paleontological Journal. 58 (6): 697–713. Bibcode:2024PalJ...58..697B. doi:10.1134/S0031030124601014.
  158. ^ Santos, R. O.; Wilkinson, M.; Couto Ribeiro, G.; Carvalho, A. B.; Zaher, H. (2024). "The first fossil record of an aquatic caecilian (Gymnophiona: Typhlonectidae)". Zoological Journal of the Linnean Society. 202 (2). doi:10.1093/zoolinnean/zlad188.
  159. ^ Retallack, G. J. (2024). "Late Devonian fossils of New South Wales and early tetrapod habitats". Lethaia. 57 (1): 1–19. Bibcode:2024Letha..57....1R. doi:10.18261/let.57.1.5.
  160. ^ Porro, L. B.; Martin-Silverstone, E.; Rayfield, E. J. (2024). "Descriptive anatomy and three-dimensional reconstruction of the skull of the tetrapod Eoherpeton watsoni Panchen, 1975 from the Carboniferous of Scotland". Earth and Environmental Science Transactions of the Royal Society of Edinburgh: 1–21. doi:10.1017/S175569102300018X.
  161. ^ Schoch, R. R.; Witzmann, F. (2024). "The evolution of larvae in temnospondyls and the stepwise origin of amphibian metamorphosis". Biological Reviews. 99 (5): 1613–1637. doi:10.1111/brv.13084. PMID 38599802.
  162. ^ Chakravorti, S.; Roy, A.; Sengupta, D. P. (2024). "Patterns of diversity of temnospondyl amphibians in India and South-East Asia". Annales de Paléontologie. 110 (1). 102686. Bibcode:2024AnPal.11002686C. doi:10.1016/j.annpal.2024.102686.
  163. ^ Moreno, R.; Dunne, E. M.; Mujal, E.; Farnsworth, A.; Valdes, P. J.; Schoch, R. R. (2024). "Impact of environmental barriers on temnospondyl biogeography and dispersal during the Middle–Late Triassic". Palaeontology. 67 (5). e12724. Bibcode:2024Palgy..6712724M. doi:10.1111/pala.12724.
  164. ^ Gee, B. M.; Sidor, C. A. (2024). "Diminutive temnospondyls from the lower and middle Fremouw Formation (Lower Triassic) of Antarctica". Journal of Vertebrate Paleontology. 44 (2). e2407183. doi:10.1080/02724634.2024.2407183.
  165. ^ Quarto, L. F.; Antczak, M. (2024). "Morphometrics of the mandible of Metoposaurus krasiejowensis Sulej, 2002 and its ecological implications". Acta Geologica Polonica. 74 (3). e18. doi:10.24425/agp.2024.150010.
  166. ^ Witzmann, F.; Schoch, R. R. (2024). "Osteology and phylogenetic position of Plagiosaurus depressus (Temnospondyli: Plagiosauridae) from the Late Triassic of Germany and the repeated loss of dermal bones in plagiosaurids". Zoological Journal of the Linnean Society. 202 (3): zlae014. doi:10.1093/zoolinnean/zlae014.
  167. ^ So, C.; Mann, A. (2024). "A large brachyopoid from the Middle Triassic of northern Arizona and the diversity of brachyopoid temnospondyls from the Moenkopi Formation". Fossil Record. 27 (1): 233–245. Bibcode:2024FossR..27..233S. doi:10.3897/fr.27.117611.
  168. ^ Schoch, R. R. (2024). "Cranial morphology and phylogenetic relationships of the Late Triassic temnospondyl Hyperokynodon keuperinus". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 310 (2): 147–160. doi:10.1127/njgpa/2023/1175.
  169. ^ Marjanović, D.; Maddin, H. C.; Olori, J. C.; Laurin, M. (2024). "The new problem of Chinlestegophis and the origin of caecilians (Amphibia, Gymnophionomorpha) is highly sensitive to old problems of sampling and character construction". Fossil Record. 27 (1): 55–94. Bibcode:2024FossR..27...55M. doi:10.3897/fr.27.e109555.
  170. ^ Pardo, J. D.; Small, B. J.; Huttenlocker, A. K. (2017). "Stem caecilian from the Triassic of Colorado sheds light on the origins of Lissamphibia". Proceedings of the National Academy of Sciences of the United States of America. 114 (27): E5389–E5395. Bibcode:2017PNAS..114E5389P. doi:10.1073/pnas.1706752114. PMC 5502650. PMID 28630337.
  171. ^ Serra Silva, A. (2024). "Extended Lissamphibia: a tale of character non-independence, analytical parameters and islands of trees". Journal of Systematic Palaeontology. 22 (1). 2321620. Bibcode:2024JSPal..2221620S. doi:10.1080/14772019.2024.2321620.
  172. ^ Skutschas, P. P.; Saburov, P. G.; Uliakhin, A. V.; Kolchanov, V. V. (2024). "Long Bone Morphology and Histology of the Stem Salamander Kulgeriherpeton ultimum (Caudata, Karauridae) from the Lower Cretaceous of Yakutia". Paleontological Journal. 58 (1): 101–111. Bibcode:2024PalJ...58..101S. doi:10.1134/S0031030124010076.
  173. ^ Skutschas, P. P.; Saburov, P. G.; Uliakhin, A. V.; Kolchanov, V. V. (2024). "Morphology and Histology of the Femora of Salamanders of the Genus Kiyatriton (Caudata) from the Middle Jurassic and Early Cretaceous of Western Siberia". Paleontological Journal. 58 (5): 578–585. Bibcode:2024PalJ...58..578S. doi:10.1134/S0031030124600732.
  174. ^ Syromyatnikova, E. V.; Titov, V. V.; Tesakov, A. S.; Skutschas, P. P. (2024). "A "preglacial" giant salamander from Europe: new record from the Late Pliocene of Caucasus". Comptes Rendus Palevol. 23 (3): 45–57. doi:10.5852/cr-palevol2024v23a3.
  175. ^ Skutschas, P. P.; Malakhov, D. V.; Parakhin, I. A.; Kolchanov, V. V. (2024). "New data on the crown proteid Bishara backa from the Upper Cretaceous (Bostobe Formation) of Kazakhstan: implications for early evolution and palaeobiogeography of Proteidae". Historical Biology: An International Journal of Paleobiology: 1–9. doi:10.1080/08912963.2024.2384108.
  176. ^ Chuliver, M.; Agnolín, F. L.; Scanferla, A.; Aranciaga Rolando, M.; Ezcurra, M. D.; Novas, F. E.; Xu, X. (2024). "The oldest tadpole reveals evolutionary stability of the anuran life cycle". Nature. 636 (8041): 138–142. doi:10.1038/s41586-024-08055-y. PMID 39478214.
  177. ^ Du, B.; Zhang, J.; Gómez, R. O.; Dong, L.; Zhang, M.; Lei, X.; Li, A.; Dai, S. (2024). "A Cretaceous frog with eggs from northwestern China provides fossil evidence for sexual maturity preceding skeletal maturity in anurans". Proceedings of the Royal Society B: Biological Sciences. 291 (2016). 20232320. doi:10.1098/rspb.2023.2320. PMC 10846944. PMID 38320608.
  178. ^ Santos, R. O.; Carvalho, A. B.; Zaher, H. (2024). "First record of a neobatrachian frog (Lissamphibia: Neobatrachia) from the Eocene–Oligocene Aiuruoca Basin, Brazil". Historical Biology: An International Journal of Paleobiology: 1–6. doi:10.1080/08912963.2024.2336976.
  179. ^ Falk, D.; Wings, O.; Unitt, R.; Wade, J.; McNamara, M. E. (2024). "Fossilized anuran soft tissues reveal a new taphonomic model for the Eocene Geiseltal Konservat-Lagerstätte, Germany". Scientific Reports. 14 (1). 7876. Bibcode:2024NatSR..14.7876F. doi:10.1038/s41598-024-55822-y. PMC 11039752. PMID 38654038.
  180. ^ Wuttke, M.; Poschmann, M. J.; Wappler, T.; Bouchal, J. M.; Geier, C.; Ulrich, S.; Grímsson, F. (2024). "Pollen-feeding in a giant pelobatid tadpole from the late Oligocene of Enspel, Germany". Palaeobiodiversity and Palaeoenvironments. Bibcode:2024PdPe..tmp...18W. doi:10.1007/s12549-024-00603-8.{{cite journal}}: CS1 maint: bibcode (link)
  181. ^ Gómez, R. O.; Turazzini, G. F.; García-López, D. A.; Badot, M. J. (2024). "A late Eocene frog assemblage from the Geste Formation, Puna of north-western Argentina". Historical Biology: An International Journal of Paleobiology: 1–22. doi:10.1080/08912963.2024.2322532.
  182. ^ Zimicz, N.; Fabrezi, M.; Aramayo, A.; Bianchi, C.; Hongn, F.; Montero-López, C. (2024). "Ceratophryid frogs in the late Miocene of central Andes of Argentina: insights on the paleoenvironment of Palo Pintado Formation". Historical Biology: An International Journal of Paleobiology: 1–14. doi:10.1080/08912963.2024.2403590.
  183. ^ Venczel, M.; Codrea, V. A.; Solomon, A.; Fărcaș, C.; Bordeianu, M. (2024). "Lissamphibians from the late Eocene – early Oligocene transition of the Transylvanian Basin (Romania)". Historical Biology: An International Journal of Paleobiology: 1–13. doi:10.1080/08912963.2024.2392719.
  184. ^ Villa, A.; Macaluso, L.; Mörs, T. (2024). "Miocene and Pliocene amphibians from Hambach (Germany): new evidence for a late Neogene refuge in northwestern Europe". Palaeontologia Electronica. 27 (1). 27.1.a3. doi:10.26879/1323.
  185. ^ Georgalis, G. L.; Villa, A.; Ivanov, M.; Delfino, M. (2024). "New diverse amphibian and reptile assemblages from the late Neogene of northern Greece provide novel insights into the emergence of extant herpetofaunas of the southern Balkans". Swiss Journal of Palaeontology. 143 (1). 34. Bibcode:2024SwJP..143...34G. doi:10.1186/s13358-024-00332-7.
  186. ^ Syromyatnikova, E. V.; Tarasova, M. S. (2024). "A Pleistocene Amphibian Assemblage of the Taurida Cave, Crimea". Russian Journal of Herpetology. 31 (3): 176–185. doi:10.30906/1026-2296-2024-31-3-176-185.
  187. ^ Bulanov, V. V. (2024). "New Data on the Morphology and Distribution of Kotlassia prima Amalitzky (Tetrapoda, Seymouriamorpha)". Paleontological Journal. 58 (4): 434–444. Bibcode:2024PalJ...58..434B. doi:10.1134/S0031030124600380.
  188. ^ Reisz, R. R.; Maho, T.; Modesto, S. P. (2024). "Recumbirostran 'microsaurs' are not amniotes". Journal of Systematic Palaeontology. 22 (1). 2296078. Bibcode:2024JSPal..2296078R. doi:10.1080/14772019.2023.2296078.
  189. ^ Modesto, S. P. (2024). "Problems of the interrelationships of crown and stem amniotes". Frontiers in Earth Science. 12. 1155806. Bibcode:2024FrEaS..1255806M. doi:10.3389/feart.2024.1155806.
  190. ^ Voigt, S.; Calábková, G.; Ploch, I.; Nosek, V.; Pawlak, W.; Raczyński, P.; Spindler, F.; Werneburg, R. (2024). "A diadectid skin impression and its implications for the evolutionary origin of epidermal scales". Biology Letters. 20 (5). 20240041. doi:10.1098/rsbl.2024.0041. PMC 11285442. PMID 38773928.
  191. ^ Mao, F.; Zhang, C.; Ren, J.; Wang, T.; Wang, G.; Zhang, F.; Rich, T.; Vickers-Rich, P.; Meng, J. (2024). "Fossils document evolutionary changes of jaw joint to mammalian middle ear". Nature. 628 (8008): 576–581. Bibcode:2024Natur.628..576M. doi:10.1038/s41586-024-07235-0. PMID 38570677.
  192. ^ Martin, T.; Averianov, A. O.; Lang, A. J.; Schultz, J. A.; Wings, O. (2024). "Docodontans (Mammaliaformes) from the Late Jurassic of Germany". Historical Biology: An International Journal of Paleobiology: 1–9. doi:10.1080/08912963.2023.2300635.
  193. ^ Averianov, A. O.; Martin, T.; Lopatin, A. V.; Skutschas, P. P.; Vitenko, D. D.; Schellhorn, R.; Kolosov, P. N. (2024). "Docodontans from the Lower Cretaceous of Yakutia, Russia: new insights into diversity, morphology, and phylogeny of Docodonta". Cretaceous Research. 158. 105836. Bibcode:2024CrRes.15805836A. doi:10.1016/j.cretres.2024.105836.
  194. ^ Mao, F.; Li, Z.; Wang, Z.; Zhang, C.; Rich, T.; Vickers-Rich, P.; Meng, J. (2024). "Jurassic shuotheriids show earliest dental diversification of mammaliaforms". Nature. 628 (8008): 569–575. Bibcode:2024Natur.628..569M. doi:10.1038/s41586-024-07258-7. PMID 38570681.
  195. ^ Matlhaga, F. R.; Benoit, J.; Rubidge, B. S. (2024). "A new middle Permian burnetiamorph (Therapsida: Biarmosuchia) from the South African Karoo filling a gap in the biarmosuchian record". Palaeontologia Africana. 58: 28–36. hdl:10539/40426.
  196. ^ Liu, J.; Abdala, F. (2024). "A new small baurioid therocephalian from the Lower Triassic Jiucaiyuan Formation, Xinjiang, China". Vertebrata PalAsiatica. 62 (3): 201–224. doi:10.19615/j.cnki.2096-9899.240726.
  197. ^ Duhamel, A.; Benoit, J.; Wynd, B.; Wright, A. M.; Rubidge, B. (2024). "Redescription of three basal anomodonts: a phylogenetic reassessment of the holotype of Eodicynodon oelofseni (NMQR 2913)". Frontiers in Earth Science. 11. 1220341. Bibcode:2024FrEaS..1120341D. doi:10.3389/feart.2023.1220341.
  198. ^ Kerber, L.; Roese-Miron, L.; Medina, T. G. M.; da Roberto-da-Silva, L.; Cabreira, S. F.; Pretto, F. A. (2024). "Skull anatomy and paleoneurology of a new traversodontid from the Middle-Late Triassic of Brazil". The Anatomical Record. 307 (4): 791–817. doi:10.1002/ar.25385. PMID 38282563.
  199. ^ Martinelli, A. G.; Ezcurra, M. D.; Fiorelli, L. E.; Escobar, J.; Hechenleitner, E. M.; von Baczko, M. B.; Taborda, J. R. A.; Desojo, J. B. (2024). "A new early-diverging probainognathian cynodont and a revision of the occurrence of cf. Aleodon from the Chañares Formation, northwestern Argentina: New clues on the faunistic composition of the latest Middle–?earliest Late Triassic Tarjadia Assemblage Zone". The Anatomical Record. 307 (4): 818–850. doi:10.1002/ar.25388. PMID 38282519.
  200. ^ Singh, S. A.; Elsler, A.; Stubbs, T. L.; Rayfield, E. J.; Benton, M. J. (2024). "Predatory synapsid ecomorphology signals growing dynamism of late Palaeozoic terrestrial ecosystems". Communications Biology. 7 (1). 201. doi:10.1038/s42003-024-05879-2. PMC 10874460. PMID 38368492.
  201. ^ Harano, T.; Asahara, M. (2024). "Evolution of tooth morphological complexity and its association with the position of tooth eruption in the jaw in non-mammalian synapsids". PeerJ. 12. e17784. doi:10.7717/peerj.17784. PMC 11326432. PMID 39148681.
  202. ^ Miyamae, J. A.; Benoit, J.; Ruf, I.; Sibiya, Z.; Bhullar, B.-A. S. (2024). "Synapsids and sensitivity: Broad survey of tetrapod trigeminal canal morphology supports an evolutionary trend of increasing facial tactile specialization in the mammal lineage". The Anatomical Record. doi:10.1002/ar.25604. PMID 39582159.
  203. ^ Jones, K. E.; Angielczyk, K. D.; Pierce, S. E. (2024). "Origins of mammalian vertebral function revealed through digital bending experiments". Proceedings of the Royal Society B: Biological Sciences. 291 (2026). 20240820. doi:10.1098/rspb.2024.0820. PMC 11335002. PMID 38981526.
  204. ^ Bishop, P. J.; Pierce, S. E. (2024). "Reconstructions of hindlimb musculature in extinct pre-therian synapsids". Bulletin of the Museum of Comparative Zoology. 163 (9): 417–471. doi:10.3099/MCZ82.
  205. ^ Bishop, P. J.; Pierce, S. E. (2024). "Late acquisition of erect hindlimb posture and function in the forerunners of therian mammals". Science Advances. 10 (43). eadr2722. Bibcode:2024SciA...10R2722B. doi:10.1126/sciadv.adr2722. PMC 11506245. PMID 39454012.
  206. ^ Maho, T.; Maho, S.; Bevitt, J. J.; Reisz, R. R. (2024). "Size and shape heterodonty in the early Permian synapsid Mesenosaurus efremovi". Journal of Anatomy. 245 (1): 181–196. doi:10.1111/joa.14034. PMC 11161827. PMID 38430000.
  207. ^ Maho, T.; Holmes, R.; Reisz, R. R. (2024). "Visual methods for documenting the preservation of large-sized synapsids at Richards Spur". Comptes Rendus Palevol. 23 (7): 95–105. Bibcode:2024CRPal..23.....M. doi:10.5852/cr-palevol2024v23a7.
  208. ^ Benoit, J.; Araujo, R.; Lund, E. S.; Bolton, A.; Lafferty, T.; Macungo, Z.; Fernandez, V. (2024). "Early synapsids neurosensory diversity revealed by CT and synchrotron scanning". The Anatomical Record. doi:10.1002/ar.25445. PMID 38600433.
  209. ^ Benoit, J.; Midzuk, A. J. (2024). "Estimating the endocranial volume and body mass of Anteosaurus, Jonkeria, and Moschops (Dinocephalia, Therapsida) using 3D sculpting". Palaeontologia Electronica. 27 (2). 27.2.a39. doi:10.26879/1377.
  210. ^ Jirah, S.; Rubidge, B. S.; Abdala, F. (2024). "Cranial morphology of Jonkeria truculenta (Therapsida, Dinocephalia) and a taxonomic reassessment of the family Titanosuchidae". Palaeontologia Africana. 58: 1–27. hdl:10539/38605.
  211. ^ Bulanov, V. V. (2024). "On the Taxonomic Affinity of Davletkulia gigantea Ivachnenko". Paleontological Journal. 58 (5): 586–592. Bibcode:2024PalJ...58..586B. doi:10.1134/S0031030124600628.
  212. ^ Rabe, C.; Marugán-Lobón, J.; Smith, R. M. H.; Chinsamy, A. (2024). "Geometric morphometric analysis of an ontogenetic cranial series of the Permian dicynodont Diictodon feliceps". Proceedings of the Royal Society B: Biological Sciences. 291 (2027). 20240626. doi:10.1098/rspb.2024.0626. PMC 11289659. PMID 39081192.
  213. ^ Maharaj, I. E. M.; Macungo, M.; Smith, R. M. H.; Chinsamy, A.; Araújo, R. (2024). "Taxonomic revision of the late Permian dicynodont genus Endothiodon (Therapsida, Anomodontia)". Journal of Systematic Palaeontology. 22 (1). 2346578. Bibcode:2024JSPal..2246578M. doi:10.1080/14772019.2024.2346578.
  214. ^ Shi, Y.-T.; Liu, J. (2024). "Osteology of Turfanodon bogdaensis (Dicynodontia)". Vertebrata PalAsiatica. 62 (3): 186–200. doi:10.19615/j.cnki.2096-9899.240529.
  215. ^ George, H.; Kammerer, C. F.; Foffa, D.; Clark, N. D. L.; Brusatte, S. L. (2024). "Micro-CT data reveal new information on the craniomandibular and neuroanatomy of the dicynodont Gordonia (Therapsida: Anomodontia) from the late Permian of Scotland". Zoological Journal of the Linnean Society. doi:10.1093/zoolinnean/zlae065.
  216. ^ Pinto, J. L.; Marshall, C. R.; Nesbitt, S. J.; Varajão de Latorre, D. (2024). "Quantitative evidence for dimorphism suggests sexual selection in the maxillary caniniform process of Placerias hesternus". PLOS ONE. 19 (5). e0297894. Bibcode:2024PLoSO..1997894P. doi:10.1371/journal.pone.0297894. PMC 11142433. PMID 38820280.
  217. ^ Sulej, T. (2024). "Osteology and relationships of the Late Triassic giant dicynodont Lisowicia". Zoological Journal of the Linnean Society. 202 (1). zlae085. doi:10.1093/zoolinnean/zlae085.
  218. ^ Matamales-Andreu, R.; Kammerer, C. F.; Angielczyk, K. D.; Simões, T. R.; Mujal, E.; Galobart, À.; Fortuny, J. (2024). "Early–middle Permian Mediterranean gorgonopsian suggests an equatorial origin of therapsids". Nature Communications. 15 (1). 10346. doi:10.1038/s41467-024-54425-5.
  219. ^ Sidor, C. A.; Mann, A. (2024). "The sternum and interclavicle of Aelurognathus tigriceps (Broom & Haughton, 1913) (Therapsida: Gorgonopsia), with comments on sternal evolution in therapsids". Comptes Rendus Palevol. 23 (6): 85–93. doi:10.5852/cr-palevol2024v23a6.
  220. ^ Brant, A. J.; Sidor, C. A. (2024). "Earliest evidence of Inostrancevia in the southern hemisphere: new data from the Usili Formation of Tanzania". Journal of Vertebrate Paleontology. 43 (4). e2313622. doi:10.1080/02724634.2024.2313622.
  221. ^ Benoit, J.; Kammerer, C. F.; Dollman, K.; Groenewald, D. D. P.; Smith, R. M. H. (2024). "Did gorgonopsians survive the end-Permian "Great Dying" ? A re-appraisal of three gorgonopsian specimens (Therapsida, Theriodontia) reported from the Triassic Lystrosaurus declivis Assemblage Zone, Karoo Basin, South Africa". Palaeogeography, Palaeoclimatology, Palaeoecology. 638. 112044. Bibcode:2024PPP...63812044B. doi:10.1016/j.palaeo.2024.112044.
  222. ^ Pusch, L. C.; Kammerer, C. F.; Fröbisch, J. (2024). "The origin and evolution of Cynodontia (Synapsida, Therapsida): Reassessment of the phylogeny and systematics of the earliest members of this clade using 3D-imaging technologies". The Anatomical Record. 307 (4): 1634–1730. doi:10.1002/ar.25394. PMID 38444024.
  223. ^ Stuart, B. P.; Huttenlocker, A. K.; Botha, J. (2024). "The postcranial anatomy of Moschorhinus kitchingi (Therapsida: Therocephalia) from the Karoo Basin of South Africa". PeerJ. 12. e17765. doi:10.7717/peerj.17765. PMC 11326434. PMID 39148680.
  224. ^ Benoit, J.; Jirah, S.; Lund, E. S.; Lafferty, T.; Buffa, V.; Norton, L. A. (2024). "Re-assessing the age of the type locality of Nythosaurus larvatus (Therapsida, Cynodontia) and implications on the evolutionary dynamics of cynodonts". Proceedings of the Geologists' Association. 135 (5): 589–595. Bibcode:2024PrGA..135..589B. doi:10.1016/j.pgeola.2024.08.007.
  225. ^ Hendrickx, C.; Abdala, F.; Filippini, F. S.; Wills, S.; Benson, R.; Choiniere, J. N. (2024). "Evolution of postcanine complexity in Gomphodontia (Therapsida: Cynodontia)". The Anatomical Record. 307 (4): 1613–1633. doi:10.1002/ar.25386. PMID 38282465.
  226. ^ Müller, R. T.; Martinelli, A. G.; Bem, F. P.; Schmitt, M. R.; Kerber, L. (2024). "Biostratigraphic significance of a new record of Protuberum cabralense, a bizarre traversodontid cynodont from the Middle‑Late Triassic of Southern Brazil". Historical Biology: An International Journal of Paleobiology: 1–9. doi:10.1080/08912963.2024.2403603.
  227. ^ Schmitt, M. R.; Martinelli, A. G.; Fonseca, P. H. M.; Schultz, C. L.; Soares, M. B. (2024). "Craniodental reinterpretations and new specimens of Protuberum cabralense, a bizarre traversodontid cynodont from the earliest Late Triassic of Brazil". Journal of South American Earth Sciences. 149. 105213. Bibcode:2024JSAES.14905213S. doi:10.1016/j.jsames.2024.105213.
  228. ^ Roese-Miron, L.; Dotto, P. H.; Medina, T. G. M.; Da-Rosa, Á. A. S.; Müller, R. T.; Kerber, L. (2024). "Stranger in the nest: On the biostratigraphic relevance of a new record of a traversodontid cynodont in southern Brazil (Candelária Sequence, Upper Triassic)". Palaeoworld. doi:10.1016/j.palwor.2024.05.008.
  229. ^ Figueiredo, J. L.; Melo, T. P.; Neto, V. D. P.; Rosa, C.; Pinheiro, F. L. (2024). "A new cynodont concentration from the Brazilian Triassic: insights into the genesis and paleobiological significance of a highly productive fossil site". Journal of South American Earth Sciences. 148. 105142. Bibcode:2024JSAES.14805142F. doi:10.1016/j.jsames.2024.105142.
  230. ^ Kaiuca, J. F. L.; Martinelli, A. G.; Schultz, C. L.; Fonseca, P. H. M.; Tavares, W. C.; Soares, M. B. (2024). "Weighing in on miniaturization: New body mass estimates for Triassic eucynodonts and analyses of body size evolution during the cynodont-mammal transition". The Anatomical Record. 307 (4): 1594–1612. doi:10.1002/ar.25377. PMID 38229416.
  231. ^ Fonseca, P. H. M.; Martinelli, A. G.; Gill, P. G.; Rayfield, E. J.; Schultz, C. L.; Kerber, L.; Ribeiro, A. M.; Francischini, H.; Soares, M. B. (2024). "New evidence from high-resolution computed microtomography of Triassic stem-mammal skulls from South America enhances discussions on turbinates before the origin of Mammaliaformes". Scientific Reports. 14 (1). 13817. Bibcode:2024NatSR..1413817F. doi:10.1038/s41598-024-64434-5. PMC 11180108. PMID 38879680.
  232. ^ Rawson, J. R. G.; Martinelli, A. G.; Gill, P. G.; Soares, M. B.; Schultz, C. L.; Rayfield, E. J. (2024). "Brazilian fossils reveal homoplasy in the oldest mammalian jaw joint". Nature. 634 (8033): 381–388. Bibcode:2024Natur.634..381R. doi:10.1038/s41586-024-07971-3. PMC 11464377. PMID 39322670.
  233. ^ Fonseca, P. H. M.; Martinelli, A. G.; Gill, P. G.; Rayfield, E. J.; Schultz, C. L.; Kerber, L.; Ribeiro, A. M.; Soares, M. B. (2024). "Anatomy of the maxillary canal of Riograndia guaibensis (Cynodontia, Probainognathia)—A prozostrodont from the Late Triassic of southern Brazil". The Anatomical Record. doi:10.1002/ar.25540. PMID 39039851.
  234. ^ Szczygielski, T.; Van den Brandt, M. J.; Gaetano, L.; Dróżdż, D. (2024). "Saurodesmus robertsoni Seeley 1891—The oldest Scottish cynodont". PLOS ONE. 19 (5). e0303973. Bibcode:2024PLoSO..1903973S. doi:10.1371/journal.pone.0303973. PMC 11135747. PMID 38809839.
  235. ^ Hurtado, H.; Harris, J. D.; Milner, A. R. C. (2024). "Possible eucynodont (Synapsida: Cynodontia) tracks from a lacustrine facies in the Lower Jurassic Moenave Formation of southwestern Utah". PeerJ. 12. e17591. doi:10.7717/peerj.17591. PMC 11214430. PMID 38948213.
  236. ^ Hoffmann, S.; Malik, R. S.; Vidyasagar, A.; Gill, P. (2024). "The inner ear and stapes of the basal mammaliaform Morganucodon revisited: new information on labyrinth morphology and promontorial vascularization". Zoological Journal of the Linnean Society. doi:10.1093/zoolinnean/zlae062.
  237. ^ Martin, T.; Averianov, A. O.; Lang, A. J.; Wings, O. (2024). "Lower molars of the large morganucodontan Storchodon cingulatus from the Late Jurassic (Kimmeridgian) of Germany". PalZ. 98 (3): 525–533. Bibcode:2024PalZ...98..525M. doi:10.1007/s12542-024-00690-0.
  238. ^ Averianov, A. O.; Voyta, L. L. (2024). "Putative Triassic stem mammal Tikitherium copei is a Neogene shrew". Journal of Mammalian Evolution. 31. 10. doi:10.1007/s10914-024-09703-w.
  239. ^ Panciroli, E.; Benson, R. B. J.; Fernandez, V.; Fraser, N. C.; Humpage, M.; Luo, Z.-X.; Newham, E.; Walsh, S. (2024). "Jurassic fossil juvenile reveals prolonged life history in early mammals". Nature. 632 (8026): 815–822. Bibcode:2024Natur.632..815P. doi:10.1038/s41586-024-07733-1. PMID 39048827.
  240. ^ Newham, E.; Corfe, I. J.; Brewer, P.; Bright, J. A.; Fernandez, V.; Gostling, N. J.; Hoffmann, S.; Jäger, K. R. K.; Kague, E.; Lovric, G.; Marone, F.; Panciroli, E.; Schneider, P.; Schultz, J. A.; Suhonen, H.; Witchell, A.; Gill, P. G.; Martin, T. (2024). "The origins of mammal growth patterns during the Jurassic mammalian radiation". Science Advances. 10 (32): eado4555. Bibcode:2024SciA...10O4555N. doi:10.1126/sciadv.ado4555. PMID 39110800.
  241. ^ Brocklehurst, N. (2024). "The decline and fall of the mammalian stem". PeerJ. 12. e17004. doi:10.7717/peerj.17004. PMC 10906263. PMID 38436024.
  242. ^ Mapalo, M. A.; Wolfe, J. M.; Ortega-Hernández, J. (2024). "Cretaceous amber inclusions illuminate the evolutionary origin of tardigrades". Communications Biology. 7 (1). 953. doi:10.1038/s42003-024-06643-2. PMC 11303527. PMID 39107512.
  243. ^ Scheffler, S. M.; Sedorko, D.; Netto, R. G.; Memória, S. C.; Horodyski, R. S.; Tavares, I. S. (2024). "Annulitubus fernandesi sp. n. a new Devonian Annelida tube worm (Pimenteira Formation, Parnaíba Basin, Brazil)". Historical Biology: An International Journal of Paleobiology: 1–8. doi:10.1080/08912963.2024.2380359.
  244. ^ Zhang, H.; Wang, Q-J.; Zhang, C.-W.; Luo, D.-D.; Luo, X.-C.; Wang, Y.-F.; Wang, D.-Z.; Yang, X.-L. (2024). "Chancelloriids from the Cambrian (Stage 4) Balang Lagerstätte of South China and a reappraisal of their diversification in South China". Geobios. 84: 103–114. Bibcode:2024Geobi..84..103Z. doi:10.1016/j.geobios.2023.12.001.
  245. ^ Runnegar, B.; Gehling, J. G.; Jensen, S.; Saltzman, M. R. (2024). "Ediacaran paleobiology and biostratigraphy of the Nama Group, Namibia, with emphasis on the erniettomorphs, tubular and trace fossils, and a new sponge, Arimasia germsi n. gen. n. sp". Journal of Paleontology. 98 (Supplement S94): 1–59. Bibcode:2024JPal...98S...1R. doi:10.1017/jpa.2023.81.
  246. ^ Jeon, J.; Toom, U. (2024). "First report of an aulaceratid stromatoporoid from the Ordovician of Baltica". Estonian Journal of Earth Sciences. 73 (2): 71–80. doi:10.3176/earth.2024.07.
  247. ^ Burrow, C. J.; Smith, P. M. (2024). "A New Hyolithid Australolithes troffsensis gen. et sp. nov. from an Early Devonian (Lochkovian) Limestone in Central New South Wales". Proceedings of the Linnean Society of New South Wales. 146: 49–56.
  248. ^ Wang, D.; Qiang, Y.; Guo, J.; Vannier, J.; Song, Z.; Peng, J.; Zhang, B.; Sun, J.; Yu, Y.; Zhang, Y.; Zhang, T.; Yang, X.; Han, J. (2024). "Early evolution of the ecdysozoan body plan". eLife. 13. RP94709. doi:10.7554/eLife.94709. PMC 11231812. PMID 38976315.
  249. ^ a b c d Malinky, J. M.; Geyer, G. (2024). "Early Cambrian hyoliths from the Brigus Formation of Avalonian Newfoundland". Alcheringa: An Australasian Journal of Palaeontology. 48 (1): 1–41. Bibcode:2024Alch...48....1M. doi:10.1080/03115518.2023.2293724.
  250. ^ a b c Jeon, J.; Kershaw, S.; Li, Y.; Chen, Z.-Y.; Toom, U.; Yu, S.-Y.; Zhang, Y.-D. (2024). "Stromatoporoids of the upper Hirnantian (Upper Ordovician) Shiqian Formation of South China: implications for environmental interpretation and the Ordovician–Silurian stromatoporoid transition". Journal of Systematic Palaeontology. 22 (1). 2351930. Bibcode:2024JSPal..2251930J. doi:10.1080/14772019.2024.2351930.
  251. ^ a b Vinn, O.; Wilson, M. A.; Madison, A.; Ernst, A.; Toom, U. (2024). "Dwarf cornulitid tubeworms from the Hirnantian (Late Ordovician) of Estonia". Historical Biology: An International Journal of Paleobiology: 1–6. doi:10.1080/08912963.2024.2318796.
  252. ^ Vinn, O.; Colmenar, J.; Zamora, S.; Pereira, S.; Pillola, G. L.; Alkahtane, A. A.; Al Farraj, S.; El Hedeny, M. (2024). "Late Ordovician cornulitid tubeworms from high-latitude peri-Gondwana (Sardinia and the Pyrenees) and their palaeobiogeographic significance". Journal of Palaeogeography. 13 (4): 939–953. Bibcode:2024JPalG..13..939V. doi:10.1016/j.jop.2024.08.009.
  253. ^ Fang, H.; Poinar, G. O.; Wang, H.; Wang, B.; Luo, C. (2024). "First spider-parasitized mermithid nematode from mid-Cretaceous Kachin amber of northern Myanmar". Cretaceous Research. 158. 105866. Bibcode:2024CrRes.15805866F. doi:10.1016/j.cretres.2024.105866.
  254. ^ Aria, C.; Caron, J.-B. (2024). "Deep origin of articulation strategies in panarthropods: evidence from a new luolishaniid lobopodian (Panarthropoda) from the Tulip Beds, Burgess Shale". Journal of Systematic Palaeontology. 22 (1). 2356090. Bibcode:2024JSPal..2256090A. doi:10.1080/14772019.2024.2356090.
  255. ^ El Bakhouch, A.; Kerner, A.; Azizi, A.; Debrenne, F.; Jalil, N.-E.; Hafid, A.; El Hariri, K. (2024). "New archaeocyath genus from the early Cambrian of the western Anti-Atlas, Morocco". Geodiversitas. 46 (12): 445–455. doi:10.5252/geodiversitas2024v46a12 (inactive 1 November 2024).{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
  256. ^ Luzhnaya, E. A. (2024). "A New Spheromorphic Problematic of the Genus Gaparella from the Lower Cambrian of Western Mongolia". Paleontological Journal. 58 (2): 144–150. Bibcode:2024PalJ...58..144L. doi:10.1134/S0031030123600282.
  257. ^ Davydov, A. E.; Yashunsky, Yu. V.; Mirantsev, G. V.; Krutykh, A. A. (2024). "New Hypercalcified Calcareous Sponges from the Gzhelian Stage of the Moscow Region". Paleontological Journal. 57 (11): 1325–1351. Bibcode:2024PalJ...57.1325D. doi:10.1134/S0031030123110035.
  258. ^ Wang, X.; Liu, A. G.; Chen, Z.; Wu, C.; Liu, Y.; Wan, B.; Pang, K.; Zhou, C.; Yuan, X.; Xiao, S. (2024). "A late-Ediacaran crown-group sponge animal". Nature. 630 (8018): 905–911. Bibcode:2024Natur.630..905W. doi:10.1038/s41586-024-07520-y. PMID 38839967.
  259. ^ a b Kolesnikov, K. A.; Botting, J. P.; Ivantsov, A. Yu.; Zhuravlev, A. Yu. (2024). "New early Cambrian sponges of the Siberian platform and the origins of spiculate crown-group demosponges". Papers in Palaeontology. 10 (4). e1582. Bibcode:2024PPal...10E1582K. doi:10.1002/spp2.1582.
  260. ^ Zhao, M.; Mussini, G.; Li, Y.; Tang, F.; Vickers-Rich, P.; Li, M.; Chen, A. (2024). "A putative triradial macrofossil from the Ediacaran Jiangchuan Biota". iScience. 27 (2): 108823. Bibcode:2024iSci...27j8823Z. doi:10.1016/j.isci.2024.108823. PMC 10831930. PMID 38303714.
  261. ^ Luo, J.; Hua, H.; Gong, M.; Hou, Y.; Dai, Q.; Zhang, S.; Wang, X.; Bai, L. (2024). "Resurgence of cloudinomorph fossils with possible cnidarian affinity at the peak of the Cambrian Explosion (Cambrian Series 2, Stage 3) in southern Shaanxi, China". Papers in Palaeontology. 10 (5). e1596. Bibcode:2024PPal...10E1596L. doi:10.1002/spp2.1596.
  262. ^ a b Vinn, O.; Wilson, M. A.; Jäger, M.; Kočí, T. (2024). "The earliest true Spirorbinae from the late Bathonian and Callovian (Middle Jurassic) of France, Israel and Madagascar". PalZ. 98 (2): 223–244. Bibcode:2024PalZ...98..223V. doi:10.1007/s12542-023-00681-7.
  263. ^ Lerosey-Aubril, R.; Ortega-Hernández, J. (2024). "A long-headed Cambrian soft-bodied vertebrate from the American Great Basin region". Royal Society Open Science. 11 (7). 240350. Bibcode:2024RSOS...1140350L. doi:10.1098/rsos.240350. PMC 11267725. PMID 39050723.
  264. ^ Li, W.; Yang, J.; Yang, X.; Dhungana, A.; Wang, Y.; Zhang, X.; Smith, M. R. (2024). "Omnidens appendages and the origin of radiodont mouthparts". Papers in Palaeontology. 10 (6). e1600. Bibcode:2024PPal...10E1600L. doi:10.1002/spp2.1600.
  265. ^ Malysheva, E. N. (2024). "A New Species Paradeningeria magna sp. nov. (Sphinctozoa, Porifera) from the Nakhodka Reef (Southern Primorye)". Paleontological Journal. 58 (3): 259–263. Bibcode:2024PalJ...58..259M. doi:10.1134/S0031030124700047.
  266. ^ Del Mouro, L.; Lerosey-Aubril, R.; Botting, J.; Coleman, R.; Gaines, R. R.; Skabelund, J.; Weaver, J. C.; Ortega-Hernández, J. (2024). "A new sponge from the Marjum Formation of Utah documents the Cambrian origin of the hexactinellid body plan". Royal Society Open Science. 11 (9). 231845. Bibcode:2024RSOS...1131845D. doi:10.1098/rsos.231845. PMC 11407857. PMID 39295920.
  267. ^ Vinn, O.; Wilson, M. A.; Toom, U. (2024). "A new genus and species of cornulitid tubeworm from the Hirnantian (Late Ordovician) of Estonia". Journal of Paleontology. 98 (1): 40–46. Bibcode:2024JPal...98...40V. doi:10.1017/jpa.2023.90.
  268. ^ Evans, S. D.; Hughes, I. V.; Hughes, E. B.; Dzaugis, P. W.; Dzaugis, M. P.; Gehling, J. G.; García-Bellido, D. C.; Droser, M. L. (2024). "A new motile animal with implications for the evolution of axial polarity from the Ediacaran of South Australia". Evolution and Development. 26 (6). e12491. doi:10.1111/ede.12491. PMID 39228078.
  269. ^ Liu, M.; Xian, X.; Zhang, H.; Eriksson, M. E.; Liu, Y.; Shao, T. (2024). "New ecdysozoan fossil embryos from the basal Cambrian of China". Palaeogeography, Palaeoclimatology, Palaeoecology. 659. 112635. doi:10.1016/j.palaeo.2024.112635.
  270. ^ Nanglu, K.; Ortega-Hernández, J. (2024). "Post-Cambrian survival of the tubicolous scalidophoran Selkirkia". Biology Letters. 20 (3). 20240042. doi:10.1098/rsbl.2024.0042. PMC 10965325. PMID 38531414.
  271. ^ Kočí, T.; Milàn, J.; Jakobsen, S. L.; Bashforth, A. R. (2024). "Serpula? alicecooperi sp. nov. – a new serpulid from the Lower Jurassic (Pliensbachian) Hasle Formation of Bornholm, Denmark". Bulletin of the Geological Society of Denmark. 73: 41–56. doi:10.37570/bgsd-2024-73-02.
  272. ^ a b c Pervushov, E. M. (2024). "Genus Sororistirps (Porifera, Hexactinellida, Ventriculitidae)". Izvestiya of Saratov University. Earth Sciences. 24 (1): 56–70. doi:10.18500/1819-7663-2024-24-1-56-70.
  273. ^ Tonarová, P.; Suttner, T. J.; Hints, O.; Liang, Y.; Zemek, M.; Kubajko, M.; Zikmund, T.; Kaiser, J.; Kido, E. (2024). "Late Ordovician scolecodonts and chitinozoans from the Pin Valley in Spiti, Himachal Pradesh, northern India". Acta Palaeontologica Polonica. 69 (2): 199–215. doi:10.4202/app.01135.2024.
  274. ^ Park, T.Y. S.; Nielsen, M. L.; Parry, L. A.; Sørensen, M. V.; Lee, M.; Kihm, J.H.; Ahn, I.; Park, C.; De Vivo, G.; Smith, M. P.; Harper, D. A. T.; Nielsen, A. T.; Vinther, J. (2024). "A giant stem-group chaetognath". Science Advances. 10 (1): eadi6678. Bibcode:2024SciA...10I6678P. doi:10.1126/sciadv.adi6678. PMC 10796117. PMID 38170772.
  275. ^ Botha, T. L.; García-Bellido, D. C. (2024). "A new species of the iconic triradial Ediacaran genus Tribrachidium from Nilpena Ediacara National Park, Flinders Ranges (South Australia)". Journal of Paleontology. 98 (1): 1–12. Bibcode:2024JPal...98....1B. doi:10.1017/jpa.2023.99. hdl:2440/140681.
  276. ^ Hughes, I. V.; Evans, S. D.; Droser, M. L. (2024). "An Ediacaran bilaterian with an ecdysozoan affinity from South Australia". Current Biology. 34 (24): 5782–5788.e1. doi:10.1016/j.cub.2024.10.030. PMID 39561775.
  277. ^ Poinar, G. (2024). "Ectoparasitic nematodes developing in the integument of a Baltic amber pseudoscorpion". Historical Biology: An International Journal of Paleobiology: 1–4. doi:10.1080/08912963.2024.2341848.
  278. ^ Sun, H.; Zhao, F.; Wu, R.; Zeng, H.; Sun, Z. (2024). "Spatiotemporal distribution and morphological diversity of the Cambrian Wiwaxia: New insights from South China". Global and Planetary Change. 239. 104507. Bibcode:2024GPC...23904507S. doi:10.1016/j.gloplacha.2024.104507.
  279. ^ Yang, X.; Aguado, M. T.; Yang, J.; Bleidorn, C. (2024). "A burrowing annelid from the early Cambrian". Biology Letters. 20 (10). 20240357. doi:10.1098/rsbl.2024.0357. PMC 11461068. PMID 39378985.
  280. ^ Morais, L.; Freitas, B. T.; Fairchild, T. R.; Arcos, R. E. C.; Guillong, M.; Vance, D.; Campos, M. D. R.; Babinski, M.; Pereira, L. G.; Leme, J. M.; Boggiani, P. C.; Osés, G. L.; Rudnitzki, I. D.; Galante, D.; Rodrigues, F.; Trindade, R. I. F. (2024). "Dawn of diverse shelled and carbonaceous animal microfossils at ~ 571 Ma". Scientific Reports. 14 (1). 14916. Bibcode:2024NatSR..1414916M. doi:10.1038/s41598-024-65671-4. PMC 11213954. PMID 38942912.
  281. ^ Delahooke, K. M.; Liu, A. G.; Stephenson, N. P.; Mitchell, E. G. (2024). "'Conga lines' of Ediacaran fronds: insights into the reproductive biology of early metazoans". Royal Society Open Science. 11 (5). 231601. Bibcode:2024RSOS...1131601D. doi:10.1098/rsos.231601. PMC 11286166. PMID 39076788.
  282. ^ Cao, J.; Meng, F.; Cai, Y. (2024). "Simulation of Ediacaran Cloudina tubular growth model via electrochemical synthesis". Journal of Asian Earth Sciences. 264. 106056. Bibcode:2024JAESc.26406056C. doi:10.1016/j.jseaes.2024.106056.
  283. ^ Vinn, O.; Nanglu, K.; Wilson, M. A.; Isakar, M.; Toom, U. (2024). "Ediacaran-type non-mineralized tube-dwelling organisms persisted into the early Cambrian (Terreneuvian) in Baltica". Gondwana Research. 137: 29–35. doi:10.1016/j.gr.2024.09.009.
  284. ^ Wang, J.; Song, B.; Liang, Y.; Liang, K.; Zhang, Z. (2024). "The Internal Anatomy and Water Current System of Cambrian Archaeocyaths of South China". Life. 14 (2). 167. Bibcode:2024Life...14..167W. doi:10.3390/life14020167. PMC 10890368. PMID 38398676.
  285. ^ Pruss, S. B.; Karbowski, G.; Zhuravlev, A. Yu.; Webster, M.; Smith, E. F. (2024). "Dead clade walking: the persistence of Archaeocyathus in the aftermath of early Cambrian reef extinction in the western United States". PALAIOS. 39 (6): 210–224. Bibcode:2024Palai..39..210P. doi:10.2110/palo.2024.005.
  286. ^ Kershaw, S.; Jeon, J. (2024). "Stromatoporoids and extinctions: A review". Earth-Science Reviews. 252. 104721. Bibcode:2024ESRv..25204721K. doi:10.1016/j.earscirev.2024.104721.
  287. ^ Botha, T. L.; Droser, M. L.; García-Bellido, D. C.; Sherratt, E. (2024). "Morphometric investigation of Tribrachidium from Nilpena Ediacara National Park, South Australia". Palaeontologia Electronica. 27 (2). 27.2.a36. Bibcode:2024PalEl..27...36B. doi:10.26879/1374.
  288. ^ Olaru, A.; Gutarra-Diaz, S.; Racicot, R. A.; Dunn, F. S.; Rahman, I. A.; Wang, Z.; Darroch, S. A. F.; Gibson, B. M. (2024). "Functional morphology of the Ediacaran organism Tribrachidium heraldicum". Paleobiology. 50 (3): 475–489. doi:10.1017/pab.2024.24.
  289. ^ Zhao, Y.; Chen, A.; Klug, C.; Lei, X.; Cong, P. (2024). "Adaptations to changing substrates in diploblastic dinomischids from the early Cambrian". Palaeogeography, Palaeoclimatology, Palaeoecology. 648. 112301. Bibcode:2024PPP...64812301Z. doi:10.1016/j.palaeo.2024.112301.
  290. ^ Peel, J. S. (2024). "Sclerite ray canals in the Cambrian coeloscleritophoran Chancelloria from North Greenland (Laurentia)". PalZ. Bibcode:2024PalZ..tmp...45P. doi:10.1007/s12542-024-00710-z.{{cite journal}}: CS1 maint: bibcode (link)
  291. ^ Turk, K. A.; Pulsipher, M. A.; Bergh, E.; Laflamme, M.; Darroch, S. A. F. (2024). "Archaeichnium haughtoni: a robust burrow lining from the Ediacaran–Cambrian transition of Namibia". Papers in Palaeontology. 10 (1). e1546. Bibcode:2024PPal...10E1546T. doi:10.1002/spp2.1546.
  292. ^ Yu, C.; Wang, D.; Han, J. (2024). "Cambrian palaeoscolecidomorph Cricocosmia caught in the act of moulting". Historical Biology: An International Journal of Paleobiology: 1–7. doi:10.1080/08912963.2024.2324427.
  293. ^ Howard, R. J.; Parry, L. A.; Clatworthy, I.; D'Souza, L.; Edgecombe, G. D. (2024). "Palaeoscolecids from the Ludlow Series of Leintwardine, Herefordshire (UK): the latest occurrence of palaeoscolecids in the fossil record". Papers in Palaeontology. 10 (3). e1558. Bibcode:2024PPal...10E1558H. doi:10.1002/spp2.1558.
  294. ^ Turk, K. A.; Pulsipher, M. A.; Mocke, H.; Laflamme, M.; Darroch, S. A. F. (2024). "Himatiichnus mangano igen. et isp. nov., a scalidophoran trace fossil from the late Ediacaran of Namibia". Royal Society Open Science. 11 (10). 240452. Bibcode:2024RSOS...1140452T. doi:10.1098/rsos.240452. PMC 11523102. PMID 39479238.
  295. ^ Vannier, J. (2024). "The early Cambrian Saccorhytus is a non-feeding larva of a scalidophoran worm". Proceedings of the Royal Society B: Biological Sciences. 291 (2036). 20241256. doi:10.1098/rspb.2024.1256. PMC 11614544. PMID 39626753.
  296. ^ Chen, A.; Vannier, J.; Guo, J.; Wang, D.; Gąsiorek, P.; Han, J.; Ma, W. (2024). "Molting in early Cambrian armored lobopodians". Communications Biology. 7 (1). 820. doi:10.1038/s42003-024-06440-x. PMC 11226638. PMID 38969778.
  297. ^ Luo, C.; Palm, H. W.; Zhuang, Y.; Jarzembowski, E. A.; Nyunt, T. T.; Wang, B. (2024). "Exceptional preservation of a marine tapeworm tentacle in Cretaceous amber". Geology. 52 (7): 497–501. Bibcode:2024Geo....52..497L. doi:10.1130/G52071.1.
  298. ^ Yang, X.; Aguado, M. T.; Helm, C.; Zhang, Z.; Bleidorn, C. (2024). "New fossil of Gaoloufangchaeta advances the origin of Errantia (Annelida) to the early Cambrian". Royal Society Open Science. 11 (4). 231580. Bibcode:2024RSOS...1131580Y. doi:10.1098/rsos.231580. PMC 11004674. PMID 38601033.
  299. ^ Słowiński, J.; Clapham, M.; Zatoń, M. (2024). "The Upper Permian tubular fossils from South China and their possible affinity to sabellid polychaetes". Historical Biology: An International Journal of Paleobiology: 1–7. doi:10.1080/08912963.2024.2324448.
  300. ^ Jamison-Todd, S.; Mannion, P. D.; Glover, A. G.; Upchurch, P. (2024). "New occurrences of the bone-eating worm Osedax from Late Cretaceous marine reptiles and implications for its biogeography and diversification". Proceedings of the Royal Society B: Biological Sciences. 291 (2020). 20232830. doi:10.1098/rspb.2023.2830. PMC 11003772. PMID 38593847.
  301. ^ Zhang, Y.-Y.; Huang, D.-Y. (2024). "Amberground serpulid polychaetes on mid-Cretaceous Burmese amber". Mesozoic. 1 (3): 309–314. doi:10.11646/mesozoic.1.3.11.
  302. ^ Vinn, O.; Hosgör, İ.; Alkahtane, A. A.; El Hedeny, M.; Al Farraj, S. (2024). "First record of serpulids from the Cretaceous (Maastrichtian) of Türkiye". Annales de Paléontologie. 110 (4). 102736. Bibcode:2024AnPal.11002736V. doi:10.1016/j.annpal.2024.102736.
  303. ^ Liu, F.; Topper, T. P.; Strotz, L. C.; Liang, Y.; Hu, Y.; Skovsted, C. B.; Zhang, Z. (2024). "Morphological disparity and evolutionary patterns of Cambrian hyoliths". Papers in Palaeontology. 10 (2). e1554. Bibcode:2024PPal...10E1554L. doi:10.1002/spp2.1554.
  304. ^ Vinn, O.; Hambardzumyan, T.; Temereva, E.; Grigoryan, A.; Tsatryan, M.; Harutyunyan, L.; Asatryan, K.; Serobyan, V. (2024). "Fossilized soft tissues in tentaculitids from the Upper Devonian of Armenia: Towards solving the mystery of their phylogenetic affinities". Palaeoworld. doi:10.1016/j.palwor.2024.10.004.
  305. ^ Mussini, G.; Smith, M. P.; Vinther, J.; Rahman, I. A.; Murdock, D. J. E.; Harper, D. A. T.; Dunn, F. S. (2024). "A new interpretation of Pikaia reveals the origins of the chordate body plan". Current Biology. 34 (13): 2980–2989.e2. Bibcode:2024CBio...34.2980M. doi:10.1016/j.cub.2024.05.026. PMID 38866005.
  306. ^ Łukowiak, M.; Mandic, O.; Omalecka, A.; Kallanxhi, M.-E.; Ćorić, S.; Grunert, P. (2024). "Illuminating the richness of the ascidian fossil record: a new exceptionally diverse assemblage of ascidian spicules from the Middle Miocene of Bosnia and Herzegovina". Papers in Palaeontology. 10 (5). e1586. Bibcode:2024PPal...10E1586L. doi:10.1002/spp2.1586.
  307. ^ Liu, J.; Chen, A.; Li, B.; Tang, F.; Zhao, J.; Chen, K. (2024). "Problematic Ediacaran sail-shaped fossils from eastern Yunnan, China". Historical Biology: An International Journal of Paleobiology: 1–7. doi:10.1080/08912963.2024.2403588.
  308. ^ De Backer, T.; Day, J. E.; Emsbo, P.; McLaughlin, P. I.; Vandenbroucke, T. R. A. (2024). "Chitinozoan response to the 'Kellwasser events': population dynamics and morphological deformities across the Frasnian–Famennian mass extinction". Papers in Palaeontology. 10 (3). e1557. Bibcode:2024PPal...10E1557D. doi:10.1002/spp2.1557. hdl:1854/LU-01HZS6E94V6S8PNM5JKDRR8HF0.
  309. ^ Camina, S.; Rubinstein, C. V.; Butcher, A.; Lovecchio, J. P. (2024). "Middle - Late Silurian and Early Devonian chitinozoans from the Chacoparaná Basin, Salta Province, Argentina". Ameghiniana. 61 (2): 93–117. doi:10.5710/AMGH.22.03.2024.3592.
  310. ^ Sashida, K.; Hong, P.; Ito, T.; Salyapongse, S.; Putthapiban, P. (2024). "Late Triassic (Late Early to Early Middle Norian) and Late Triassic or Early Jurassic Radiolarians from Limestone in the Tha Sao Area, Kanchanaburi Province, Western Thailand: Low-Latitude Fauna in the Eastern Tethys". Paleontological Research. 28 (1): 37–67. doi:10.2517/PR220007.
  311. ^ Denezine, M.; Do Carmo, D. A.; Xiao, S.; Tang, Q.; Sergeev, V.; Mazoni, A. F.; Zabini, C. (2024). "Organic-walled microfossils from the Ediacaran Sete Lagoas Formation, Bambuí Group, Southeast Brazil: taxonomic and biostratigraphic analyses". Journal of Paleontology. 98 (2): 283–307. Bibcode:2024JPal...98..283D. doi:10.1017/jpa.2023.83.
  312. ^ a b Camina, S. C; Rubinstein, C. V.; Butcher, A.; Muro, V. J. G.; Vergani, G.; Pereira, M. (2024). "A new chitinozoan assemblage from the Middle Devonian Los Monos Formation (sub-Andean basin, southern Bolivia) and its biozonal implications for Western Gondwana". PLOS ONE. 19 (4). e0297233. Bibcode:2024PLoSO..1997233C. doi:10.1371/journal.pone.0297233. PMC 11003639. PMID 38593119.
  313. ^ a b c d Raevskaya, E. G.; Iskül, G. S. (2024). "Middle–Upper Ordovician Acritarchs from Baltoscandia (Lisino-10 Borehole, Leningrad Region) and Their Biostratigraphic Implication". Paleontological Journal. 58 (9): 1075–1088. doi:10.1134/S0031030124600835.
  314. ^ a b Shang, X.; Liu, P. (2024). "Taxonomic reviews for genera Megasphaera, Membranospinosphaera and Spinomargosphaera of the Ediacaran spheroidal acritarchs". Precambrian Research. 407. 107409. Bibcode:2024PreR..40707409S. doi:10.1016/j.precamres.2024.107409.
  315. ^ Granier, B. R. C. (2024). "Octahedronoides tethysianus n.gen., n.sp., enigmatic clusters of microspheres at the Jurassic-Cretaceous transition". Carnets Geol. 24 (7): 127–133. doi:10.2110/carnets.2024.2407.
  316. ^ a b Dai, Q.-K.; Hua, H.; Luo, J.-Z.; Min, X.; Pan, X.-Q.; Liu, Z.-W.; Zhang, S.; Bai, L. (2024). "New Ediacaran tubular fossils from southern Shaanxi, China". Palaeoworld. 33 (6): 1464–1477. Bibcode:2024Palae..33.1464D. doi:10.1016/j.palwor.2024.01.004.
  317. ^ Dernov, V. S.; Poletaev, V. I. (2024). "New geological and palaeontological data of the Dyakove Group (Carboniferous) and age-related rock formations of the central Donets Basin, Ukraine". Geologičnij žurnal. 2024 (1): 3–21. doi:10.30836/igs.1025-6814.2024.1.285644.
  318. ^ Kanaparthi, D.; Lampe, M.; Zhu, B.; Boesen, T.; Klingl, A.; Schwille, J.; Lueders, T. (2024). "On the nature of the earliest known life forms". eLife. 13. doi:10.7554/eLife.98637.
  319. ^ Demoulin, C. F.; Sforna, M. C.; Lara, Y. J.; Cornet, Y.; Somogyi, A.; Medjoubi, K.; Grolimund, D.; Sanchez, D. F.; Tachoueres, R. T.; Addad, A.; Fadel, A.; Compère, P.; Javaux, E. J. (2024). "Polysphaeroides filiformis, a Proterozoic cyanobacterial microfossil and implications for cyanobacteria evolution". iScience. 27 (2). 108865. Bibcode:2024iSci...27j8865D. doi:10.1016/j.isci.2024.108865. PMC 10837632. PMID 38313056.
  320. ^ Demoulin, C. F.; Lara, Y. J.; Lambion, A.; Javaux, E. J. (2024). "Oldest thylakoids in fossil cells directly evidence oxygenic photosynthesis". Nature. 625 (7995): 529–534. Bibcode:2024Natur.625..529D. doi:10.1038/s41586-023-06896-7. PMID 38172638.
  321. ^ Kolesnikov, A. V.; Pan'kova, V. A.; Pan'kov, V. N.; Desiatkin, V. D.; Latysheva, I. V.; Shatsillo, A. V.; Kuznetsov, N. B.; Romanyuk, T. V. (2024). "Chuariomorphs from the Upper Vendian Chernyi Kamen Formation of the Central Urals (Perm Krai)". Doklady Earth Sciences. 518 (2): 1717–1722. Bibcode:2024DokES.518.1717K. doi:10.1134/S1028334X24602542.
  322. ^ Palacios, T. (2024). "The oldest fossil record in the Iberian Peninsula; lower Ediacaran acritarchs of the Tentudía Formation, Ossa-Morena Zone (OMZ), Southwest Iberian Massif". Journal of Iberian Geology. doi:10.1007/s41513-024-00266-6.
  323. ^ Min, X.; Hua, H.; Sun, B.; Dai, Q.; Luo, J. (2024). "Phosphatised calcified cyanobacteria at the terminal Ediacaran and the earliest Cambrian transition stage: Response to the paleoenvironment". Palaeogeography, Palaeoclimatology, Palaeoecology. 638. 112057. Bibcode:2024PPP...63812057M. doi:10.1016/j.palaeo.2024.112057.
  324. ^ McMahon, S.; Loron, C. C.; Cooper, L. M.; Hetherington, A. J.; Krings, M. (2024). "Entophysalis in the Rhynie chert (Lower Devonian, Scotland): implications for cyanobacterial evolution". Geological Magazine. 160 (10): 1946–1952. doi:10.1017/S0016756824000049.
  325. ^ Miao, L.; Yin, Z.; Knoll, A. H.; Qu, Y.; Zhu, M. (2024). "1.63-billion-year-old multicellular eukaryotes from the Chuanlinggou Formation in North China". Science Advances. 10 (4): eadk3208. Bibcode:2024SciA...10K3208M. doi:10.1126/sciadv.adk3208. PMC 10807817. PMID 38266082.
  326. ^ Chen, K.; Yang, C.; Miao, L.; Zhao, F.; Zhu, M. (2024). "New SIMS U–Pb zircon age on the macroscopic multicellular eukaryotes from the early Mesoproterozoic Gaoyuzhuang Formation, North China". Geological Magazine. 161: 1–5. Bibcode:2024GeoM..161E...2C. doi:10.1017/S0016756824000220.
  327. ^ Nielson, G. C.; Stüeken, E. E.; Prave, A. R. (2024). "Estuaries house Earth's oldest known non-marine eukaryotes". Precambrian Research. 401. 107278. Bibcode:2024PreR..40107278N. doi:10.1016/j.precamres.2023.107278. hdl:10023/28949.
  328. ^ Porfirio-Sousa, A. L.; Tice, A. K.; Morais, L.; Ribeiro, G. M.; Blandenier, Q.; Dumack, K.; Eglit, Y.; Fry, N. W.; Souza, M. B. G. E.; Henderson, T. C.; Kleitz-Singleton, F.; Singer, D.; Brown, M. W.; Lahr, D. J. G. (2024). "Amoebozoan testate amoebae illuminate the diversity of heterotrophs and the complexity of ecosystems throughout geological time". Proceedings of the National Academy of Sciences of the United States of America. 121 (30). e2319628121. Bibcode:2024PNAS..12119628P. doi:10.1073/pnas.2319628121. PMC 11287125. PMID 39012821.
  329. ^ Feng, Y.; Song, H.; Song, H.; Wu, Y.; Li, X.; Tian, L.; Dong, S.; Lei, Y.; Clapham, M. E. (2024). "High extinction risk in large foraminifera during past and future mass extinctions". Science Advances. 10 (32): eadj8223. Bibcode:2024SciA...10J8223F. doi:10.1126/sciadv.adj8223. PMC 11305383. PMID 39110795.
  330. ^ Swain, A.; Woodhouse, A.; Fagan, W. F.; Fraass, A. J.; Lowery, C. M. (2024). "Biogeographic response of marine plankton to Cenozoic environmental changes". Nature. 629 (8012): 616–623. Bibcode:2024Natur.629..616S. doi:10.1038/s41586-024-07337-9. PMID 38632405.
  331. ^ Ying, R.; Monteiro, F. M.; Wilson, J. D.; Ödalen, M.; Schmidt, D. N. (2024). "Past foraminiferal acclimatization capacity is limited during future warming". Nature. 636 (8042): 385–389. doi:10.1038/s41586-024-08029-0. PMC 11634774. PMID 39537916.
  332. ^ Surprenant, R. L.; Droser, M. L. (2024). "New insight into the global record of the Ediacaran tubular morphotype: a common solution to early multicellularity". Royal Society Open Science. 11 (3). 231313. Bibcode:2024RSOS...1131313S. doi:10.1098/rsos.231313. PMC 10951727. PMID 38511078.
  333. ^ Schiffbauer, J. D.; Wong, C.; David, C.; Selly, T.; Nelson, L. L.; Pruss, S. B. (2024). "Reassessing the diversity, affinity, and construction of terminal Ediacaran tubiform fossils from the La Ciénega Formation, Sonora, Mexico". Journal of Paleontology. 98 (2): 266–282. Bibcode:2024JPal...98..266S. doi:10.1017/jpa.2023.56.
  334. ^ Sun, W.; Yin, Z.; Liu, P.; Zhu, M.; Donoghue, P. (2024). "Developmental biology of Spiralicellula and the Ediacaran origin of crown metazoans". Proceedings of the Royal Society B: Biological Sciences. 291 (2023). 20240101. doi:10.1098/rspb.2024.0101. PMC 11286131. PMID 38808442.
  335. ^ Mccandless, H. K.; Droser, M. L. (2024). "Deconstructing taphonomy to reconstruct the morphology and life habit of Attenborites janeae at Nilpena Ediacara National Park". PALAIOS. 39 (11): 411–422. Bibcode:2024Palai..39..411M. doi:10.2110/palo.2023.005.
  336. ^ Chaabane, Sonia; de Garidel-Thoron, Thibault; Meilland, Julie; Sulpis, Olivier; Chalk, Thomas B.; Brummer, Geert-Jan A.; Mortyn, P. Graham; Giraud, Xavier; Howa, Hélène; Casajus, Nicolas; Kuroyanagi, Azumi; Beaugrand, Gregory; Schiebel, Ralf (2024). "Migrating is not enough for modern planktonic foraminifera in a changing ocean". Nature. 636 (8042): 390–396. doi:10.1038/s41586-024-08191-5. PMC 11634771. PMID 39537925.
  337. ^ Moody, E. R. R.; Álvarez-Carretero, S.; Mahendrarajah, T. A.; Clark, J. W.; Betts, H. C.; Dombrowski, N.; Szánthó, L. L.; Boyle, R. A.; Daines, S.; Chen, X.; Lane, N.; Yang, Z.; Shields, G. A.; Szöllősi, G. J.; Spang, A.; Pisani, D.; Williams, T. A.; Lenton, T. M.; Donoghue, P. C. J. (2024). "The nature of the last universal common ancestor and its impact on the early Earth system". Nature Ecology & Evolution. 8 (9): 1654–1666. Bibcode:2024NatEE...8.1654M. doi:10.1038/s41559-024-02461-1. PMC 11383801. PMID 38997462.
  338. ^ Tang, Q.; Zheng, W.; Zhang, S.; Fan, J.; Riedman, L. A.; Hou, X.; Muscente, A. D.; Bykova, N.; Sadler, P. M.; Wang, X.; Zhang, F.; Yuan, X.; Zhou, C.; Wan, B.; Pang, K.; Ouyang, Q.; McKenzie, N. R.; Zhao, G.; Shen, S.; Xiao, S. (2024). "Quantifying the global biodiversity of Proterozoic eukaryotes". Science. 386 (6728). eadm9137. doi:10.1126/science.adm9137.
  339. ^ Kaiho, K.; Shizuya, A.; Kikuchi, M.; Komiya, T.; Chen, Z.-Q.; Tong, J.; Tian, L.; Gorjan, P.; Takahashi, S.; Baud, A.; Grasby, S. E.; Saito, R.; Saltzman, M. R. (2024). "Oxygen increase and the pacing of early animal evolution". Global and Planetary Change. 233. 104364. Bibcode:2024GPC...23304364K. doi:10.1016/j.gloplacha.2024.104364.
  340. ^ Crockett, W. W.; Shaw, J. O.; Simpson, C.; Kempes, C. P. (2024). "Physical constraints during Snowball Earth drive the evolution of multicellularity". Proceedings of the Royal Society B: Biological Sciences. 291 (2025). 20232767. doi:10.1098/rspb.2023.2767. PMC 11271684. PMID 38924758.
  341. ^ Carlisle, E.; Yin, Z.; Pisani, D.; Donoghue, P. C. J. (2024). "Ediacaran origin and Ediacaran-Cambrian diversification of Metazoa". Science Advances. 10 (46). eadp7161. doi:10.1126/sciadv.adp7161. PMC 11559618. PMID 39536100.
  342. ^ Bowyer, F. T.; Wood, R. A.; Yilales, M. (2024). "Sea level controls on Ediacaran-Cambrian animal radiations". Science Advances. 10 (31): eado6462. Bibcode:2024SciA...10O6462B. doi:10.1126/sciadv.ado6462. PMC 11290527. PMID 39083611.
  343. ^ Gutarra, S.; Mitchell, E. G.; Dunn, F. S.; Gibson, B. M.; Racicot, R. A.; Darroch, S. A. F.; Rahman, I. A. (2024). "Ediacaran marine animal forests and the ventilation of the oceans". Current Biology. 34 (11): 2528–2534.e3. Bibcode:2024CBio...34.2528G. doi:10.1016/j.cub.2024.04.059. PMID 38761801.
  344. ^ Clarke, A. J. I.; Kirkland, C. L.; Menon, L. R.; Condon, D. J.; Cope, J. C. W.; Bevins, R. E.; Glorie, S. (2024). "U–Pb zircon–rutile dating of the Llangynog Inlier, Wales: constraints on an Ediacaran shallow-marine fossil assemblage from East Avalonia". Journal of the Geological Society. 181 (1). Bibcode:2024JGSoc.181...81C. doi:10.1144/jgs2023-081.
  345. ^ Dai, Q.; Hua, H.; Luo, J.; Min, X.; Liu, Z.; Zhang, S.; Gong, M.; Bai, L. (2024). "A new silicified microfossil assemblage from the Ediacaran Dengying Formation in South Shaanxi, China". Precambrian Research. 403. 107308. Bibcode:2024PreR..40307308D. doi:10.1016/j.precamres.2024.107308.
  346. ^ Craffey, M.; Wagner, P. J.; Watkins, D. K.; Darroh, S. A. F.; Lyons, S. K. (2024). "Co-occurrence structure of late Ediacaran communities and influence of emerging ecosystem engineers". Proceedings of the Royal Society B: Biological Sciences. 291 (2036). 20242029. doi:10.1098/rspb.2024.2029. PMC 11631414. PMID 39657805.
  347. ^ Wang, Z.; Rahman, I. A.; Zhang, L.-J. (2024). "Quantifying the rise of animals during the Ediacaran–Cambrian using ichnodissimilarity". Paleobiology: 1–16. doi:10.1017/pab.2024.40.
  348. ^ Wilson, C. J.; Reitan, T.; Liow, L. H. (2024). "Unveiling the underlying drivers of Phanerozoic marine diversification". Proceedings of the Royal Society B: Biological Sciences. 291 (2025). 20240165. doi:10.1098/rspb.2024.0165. PMC 11285786. PMID 38889777.
  349. ^ Cribb, A. T.; Darroch, S. A. F. (2024). "How to engineer a habitable planet: the rise of marine ecosystem engineers through the Phanerozoic". Palaeontology. 67 (5). e12726. Bibcode:2024Palgy..6712726C. doi:10.1111/pala.12726.
  350. ^ Mángano, M. G.; Buatois, L. A.; Minter, N. J.; Gougeon, R. (2024). "Bioturbators as ecosystem engineers in space and time". Palaeontology. 67 (6). e12732. Bibcode:2024Palgy..6712732M. doi:10.1111/pala.12732.
  351. ^ Kiessling, W.; Reddin, C. J.; Dowding, E. M.; Dimitrijević, D.; Raja, N. B.; Kocsis, Á. T. (2024). "Marine biological responses to abrupt climate change in deep time". Paleobiology: 1–15. doi:10.1017/pab.2024.20.
  352. ^ Cui, L.; Liu, W.; Li, J.; Zhang, X. (2024). "Cyanobacterial and fungi-like microbial fossils from the earliest Cambrian phosphorite of South China". Palaeogeography, Palaeoclimatology, Palaeoecology. 649. 112339. Bibcode:2024PPP...64912339C. doi:10.1016/j.palaeo.2024.112339.
  353. ^ Wei, K.; Cao, H.; Chen, F.; Wang, Z.; An, Z.; Huang, H.; Chen, C. (2024). "Fluctuation in redox conditions and the evolution of early Cambrian life constrained by nitrogen isotopes in the middle Yangtze Block, South China". Geological Magazine. 160 (10): 1932–1945. doi:10.1017/S0016756823000833.
  354. ^ Slater, B. J. (2024). "Life in the Cambrian shallows: Exceptionally preserved arthropod and mollusk microfossils from the early Cambrian of Sweden". Geology. 52 (4): 256–260. Bibcode:2024Geo....52..256S. doi:10.1130/G51829.1.
  355. ^ Gaines, R. R.; García-Bellido, D. C.; Jago, J. B.; Myrow, P. M.; Paterson, J. R. (2024). "The Emu Bay Shale: A unique early Cambrian Lagerstätte from a tectonically active basin". Science Advances. 10 (30): eadp2650. Bibcode:2024SciA...10P2650G. doi:10.1126/sciadv.adp2650. PMC 11277394. PMID 39058778.
  356. ^ Wang, D.; Chen, S.; Ma, W.; Luo, X.; Wang, Y.; Zhao, F.; Yang, X. (2024). "First report of the Pingding locality of the Balang Lagerstätte (Cambrian Stage 4), South China: Implications for community complexity and geographic variation". Global and Planetary Change. 245. 104641. doi:10.1016/j.gloplacha.2024.104641.
  357. ^ Myrow, P. M.; Goodge, J. W.; Brock, G. A.; Betts, M. J.; Park, T.-Y. S.; Hughes, N. C.; Gaines, R. R. (2024). "Tectonic trigger to the first major extinction of the Phanerozoic: The early Cambrian Sinsk event". Science Advances. 10 (13): eadl3452. Bibcode:2024SciA...10L3452M. doi:10.1126/sciadv.adl3452. PMC 10980278. PMID 38552008.
  358. ^ Malanoski, C. M.; Farnsworth, A.; Lunt, D. J.; Valdes, P. J.; Saupe, E. E. (2024). "Climate change is an important predictor of extinction risk on macroevolutionary timescales". Science. 383 (6687): 1130–1134. Bibcode:2024Sci...383.1130M. doi:10.1126/science.adj5763. PMID 38452067.
  359. ^ Saleh, F.; Lustri, L.; Gueriau, P.; Potin, G. J.-M.; Pérez-Peris, F.; Laibl, L.; Jamart, V.; Vite, A.; Antcliffe, J. B.; Daley, A. C.; Nohejlová, M.; Dupichaud, C.; Schöder, S.; Bérard, E.; Lynch, S.; Drage, H. B.; Vaucher, R.; Vidal, M.; Monceret, E.; Monceret, S.; Lefebvre, B. (2024). "The Cabrières Biota (France) provides insights into Ordovician polar ecosystems". Nature Ecology & Evolution. 8 (4): 651–662. Bibcode:2024NatEE...8..651S. doi:10.1038/s41559-024-02331-w. PMC 11009115. PMID 38337049.
  360. ^ Muir, L. A.; Botting, J. P. (2024). "The Cabrières Biota is not a Konservat-Lagerstätte". Nature Ecology & Evolution. 8 (12): 2172–2174. doi:10.1038/s41559-024-02559-6. PMID 39394522.
  361. ^ Saleh, F.; Lustri, L.; Gueriau, P.; Potin, G. J.-M.; Pérez-Peris, F.; Laibl, L.; Jamart, V.; Vite, A.; Antcliffe, J. B.; Daley, A. C.; Nohejlová, M.; Dupichaud, C.; Schöder, S.; Bérard, E.; Lynch, S.; Drage, H. B.; Vaucher, R.; Vidal, M.; Monceret, E.; Monceret, S.; Kundura, J.-P.; Kundura, M.-H.; Gougeon, R.; Lefebvre, B. (2024). "Reply to: The Cabrières Biota is not a Konservat-Lagerstätte". Nature Ecology & Evolution. 8 (12): 2175–2178. doi:10.1038/s41559-024-02560-z. PMID 39394521.
  362. ^ Young, G. C. (2024). "Relative age of the Devonian tetrapod Metaxygnathus, based on the associated fossil fish assemblage at Jemalong, New South Wales". Alcheringa: An Australasian Journal of Palaeontology. 48 (2): 278–297. Bibcode:2024Alch...48..278Y. doi:10.1080/03115518.2024.2327039.
  363. ^ Triques, M. L.; Christoffersen, M. L. (2024). "Arguments for interpreting the vertebrate functional neck as an exaptation for terrestriality". Lethaia. 57 (4): 1–9. doi:10.18261/let.57.4.5.
  364. ^ Knecht, R. J.; Benner, J. S.; Swain, A.; Azevedo-Schmidt, L.; Cleal, C. J.; Labandeira, C. C.; Engel, M. S.; Dunlop, J. A.; Selden, S. A.; Eble, C. F.; Renczkowski, M. D.; Wheeler, D. A.; Funderburk, M. M.; Emma, S. L.; Knoll, A. H.; Pierce, N. E. (2024). "Early Pennsylvanian Lagerstätte reveals a diverse ecosystem on a subhumid, alluvial fan". Nature Communications. 15 (1). 7876. Bibcode:2024NatCo..15.7876K. doi:10.1038/s41467-024-52181-0. PMC 11383953. PMID 39251605.
  365. ^ Faure-Brac, M. G.; Woodward, H. N.; Aubier, P.; Cubo, J. (2024). "On the origins of endothermy in amniotes". iScience. 27 (4). 109375. Bibcode:2024iSci...27j9375F. doi:10.1016/j.isci.2024.109375. PMC 10966186. PMID 38544566.
  366. ^ Abel, P.; Werneburg, I. (2024). "The temporal region of the tetrapod skull: a textbook example on integrative morphology". Revue de Paléobiologie, Genève. 43 (1): 101–118.
  367. ^ Huttenlocker, A. K.; Douglass, R.; Lungmus, J. K.; Oliver, K.; Pardo, J. D.; Small, B. J. (2024). "Report of a Diverse Vertebrate Body Fossil Assemblage in the Maroon Formation (Carboniferous–Permian), Eagle County, Colorado, U.S.A.". Annals of Carnegie Museum. 90 (2): 139–160. doi:10.2992/007.090.0204.
  368. ^ Wu, Q.; Zhang, H.; Ramezani, J.; Zhang, F.-F.; Erwin, D. H.; Feng, Z.; Shao, L.-Y.; Cai, Y.-F.; Zhang, S.-H.; Xu, Y.-G.; Shen, S.-Z. (2024). "The terrestrial end-Permian mass extinction in the paleotropics postdates the marine extinction". Science Advances. 10 (5): eadi7284. Bibcode:2024SciA...10I7284W. doi:10.1126/sciadv.adi7284. PMC 10830061. PMID 38295161.
  369. ^ He, W.; Weldon, E. A.; Yang, T.; Wang, H.; Xiao, Y.; Zhang, K.; Peng, X.; Feng, Q. (2024). "An end-Permian two-stage extinction pattern in the deep-water Dongpan Section, and its relationship to the migration and vertical expansion of the oxygen minimum zone in the South China Basin". Palaeogeography, Palaeoclimatology, Palaeoecology. 649. 112307. Bibcode:2024PPP...64912307H. doi:10.1016/j.palaeo.2024.112307.
  370. ^ Song, H.; Wu, Y.; Dai, X.; Dal Corso, J.; Wang, F.; Feng, Y.; Chu, D.; Tian, L.; Song, H.; Foster, W. J. (2024). "Respiratory protein-driven selectivity during the Permian–Triassic mass extinction". The Innovation. 5 (3). 100618. Bibcode:2024Innov...500618S. doi:10.1016/j.xinn.2024.100618. PMC 11025005. PMID 38638583.
  371. ^ Liu, X.; Song, H.; Chu, D.; Dai, X.; Wang, F.; Silvestro, D. (2024). "Heterogeneous selectivity and morphological evolution of marine clades during the Permian–Triassic mass extinction". Nature Ecology & Evolution. 8 (7): 1248–1258. Bibcode:2024NatEE...8.1248L. doi:10.1038/s41559-024-02438-0. PMID 38862784.
  372. ^ Zhou, C.Y.; Zhang, Q.Y.; Wen, W.; Huang, J.Y.; Hu, S.X.; Liu, W.; Min, X.; Ma, Z.X.; Wen, Q.Q. (2024). "A new Early Triassic fossil Lagerstätte from Wangmo, Guizhou Province". Sedimentary Geology and Tethyan Geology. 44 (1): 1–8. doi:10.19826/j.cnki.1009-3850.2022.06011.
  373. ^ Leu, M.; Schneebeli-Hermann, E.; Hammer, Ø.; Lindemann, F.-J.; Bucher, H. (2024). "Spatiotemporal dynamics of nektonic biodiversity and vegetation shifts during the Smithian–Spathian transition: conodont and palynomorph insights from Svalbard". Lethaia. 57 (2): 1–19. doi:10.18261/let.57.2.3.
  374. ^ Shishkin, M. A.; Novikov, I. V.; Sennikov, A. G.; Golubev, V. K.; Morkovin, B. I. (2024). "Triassic Tetrapods of Russia". Paleontological Journal. 57 (12): 1353–1539. Bibcode:2024PalJ...57.1353S. doi:10.1134/S0031030123120067.
  375. ^ Klein, H.; Lucas, S. G.; Lallensack, J. N.; Marchetti, L. (2024). "Peabody's legacy: the Moenkopi Formation (Middle Triassic, Anisian) tetrapod ichnofauna—updates from an extensive new tracksite in NE Arizona, USA". PalZ. 98 (2): 357–389. Bibcode:2024PalZ...98..357K. doi:10.1007/s12542-023-00680-8.
  376. ^ Simms, M. J.; Drost, K. (2024). "Caves, dinosaurs and the Carnian Pluvial Episode: Recalibrating Britain's Triassic bone 'fissures'". Palaeogeography, Palaeoclimatology, Palaeoecology. 638. 112041. doi:10.1016/j.palaeo.2024.112041.
  377. ^ Campo, M. L.; Silva, F. O.; Paes Neto, V. D.; Ferigolo, J.; Ribeiro, A. M. (2024). "Overview on the tetrapods from Faixa Nova-Cerrito I site (Hyperodapedon Assemblage Zone), Upper Triassic of southernmost Brazil". Historical Biology: An International Journal of Paleobiology: 1–19. doi:10.1080/08912963.2024.2344791.
  378. ^ Curry Rogers, K.; Martínez, R. N.; Colombi, C.; Rogers, R. R.; Alcober, O. (2024). "Osteohistological insight into the growth dynamics of early dinosaurs and their contemporaries". PLOS ONE. 19 (4). e0298242. Bibcode:2024PLoSO..1998242C. doi:10.1371/journal.pone.0298242. PMC 10990230. PMID 38568908.
  379. ^ Qvarnström, M.; Vikberg Wernström, J.; Wawrzyniak, Z.; Barbacka, M.; Pacyna, G.; Górecki, A.; Ziaja, J.; Jarzynka, A.; Owocki, K.; Sulej, T.; Marynowski, L.; Pieńkowski, G.; Ahlberg, P. E.; Niedźwiedzki, G. (2024). "Digestive contents and food webs record the advent of dinosaur supremacy". Nature. 636 (8042): 397–403. doi:10.1038/s41586-024-08265-4. PMC 11634772. PMID 39604731.
  380. ^ Kropf, A. K.; Jäger, M.; Hautmann, M. (2024). "Benthic marine palaeoecology and recovery from the end-Triassic mass extinction in the Hettangian and Sinemurian (Early Jurassic) of southern Germany". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 313 (1): 1–38. doi:10.1127/njgpa/2024/1213.
  381. ^ Ren, T.-C.; Ma, X.-Y.; Wang, Q.-D.; Xu, G.-H. (2024). "An exceptionally preserved fossil assemblage from the early Jurassic of Chongqing (China) reveals a complex lacustrine ecosystem". Scientific Reports. 14 (1). 26147. Bibcode:2024NatSR..1426147R. doi:10.1038/s41598-024-77084-4. PMC 11582640. PMID 39572595.
  382. ^ Dunhill, A. M.; Zarzyczny, K.; Shaw, J. O.; Atkinson, J. W.; Little, C. T. S.; Beckerman, A. P. (2024). "Extinction cascades, community collapse, and recovery across a Mesozoic hyperthermal event". Nature Communications. 15 (1). 8599. Bibcode:2024NatCo..15.8599D. doi:10.1038/s41467-024-53000-2. PMC 11452722. PMID 39366971.
  383. ^ Serafini, G.; Danise, S.; Maxwell, E. E.; Martire, L.; Amalfitano, J.; Cobianchi, M.; Thun Hohenstein, U.; Giusberti, L. (2024). "Of his bones are crinoid made: taphonomy and deadfall ecology of marine reptiles from a pelagic setting (Middle-Upper Jurassic of northeastern Italy)". Rivista Italiana di Paleontologia e Stratigrafia. 130 (1): 97–128. doi:10.54103/2039-4942/22314. hdl:11577/3511241.
  384. ^ Maidment, S. C. R. (2024). "Diversity through time and space in the Upper Jurassic Morrison Formation, western U.S.A.". Journal of Vertebrate Paleontology. 43 (5). e2326027. doi:10.1080/02724634.2024.2326027.
  385. ^ Aouraghe, H.; Chennouf, R.; Haddoumi, H.; Lasseron, M.; Mhamdi, H.; Gheerbrant, E.; Martin, J. E. (2024). "A new Gondwanan perspective on the Jurassic-Cretaceous transition from the Tithonian-Berriasian interval of southeastern Morocco" (PDF). Cretaceous Research. 162. 105932. Bibcode:2024CrRes.16205932A. doi:10.1016/j.cretres.2024.105932.
  386. ^ Blake, L.; Fursman, M.; Duffin, C. J.; Batchelor, T.; Hildebrandt, C.; Benton, M. J. (2024). "Microvertebrates from the Lower Greensand Group (Lower Cretaceous) of Clophill, Bedfordshire, UK, and Nutfield, Surrey, UK". Proceedings of the Geologists' Association. 135 (5): 493–517. Bibcode:2024PrGA..135..493B. doi:10.1016/j.pgeola.2024.07.002.
  387. ^ Sun, F.; Luo, G.; Pancost, R. D.; Dong, Z.; Li, Z.; Wang, H.; Chen, Z.-Q.; Xie, S. (2024). "Methane fueled lake pelagic food webs in a Cretaceous greenhouse world". Proceedings of the National Academy of Sciences of the United States of America. 121 (44). e2411413121. doi:10.1073/pnas.2411413121. PMC 11536134. PMID 39432787.
  388. ^ Oligmueller, A. R.; Hasiotis, S. T. (2024). "An ichnotaxonomic assessment of the Cretaceous Dakota Group, Front Range, Colorado, USA, and its comparison to other Western interior seaway deposits". Paleontological Contributions. 23 (23): 1–87. doi:10.17161/pc.vi23.22542.
  389. ^ Bălc, R.; Bindiu-Haitonic, R.; Kövecsi, S.-A.; Vremir, M.; Ducea, M.; Csiki-Sava, Z.; Tabără, D.; Vasile, Ș. (2024). "Integrated biostratigraphy of Upper cretaceous deposits from an exceptional continental vertebrate-bearing marine section (Transylvanian Basin, Romania) provides new constraints on the advent of 'dwarf dinosaur' faunas in Eastern Europe". Marine Micropaleontology. 187. 102328. Bibcode:2024MarMP.18702328B. doi:10.1016/j.marmicro.2023.102328.
  390. ^ Wilson, L. N.; Gardner, J. D.; Wilson, J. P.; Farnsworth, A.; Perry, Z. R.; Druckenmiller, P. S.; Erickson, G. M.; Organ, C. L. (2024). "Global latitudinal gradients and the evolution of body size in dinosaurs and mammals". Nature Communications. 15 (1). 2864. Bibcode:2024NatCo..15.2864W. doi:10.1038/s41467-024-46843-2. PMC 10997647. PMID 38580657.
  391. ^ Sarr, R.; Hill, R. V.; Jenkins, X. A.; Tapanila, L.; O'Leary, M. A. (2024). "A composite section of fossiliferous Late Cretaceous-Early Paleogene localities in Senegal and preliminary description of a new late Maastrichtian vertebrate fossil assemblage". American Museum Novitates (4013): 1–31. doi:10.1206/4013.1. hdl:2246/7357.
  392. ^ Otero, R. A. (2024). "Review of two marine vertebrate assemblages from the Arauco Basin (central Chile) reveals diversity changes throughout the Maastrichtian". Cretaceous Research. 166. 105996. doi:10.1016/j.cretres.2024.105996.
  393. ^ Boles, Z. M.; Ullmann, P. V.; Putnam, I.; Ford, M.; Deckhut, J. T. (2024). "New vertebrate microfossils expand the diversity of the chondrichthyan and actinopterygian fauna of the Maastrichtian–Danian Hornerstown Formation in New Jersey". Acta Palaeontologica Polonica. 69 (2): 173–198. doi:10.4202/app.01117.2023.
  394. ^ Martinuš, M.; Cvetko Tešović, B.; Jurić, S.; Vlahović, I. (2024). "Patch reefs with scleractinian corals and layered domical and bulbous growth forms (calcified sponges?) in the upper Maastrichtian and lowermost Palaeocene platform carbonates, Adriatic islands of Brač and Hvar (Croatia)". Palaeogeography, Palaeoclimatology, Palaeoecology. 639. 112056. Bibcode:2024PPP...63912056M. doi:10.1016/j.palaeo.2024.112056.
  395. ^ Tian, S. Y.; Yasuhara, M.; Condamine, F. L.; Huang, H.-H. M.; Fernando, A. G. S.; Aguilar, Y. M.; Pandita, H.; Irizuki, T.; Iwatani, H.; Shin, C. P.; Renema, W.; Kase, T. (2024). "Cenozoic history of the tropical marine biodiversity hotspot". Nature. 632 (8024): 343–349. doi:10.1038/s41586-024-07617-4. PMC 11306107. PMID 38926582.
  396. ^ Brandoni, D.; Schmidt, G. I.; Bona, P.; Tarquini, J.; Vlachos, E.; Noriega, J. I. (2024). "New vertebrates from the Ituzaingó Formation (Late Miocene of Entre Ríos Province, Argentina), including first records of Leptodactylus (Amphibia, Anura) and Chelonoidis (Testudines, Cryptodira)". Historical Biology: An International Journal of Paleobiology: 1–12. doi:10.1080/08912963.2024.2379039.
  397. ^ Strömberg, C. A. E.; Saylor, B. Z.; Engelman, R. K.; Catena, A. M.; Hembree, D. I.; Anaya, F.; Croft, D. A. (2024). "The flora, fauna, and paleoenvironment of the late Middle Miocene Quebrada Honda Basin, Bolivia (Eastern Cordillera, Central Andes)". Palaeogeography, Palaeoclimatology, Palaeoecology. 656. 112518. Bibcode:2024PPP...65612518S. doi:10.1016/j.palaeo.2024.112518.
  398. ^ Naksri, W.; Nishioka, Y.; Duangkrayom, J.; Métais, G.; Handa, N.; Jintasakul, P.; Martin, J. E.; Sila, S.; Sukdi, W.; Suasamong, K.; Tong, H.; Claude, J. (2024). "A new Miocene and Pleistocene continental locality from Nakhon Ratchasima in Northeastern Thailand and its importance for vertebrate biogeography". Annales de Paléontologie. 109 (4). 102659. doi:10.1016/j.annpal.2023.102659.
  399. ^ Agiadi, K.; Hohmann, N.; Gliozzi, E.; Thivaiou, D.; Bosellini, F. R.; Taviani, M.; Bianucci, G.; Collareta, A.; Londeix, L.; Faranda, C.; Bulian, F.; Koskeridou, E.; Lozar, F.; Mancini, A. M.; Dominici, S.; Moissette, P.; Bajo Campos, I.; Borghi, E.; Iliopoulos, G.; Antonarakou, A.; Kontakiotis, G.; Besiou, E.; Zarkogiannis, S. D.; Harzhauser, M.; Sierro, F. J.; Coll, M.; Vasiliev, I.; Camerlenghi, A.; García-Castellanos, D. (2024). "Late Miocene transformation of Mediterranean Sea biodiversity". Science Advances. 10 (39): eadp1134. doi:10.1126/sciadv.adp1134. PMC 11423897. PMID 39321301.
  400. ^ Agiadi, K.; Hohmann, N.; Gliozzi, E.; Thivaiou, D.; Bosellini, F. R.; Taviani, M.; Bianucci, G.; Collareta, A.; Londeix, L.; Faranda, C.; Bulian, F.; Koskeridou, E.; Lozar, F.; Mancini, A. M.; Dominici, S.; Moissette, P.; Bajo Campos, I.; Borghi, E.; Iliopoulos, G.; Antonarakou, A.; Kontakiotis, G.; Besiou, E.; Zarkogiannis, S. D.; Harzhauser, M.; Sierro, F. J.; Coll, M.; Vasiliev, I.; Camerlenghi, A.; García-Castellanos, D. (2024). "The marine biodiversity impact of the Late Miocene Mediterranean salinity crisis". Science. 385 (6712): 986–991. Bibcode:2024Sci...385..986A. doi:10.1126/science.adp3703. PMID 39208105.
  401. ^ Tattersfield, P.; Rowson, B.; Ngereza, C. F.; Harrison, T. (2024). "Laetoli, Tanzania: Extant terrestrial mollusc faunas shed new light on climate and palaeoecology at a Pliocene hominin site". PLOS ONE. 19 (5). e0302435. Bibcode:2024PLoSO..1902435T. doi:10.1371/journal.pone.0302435. PMC 11098377. PMID 38753816.
  402. ^ Ramírez-Pedraza, I.; Tornero, C.; Aouraghe, H.; Rivals, F.; Patalano, R.; Haddoumi, H.; Expósito, I.; Rodríguez-Hidalgo, A.; Mischke, S.; van der Made, J.; Piñero, P.; Blain, H.-A.; Roberts, P.; Jha, D. K.; Agustí, J.; Sánchez-Bandera, C.; Lemjidi, A.; Benito-Calvo, A.; Moreno-Ribas, E.; Oujaa, A.; Mhamdi, H.; Souhir, M.; Aissa, A. M.; Chacón, M. G.; Sala-Ramos, R. (2024). "Arid, mosaic environments during the Plio-Pleistocene transition and early hominin dispersals in northern Africa". Nature Communications. 15 (1). 8393. Bibcode:2024NatCo..15.8393R. doi:10.1038/s41467-024-52672-0. PMC 11452666. PMID 39366927.
  403. ^ Kemp, M. E. (2024). "Assembly, Persistence, and Disassembly Dynamics of Quaternary Caribbean Frugivore Communities". The American Naturalist. 204 (4): 400–415. Bibcode:2024ANat..204..400K. doi:10.1086/731994. PMID 39326059.
  404. ^ Antoine, P.-O.; Wieringa, L. N.; Adnet, S.; Aguilera, O.; Bodin, S. C.; Cairns, S.; Conejeros-Vargas, C. A.; Cornée, J.-J.; Ežerinskis, Ž.; Fietzke, J.; Gribenski, N. O.; Grouard, S.; Hendy, A.; Hoorn, C.; Joannes-Boyau, R.; Langer, M. R.; Luque, J.; Marivaux, L.; Moissette, P.; Nooren, K.; Quillévéré, F.; Šapolaitė, J.; Sciumbata, M.; Valla, P. G.; Witteveen, N. H.; Casanova, A.; Clavier, S.; Bidgrain, P.; Gallay, M.; Rhoné, M.; Heuret, A. (2024). "A Late Pleistocene coastal ecosystem in French Guiana was hyperdiverse relative to today". Proceedings of the National Academy of Sciences of the United States of America. 121 (14). e2311597121. Bibcode:2024PNAS..12111597A. doi:10.1073/pnas.2311597121. PMC 10998618. PMID 38527199.
  405. ^ Drabon, N.; Knoll, A. H.; Lowe, D. R.; Bernasconi, S. M.; Brenner, A. R.; Mucciarone, D. A. (2024). "Effect of a giant meteorite impact on Paleoarchean surface environments and life". Proceedings of the National Academy of Sciences of the United States of America. 121 (44). e2408721121. doi:10.1073/pnas.2408721121. PMC 11536127. PMID 39432780.
  406. ^ Pellerin, A.; Thomazo, C.; Ader, M.; Rossignol, C.; Rego, E. S.; Busigny, V.; Philippot, P. (2024). "Neoarchaean oxygen-based nitrogen cycle en route to the Great Oxidation Event". Nature. 633 (8029): 365–370. Bibcode:2024Natur.633..365P. doi:10.1038/s41586-024-07842-x. PMID 39169192.
  407. ^ Chi Fru, E.; Aubineau, J.; Bankole, O.; Ghnahalla, M.; Soh Tamehe, L.; El Albani, A. (2024). "Hydrothermal seawater eutrophication triggered local macrobiological experimentation in the 2100 Ma Paleoproterozoic Francevillian sub-basin". Precambrian Research. 409. 107453. Bibcode:2024PreR..40907453C. doi:10.1016/j.precamres.2024.107453.
  408. ^ Stockey, R. G.; Cole, D. B.; Farrell, U. C.; Agić, H.; Boag, T. H.; Brocks, J. J.; Canfield, D. E.; Cheng, M.; Crockford, P. W.; Cui, H.; Dahl, T. W.; Del Mouro, L.; Dewing, K.; Dornbos, S. Q.; Emmings, J. F.; Gaines, R. R.; Gibson, T. M.; Gill, B. C.; Gilleaudeau, G. J.; Goldberg, K.; Guilbaud, R.; Halverson, G.; Hammarlund, E. U.; Hantsoo, K.; Henderson, M. A.; Henderson, C. M.; Hodgskiss, M. S. W.; Jarrett, A. J. M.; Johnston, D. T.; Kabanov, P.; Kimmig, J.; Knoll, A. H.; Kunzmann, M.; LeRoy, M. A.; Li, C.; Loydell, D. K.; Macdonald, F. A.; Magnall, J. M.; Mills, N. T.; Och, L. M.; O'Connell, B.; Pagès, A.; Peters, S. E.; Porter, S. M.; Poulton, S. W.; Ritzer, S. R.; Rooney, A. D.; Schoepfer, S.; Smith, E. F.; Strauss, J. V.; Uhlein, G. J.; White, T.; Wood, R. A.; Woltz, C. R.; Yurchenko, I.; Planavsky, N. J.; Sperling, E. A. (2024). "Sustained increases in atmospheric oxygen and marine productivity in the Neoproterozoic and Palaeozoic eras". Nature Geoscience. 17 (7): 667–674. Bibcode:2024NatGe..17..667S. doi:10.1038/s41561-024-01479-1.
  409. ^ Huang, W.; Tarduno, J. A.; Zhou, T.; Ibañez-Mejia, M.; Dal Olmo-Barbosa, L.; Koester, E.; Blackman, E. G.; Smirnov, A. V.; Ahrendt, G.; Cottrell, R. D.; Kodama, K. P.; Bono, R. K.; Sibeck, D. G.; Li, Y.-X.; Nimmo, F.; Xiao, S.; Watkeys, M. K. (2024). "Near-collapse of the geomagnetic field may have contributed to atmospheric oxygenation and animal radiation in the Ediacaran Period". Communications Earth & Environment. 5 (1). 207. Bibcode:2024ComEE...5..207H. doi:10.1038/s43247-024-01360-4.
  410. ^ Becker Kerber, B.; Prado, G. M. E. M.; Archilha, N. L.; Warren, L. V.; Simões, M. G.; Lino, L. M.; Quiroz-Valle, F. R.; Mouro, L. D.; El Albani, A.; Mazurier, A.; Paim, P. S. G.; Chemale, F.; Zucatti da Rosa, A. L.; de Barros, G. E. B.; El Kabouri, J.; Basei, M. A. S. (2024). "Ediacaran tectographs from the Itajaí Basin: A cautionary tale from the Precambrian". Precambrian Research. 403. 107307. Bibcode:2024PreR..40307307B. doi:10.1016/j.precamres.2024.107307.
  411. ^ Lei, X.; Cong, P.; Zhang, S.; Wei, F.; Anderson, R. P. (2024). "Unveiling an ignored taphonomic window in the early Cambrian Chengjiang Biota". Geology. 52 (10): 753–758. Bibcode:2024Geo....52..753L. doi:10.1130/G52215.1.
  412. ^ Saleh, F.; Antcliffe, J. B.; Birolini, E.; Candela, Y.; Corthésy, N.; Daley, A. C.; Dupichaud, C.; Gibert, C.; Guenser, P.; Laibl, L.; Lefebvre, B.; Michel, S.; Potin, G. J.-M. (2024). "Highly resolved taphonomic variations within the Early Ordovician Fezouata Biota". Scientific Reports. 14 (1). 20807. Bibcode:2024NatSR..1420807S. doi:10.1038/s41598-024-71622-w. PMC 11379804. PMID 39242693.
  413. ^ Smelror, M.; Grenne, T.; Bøe, R.; Gasser, D.; Solbakk, T. (2024). "Cryophilic polychaetes at the subtropical Laurentian margin of the Iapetus Ocean: Evidence for cold-water ocean circulation and upwelling". Geology. 52 (12): 896–900. Bibcode:2024Geo....52..896S. doi:10.1130/G52533.1.
  414. ^ Jacobs, G. S.; Jacquet, S. M.; Selly, T.; Schiffbauer, J. D.; Huntley, J. W. (2024). "Resolving taphonomic and preparation biases in silicified faunas through paired acid residues and X-ray microscopy". PeerJ. 12. e16767. doi:10.7717/peerj.16767. PMC 10838534. PMID 38313011.
  415. ^ Dernov, V. (2024). "Re-evaluation of Rugoinfractus ovruchensis Paliy, 1974 from the Devonian Tovkachi Formation (Ovruch Syncline, Ukraine) as desiccation cracks, not a trace fossil". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 311 (2): 205–213. doi:10.1127/njgpa/2024/1194.
  416. ^ Stacey, J.; Wallace, M. W.; Hood, A. v.S.; Shuster, A. M.; Corlett, H.; Reed, C. P.; Moynihan, C. (2024). "Ocean oxygenation and ecological restructuring caused by the late Paleozoic evolution of land plants". Geology. 52 (12): 948–952. Bibcode:2024Geo....52..948S. doi:10.1130/G52502.1.
  417. ^ Lestari, W.; Al-Suwaidi, A.; Fox, C. P.; Vajda, V.; Hennhoefer, D. (2024). "Carbon cycle perturbations and environmental change of the middle Permian and Late Triassic Paleo-Antarctic circle". Scientific Reports. 14 (1). 9742. Bibcode:2024NatSR..14.9742L. doi:10.1038/s41598-024-60088-5. PMC 11056376. PMID 38679621.
  418. ^ Huang, H.; Deng, C.; Grasby, S. E.; Cawood, P. A.; Hou, M.; Yang, C.; Feng, M.; Xiong, F.; Zhong, H.; Yin, R. (2024). "Mercury evidence of Emeishan volcanism driving the mid-Capitanian (Middle Permian) extinction". GSA Bulletin. doi:10.1130/B37796.1.
  419. ^ Li, R.; Shen, S.-Z.; Xia, X.-P.; Xiao, B.; Feng, Y.; Chen, H. (2024). "Atmospheric ozone destruction and the end-Permian crisis: Evidence from multiple sulfur isotopes". Chemical Geology. 647. 121936. doi:10.1016/j.chemgeo.2024.121936.
  420. ^ Chu, D.; Song, H.; Dal Corso, J.; Winguth, A. M. E.; Gautam, M. D.; Wignall, P. B.; Grasby, S. E.; Shu, W.; Song, H.; Song, H.; Tian, L.; Wu, Y.; Tong, J. (2024). "Diachronous end-Permian terrestrial crises in North and South China". Geology. doi:10.1130/G52655.1.
  421. ^ Sun, Y.; Farnsworth, A.; Joachimski, M. M.; Wignall, P. B.; Krystyn, L.; Bond, D. P. G.; Ravidà, D. C. G.; Valdes, P. J. (2024). "Mega El Niño instigated the end-Permian mass extinction". Science. 385 (6714): 1189–1195. Bibcode:2024Sci...385.1189S. doi:10.1126/science.ado2030. PMID 39265011.
  422. ^ Li, X.; Hu, S.; Hu, Y.; Cai, W.; Jin, Y.; Lu, Z.; Guo, J.; Lan, J.; Lin, Q.; Yuan, S.; Zhang, J.; Wei, Q.; Liu, Y.; Yang, J.; Nie, J. (2024). "Persistently active El Niño–Southern Oscillation since the Mesozoic". Proceedings of the National Academy of Sciences of the United States of America. 121 (45). e2404758121. Bibcode:2024PNAS..12104758L. doi:10.1073/pnas.2404758121. PMC 11551443. PMID 39432766.
  423. ^ Wang, Y.; Kuang, H.; Liu, Y.; Zhao, F.; Peng, N.; Chen, X.; Qi, K.; Li, J.; Dong, G.; Li, S.; Li, Y. (2024). "Enhanced global terrestrial moisture from the Early Triassic to the Late Triassic: Evidence from extensive Neocalamites forests in North China". GSA Bulletin. doi:10.1130/B37522.1.
  424. ^ Lukeneder, A.; Lukeneder, P.; Sachsenhofer, R. F.; Roghi, G.; Rigo, M. (2024). "Multi-proxy record of the Austrian Upper Triassic Polzberg Konservat-Lagerstätte in light of the Carnian Pluvial Episode". Scientific Reports. 14 (1). 11194. Bibcode:2024NatSR..1411194L. doi:10.1038/s41598-024-60591-9. PMC 11109357. PMID 38773130.
  425. ^ Rigo, M.; Jin, X.; Godfrey, L.; Katz, M. E.; Sato, H.; Tomimatsu, Y.; Zaffani, M.; Maron, M.; Satolli, S.; Concheri, G.; Cardinali, A.; Wu, Q.; Du, Y.; Lei, J. Z. X.; van Wieren, C. S.; Tackett, L. S.; Campbell, H.; Bertinelli, A.; Onoue, T. (2024). "Unveiling a new oceanic anoxic event at the Norian/Rhaetian boundary (Late Triassic)". Scientific Reports. 14 (1). 15574. Bibcode:2024NatSR..1415574R. doi:10.1038/s41598-024-66343-z. PMC 11227520. PMID 38971867.
  426. ^ Kent, D. V.; Olsen, P. E.; Wang, H.; Schaller, M. F.; Et-Touhami, M. (2024). "Correlation of sub-centennial-scale pulses of initial Central Atlantic Magmatic Province lavas and the end-Triassic extinctions". Proceedings of the National Academy of Sciences of the United States of America. 121 (46). e2415486121. doi:10.1073/pnas.2415486121. PMC 11573653. PMID 39467154.
  427. ^ Bos, R.; Zheng, W.; Lindström, S.; Sanei, H.; Waajen, I.; Fendley, I. M.; Mather, T. A.; Wang, Y.; Rohovec, J.; Navrátil, T.; Sluijs, A.; van de Schootbrugge, B. (2024). "Climate-forced Hg-remobilization associated with fern mutagenesis in the aftermath of the end-Triassic extinction". Nature Communications. 15 (1). 3596. Bibcode:2024NatCo..15.3596B. doi:10.1038/s41467-024-47922-0. PMC 11519498. PMID 38678037.
  428. ^ Remírez, M. N.; Gilleaudeau, G. J.; Gan, T.; Kipp, M. A.; Tissot, F. L. H.; Kaufman, A. J.; Parente, M. (2024). "Carbonate uranium isotopes record global expansion of marine anoxia during the Toarcian Oceanic Anoxic Event". Proceedings of the National Academy of Sciences of the United States of America. 121 (27). e2406032121. Bibcode:2024PNAS..12106032R. doi:10.1073/pnas.2406032121. PMC 11228476. PMID 38913904.
  429. ^ Peixoto, B. D. C. P. E. M.; Sedorko, D.; de Barros, G. E. B.; Francischini, H.; Ghilardi, R. P.; Fernandes, M. A. (2024). "Pulses of life: Wet events in Botucatu Paleodesert evidenced by trace fossils analysis (earliest Cretaceous, Paraná Basin, Brazil)". Palaeogeography, Palaeoclimatology, Palaeoecology. 658. 112608. doi:10.1016/j.palaeo.2024.112608.
  430. ^ Song, S.; Teng, X.; Zhang, X.; Zhang, H.; Zheng, D. (2024). "Calibrating the Jehol Biota in the Baiwan Basin of the North Qinling Orogenic Belt, central China". Cretaceous Research. 164. 105972. Bibcode:2024CrRes.16405972S. doi:10.1016/j.cretres.2024.105972.
  431. ^ Rangel, C. C.; Francischini, H.; Alessandretti, L.; Warren, L. V.; Christofoletti, B.; Sedorko, D. (2024). "Vertebrate paleoburrow as a seasonality indicator in Early Cretaceous Três Barras Formation (Brazil)". Journal of South American Earth Sciences. 149. 105183. Bibcode:2024JSAES.14905183R. doi:10.1016/j.jsames.2024.105183.
  432. ^ Fauth, G.; Strohschoen, O.; Baecker-Fauth, S.; Luft-Souza, F.; Santos Filho, M. A. B.; Santos, A.; Bruno, M. D. R.; Mescolotti, P.; Krahl, G.; Arai, M.; Oliveira Lima, F. H.; Assine, M. L. (2024). "Multiple short-lived marine incursions into the interior of Southwest Gondwana during the Aptian". Marine Micropaleontology. 191. 102389. Bibcode:2024MarMP.19102389F. doi:10.1016/j.marmicro.2024.102389.
  433. ^ Jacobs, L. L.; Flynn, L. J.; Scotese, C. R.; Vineyard, D. P.; Carvalho, I. S. (2024). "The Early Cretaceous Borborema-Cameroon Dinosaur Dispersal Corridor". New Mexico Museum of Natural History and Science Bulletin. 95: 199–212.
  434. ^ MacLennan, S. A.; Sha, J.; Olsen, P. E.; Kinney, S. T.; Chang, C.; Fang, Y.; Liu, J.; Slibeck, B. B.; Chen, E.; Schoene, B. (2024). "Extremely rapid, yet noncatastrophic, preservation of the flattened-feathered and 3D dinosaurs of the Early Cretaceous of China". Proceedings of the National Academy of Sciences of the United States of America. 121 (47). e2322875121. doi:10.1073/pnas.2322875121. PMC 11588062. PMID 39495941.
  435. ^ Li, Y.; Singer, B. S.; Takashima, R.; Schmitz, M. D.; Podrecca, L. G.; Sageman, B. B.; Selby, D.; Yamanaka, T.; Mohr, M. T.; Hayashi, K.; Tomaru, T.; Savatic, K. (2024). "Radioisotopic chronology of Ocean Anoxic Event 1a: Framework for analysis of driving mechanisms". Science Advances. 10 (47). eadn8365. doi:10.1126/sciadv.adn8365. PMC 11578182. PMID 39565850.
  436. ^ Li, J.; Dong, S.; Zhao, G.; Cawood, P. A.; Johnston, S. T.; Zhang, J.; Xin, Y.; Wang, J. (2024). "Cretaceous coastal mountain building and potential impacts on climate change in East Asia". Science Advances. 10 (50). eads0587. doi:10.1126/sciadv.ads0587.
  437. ^ Woolley, C. H.; Bottjer, D. J.; Corsetti, F. A.; Smith, N. D. (2024). "Quantifying the effects of exceptional fossil preservation on the global availability of phylogenetic data in deep time". PLOS ONE. 19 (2). e0297637. Bibcode:2024PLoSO..1997637W. doi:10.1371/journal.pone.0297637. PMC 10866489. PMID 38354167.
  438. ^ Almeida, R. P.; Althaus, C. E.; Janikian, L.; Gomes, P. V. O.; Figueiredo, F. T.; Sawakuchi, A. O.; Freitas, B. T.; Silva, L. H. G. (2024). "Reappraisal of the Cretaceous and Paleogene paleogeography of eastern Amazonia based on systematic paleocurrent measurements". Cretaceous Research. 163. 105948. Bibcode:2024CrRes.16305948A. doi:10.1016/j.cretres.2024.105948.
  439. ^ Eberth, D. A. (2024). "Stratigraphic architecture of the Belly River Group (Campanian, Cretaceous) in the plains of southern Alberta: Revisions and updates to an existing model and implications for correlating dinosaur-rich strata". PLOS ONE. 19 (1). e0292318. Bibcode:2024PLoSO..1992318E. doi:10.1371/journal.pone.0292318. PMC 10810474. PMID 38271406.
  440. ^ Rao, Z. C.; Lueders-Dumont, J. A.; Stringer, G. L.; Ryu, Y.; Zhao, K.; Myneni, S. C.; Oleynik, S.; Haug, G. H.; Martinez-Garcia, A.; Sigman, D. M. (2024). "A nitrogen isotopic shift in fish otolith–bound organic matter during the Late Cretaceous". Proceedings of the National Academy of Sciences of the United States of America. 121 (32). e2322863121. Bibcode:2024PNAS..12122863R. doi:10.1073/pnas.2322863121. PMC 11317583. PMID 39074276.
  441. ^ Wostbrock, J. A. G.; Witts, J. D.; Gao, Y.; Peshek, C.; Myers, C. E.; Henkes, G.; Sharp, Z. D. (2024). "Reconstructing paleoenvironments of the Late Cretaceous Western Interior Seaway, USA, using paired triple oxygen and carbonate clumped isotope measurements". GSA Bulletin. doi:10.1130/B37543.1.
  442. ^ O'Connor, L. K.; Jerrett, R. M.; Price, G. D.; Lyson, T. R.; Lengger, S. K.; Peterse, F.; van Dongen, B. E. (2024). "Terrestrial evidence for volcanogenic sulfate-driven cooling event ~30 kyr before the Cretaceous–Paleogene mass extinction". Science Advances. 10 (51). eado5478. doi:10.1126/sciadv.ado5478.
  443. ^ Nicholson, U.; Powell, W.; Gulick, S.; Kenkmann, T.; Bray, V. J.; Duarte, D.; Collins, G. S. (2024). "3D anatomy of the Cretaceous–Paleogene age Nadir Crater". Communications Earth & Environment. 5 (1). 547. Bibcode:2024ComEE...5..547N. doi:10.1038/s43247-024-01700-4.
  444. ^ Fischer-Gödde, M.; Tusch, J.; Goderis, S.; Bragagni, A.; Mohr-Westheide, T.; Messling, N.; Elfers, B.-M.; Schmitz, B.; Reimold, W. U.; Maier, W. D.; Claeys, P.; Koeberl, C.; Tissot, F. L. H.; Bizzarro, M.; Münker, C. (2024). "Ruthenium isotopes show the Chicxulub impactor was a carbonaceous-type asteroid" (PDF). Science. 385 (6710): 752–756. Bibcode:2024Sci...385..752F. doi:10.1126/science.adk4868. PMID 39146402.
  445. ^ DePalma, R. A.; Oleinik, A. A.; Gurche, L. P.; Burnham, D. A.; Klingler, J. J.; McKinney, C. J.; Cichocki, F. P.; Larson, P. L.; Egerton, V. M.; Wogelius, R. A.; Edwards, N. P.; Bergmann, U.; Manning, P. L. (2021). "Seasonal calibration of the end-cretaceous Chicxulub impact event". Scientific Reports. 11 (1): Article number 23704. Bibcode:2021NatSR..1123704D. doi:10.1038/s41598-021-03232-9. PMC 8655067. PMID 34880389.
  446. ^ During, M. A. D.; Voeten, D. F. A. E.; Van der Lubbe, J. H J. L.; Ahlberg, P. E. (2024). "Calibrations without raw data—A response to "Seasonal calibration of the end-cretaceous Chicxulub impact event"". PeerJ. 12. e18519. doi:10.7717/peerj.18519. PMC 11568822. PMID 39553725.
  447. ^ Moretti, S.; Auderset, A.; Deutsch, C.; Schmitz, R.; Gerber, L.; Thomas, E.; Luciani, V.; Petrizzo, M. R.; Schiebel, R.; Tripati, A.; Sexton, P.; Norris, R.; D'Onofrio, R.; Zachos, J.; Sigman, D. M.; Haug, G. H.; Martínez-García, A. (2024). "Oxygen rise in the tropical upper ocean during the Paleocene-Eocene Thermal Maximum" (PDF). Science. 383 (6684): 727–731. Bibcode:2024Sci...383..727M. doi:10.1126/science.adh4893. PMID 38359106.
  448. ^ Crespo, V. D.; Goin, F. J. (2024). "The Weddell Line, an early Cenozoic biogeographical barrier among Southern Hemisphere terrestrial mammals". Ameghiniana. doi:10.5710/AMGH.10.10.2024.3613.
  449. ^ Klages, J. P.; Hillenbrand, C.-D.; Bohaty, S. M.; Salzmann, U.; Bickert, T.; Lohmann, G.; Knahl, H. S.; Gierz, P.; Niu, L.; Titschack, J.; Kuhn, G.; Frederichs, T.; Müller, J.; Bauersachs, T.; Larter, R. D.; Hochmuth, K.; Ehrmann, W.; Nehrke, G.; Rodríguez-Tovar, F. J.; Schmiedl, G.; Spezzaferri, S.; Läufer, A.; Lisker, F.; van de Flierdt, T.; Eisenhauer, A.; Uenzelmann-Neben, G.; Esper, O.; Smith, J. A.; Pälike, H.; Spiegel, C.; Dziadek, R.; Ronge, T. A.; Freudenthal, T.; Gohl, K. (2024). "Ice sheet–free West Antarctica during peak early Oligocene glaciation" (PDF). Science. 385 (6706): 322–327. Bibcode:2024Sci...385..322K. doi:10.1126/science.adj3931. PMID 38963876.
  450. ^ Wilson, O. E.; Sánchez, R.; Chávez-Aponte, E.; Carrillo-Briceño, J. D.; Saarinen, J. (2024). "Application of herbivore ecometrics to reconstruct terrestrial palaeoenvironments in Falcón, Venezuela". Palaeogeography, Palaeoclimatology, Palaeoecology. 112397. doi:10.1016/j.palaeo.2024.112397.
  451. ^ Yu, W.; Herries, A. I. R.; Edwards, T.; Armstrong, B.; Joannes-Boyau, R. (2024). "Combined uranium-series and electron spin resonance dating from the Pliocene fossil sites of Aves and Milo's palaeocaves, Bolt's Farm, Cradle of Humankind, South Africa". PeerJ. 12. e17478. doi:10.7717/peerj.17478. PMC 11216204. PMID 38952976.
  452. ^ Bierman, P. R.; Mastro, H. M.; Peteet, D. M.; Corbett, L. B.; Steig, E. J.; Halsted, C. T.; Caffee, M. M.; Hidy, A. J.; Balco, G.; Bennike, O.; Rock, B. (2024). "Plant, insect, and fungi fossils under the center of Greenland's ice sheet are evidence of ice-free times". Proceedings of the National Academy of Sciences of the United States of America. 121 (33). e2407465121. Bibcode:2024PNAS..12107465B. doi:10.1073/pnas.2407465121. PMC 11331134. PMID 39102554.
  453. ^ Butiseacă, G. A.; Vasiliev, I.; van der Meer, M. T. J.; Bludau, I. J. E.; Karkanas, P.; Tourloukis, V.; Junginger, A.; Mulch, A.; Panagopoulou, E.; Harvati, K. (2024). "The expression of the MIS 12 glacial stage in Southeastern Europe and its impact over the Middle Pleistocene hominins in Megalopolis Basin (Greece)". Global and Planetary Change. 242. 104585. Bibcode:2024GPC...24204585B. doi:10.1016/j.gloplacha.2024.104585.
  454. ^ Bird, M. I.; Brand, M.; Comley, R.; Fu, X.; Hadeen, H.; Jacobs, Z.; Rowe, C.; Wurster, C. M.; Zwart, C.; Bradshaw, C. J. A. (2024). "Late Pleistocene emergence of an anthropogenic fire regime in Australia's tropical savannahs". Nature Geoscience. 17 (3): 233–240. Bibcode:2024NatGe..17..233B. doi:10.1038/s41561-024-01388-3.
  455. ^ Cisneros-Lazaro, D.; Adams, A.; Stolarski, J.; Bernard, S.; Daval, D.; Baronnet, A.; Grauby, O.; Baumgartner, L. P.; Vennemann, T.; Moore, J.; Baumgartner, C.; Martin Olmos, C.; Escrig, S.; Meibom, A. (2024). "Fossil biocalcite remains open to isotopic exchange with seawater for tens of millions of years". Scientific Reports. 14 (1). 24933. Bibcode:2024NatSR..1424933C. doi:10.1038/s41598-024-75588-7. PMC 11496820. PMID 39438650.
  456. ^ Wiseman, A. L. A.; Charles, J. P.; Hutchinson, J. R. (2024). "Static versus dynamic muscle modelling in extinct species: a biomechanical case study of the Australopithecus afarensis pelvis and lower extremity". PeerJ. 12. e16821. doi:10.7717/peerj.16821. PMC 10838096. PMID 38313026.
  457. ^ Sullivan, C.; Sissons, R.; Sharpe, H.; Nguyen, K.; Theurer, B. (2024). "Skeletal reconstruction of fossil vertebrates as a process of hypothesis testing and a source of anatomical and palaeobiological inferences". Comptes Rendus Palevol. 23 (5): 69–83. doi:10.5852/cr-palevol2024v23a5.
  458. ^ Gayford, J. H.; Engelman, R. K.; Sternes, P. C.; Itano, W. M.; Bazzi, M.; Collareta, A.; Salas-Gismondi, R.; Shimada, K. (2024). "Cautionary tales on the use of proxies to estimate body size and form of extinct animals". Ecology and Evolution. 14 (9). e70218. Bibcode:2024EcoEv..1470218G. doi:10.1002/ece3.70218. PMC 11368419. PMID 39224151.
  459. ^ Wright, M. A.; Cavanaugh, T. J.; Pierce, S. E. (2024). "Volumetric versus Element-scaling Mass Estimation and Its Application to Permo-Triassic Tetrapods". Integrative Organismal Biology. 6 (1). obae034. doi:10.1093/iob/obae034. PMC 11438236. PMID 39346809.
  460. ^ Didier, G.; Laurin, M. (2024). "Testing extinction events and temporal shifts in diversification and fossilization rates through the skyline Fossilized Birth-Death (FBD) model: The example of some mid-Permian synapsid extinctions". Cladistics. 40 (3): 282–306. doi:10.1111/cla.12577. PMID 38651531.
  461. ^ Cooper, R. B.; Flannery-Sutherland, J. T.; Silvestro, D. (2024). "DeepDive: estimating global biodiversity patterns through time using deep learning". Nature Communications. 15 (1). 4199. Bibcode:2024NatCo..15.4199C. doi:10.1038/s41467-024-48434-7. PMC 11101433. PMID 38760390.
  462. ^ Hauffe, T.; Cantalapiedra, J. L.; Silvestro, D. (2024). "Trait-mediated speciation and human-driven extinctions in proboscideans revealed by unsupervised Bayesian neural networks". Science Advances. 10 (30): eadl2643. Bibcode:2024SciA...10L2643H. doi:10.1126/sciadv.adl2643. PMC 11268411. PMID 39047110.
  463. ^ Benoit, J. (2024). "A possible Later Stone Age painting of a dicynodont (Synapsida) from the South African Karoo". PLOS ONE. 19 (9). e0309908. doi:10.1371/journal.pone.0309908. PMC 11410247. PMID 39292694.
  464. ^ Reumer, J. W. F. (2024). "The first case of paleontological fraud: Beringer's Lügensteine reconsidered". Revue de Paléobiologie, Genève. 43 (1): 155–162.
  465. ^ Isson, T.; Rauzi, S. (2024). "Oxygen isotope ensemble reveals Earth's seawater, temperature, and carbon cycle history". Science. 383 (6683): 666–670. Bibcode:2024Sci...383..666I. doi:10.1126/science.adg1366. PMID 38330122.
  466. ^ Judd, E. J.; Tierney, J. E.; Lunt, D. J.; Montañez, I. P.; Huber, B. T.; Wing, S. L.; Valdes, P. J. (2024). "A 485-million-year history of Earth's surface temperature". Science. 385 (6715). eadk3705. Bibcode:2024Sci...385k3705J. doi:10.1126/science.adk3705. PMID 39298603.
  467. ^ Thiagarajan, N.; Lepland, A.; Ryb, U.; Torsvik, T. H.; Ainsaar, L.; Hints, O.; Eiler, J. (2024). "Reconstruction of Phanerozoic climate using carbonate clumped isotopes and implications for the oxygen isotopic composition of seawater". Proceedings of the National Academy of Sciences of the United States of America. 121 (36). e2400434121. Bibcode:2024PNAS..12100434T. doi:10.1073/pnas.2400434121. PMC 11388280. PMID 39186659.
  468. ^ Rauzi, S.; Foster, W. J.; Takahashi, S.; Hori, R. S.; Beaty, B. J.; Tarhan, L. G.; Isson, T. (2024). "Lithium isotopic evidence for enhanced reverse weathering during the Early Triassic warm period". Proceedings of the National Academy of Sciences of the United States of America. 121 (32). e2318860121. Bibcode:2024PNAS..12118860R. doi:10.1073/pnas.2318860121. PMC 11317597. PMID 39074280.
  469. ^ Gurung, K.; Field, K. J.; Batterman, S. A.; Poulton, S. W.; Mills, B. J. W. (2024). "Geographic range of plants drives long-term climate change". Nature Communications. 15 (1). 1805. Bibcode:2024NatCo..15.1805G. doi:10.1038/s41467-024-46105-1. PMC 10901853. PMID 38418475.
  470. ^ Kairouani, H.; Abbassi, A.; Zaghloul, M. N.; El Mourabet, M.; Micheletti, F.; Fornelli, A.; Mongelli, G.; Critelli, S. (2024). "The Jurassic climate change in the northwest Gondwana (External Rif, Morocco): Evidence from geochemistry and implication for paleoclimate evolution". Marine and Petroleum Geology. 163. 106762. Bibcode:2024MarPG.16306762K. doi:10.1016/j.marpetgeo.2024.106762.
  471. ^ Nordt, L.; Breecker, D.; White, J. (2024). "The early Cretaceous was cold but punctuated by warm snaps resulting from episodic volcanism". Communications Earth & Environment. 5 (1). 223. Bibcode:2024ComEE...5..223N. doi:10.1038/s43247-024-01389-5.
  472. ^ Wang, T.; Yang, P.; He, S.; Hoffmann, R.; Zhang, Q.; Farnsworth, A.; Feng, Y.; Randrianaly, H. N.; Xie, J.; Yue, Y.; Zhao, J.; Ding, L. (2024). "Absolute age and temperature of belemnite rostra: Constraints on the Early Cretaceous cooling event". Global and Planetary Change. 233. 104353. Bibcode:2024GPC...23304353W. doi:10.1016/j.gloplacha.2023.104353.
  473. ^ Bauer, K. W.; McKenzie, N. R.; Cheung, C. T. L.; Gambacorta, G.; Bottini, C.; Nordsvan, A. R.; Erba, E.; Crowe, S. A. (2024). "A climate threshold for ocean deoxygenation during the Early Cretaceous". Nature. 633 (8030): 582–586. Bibcode:2024Natur.633..582B. doi:10.1038/s41586-024-07876-1. PMID 39232168.
  474. ^ McCraw, J. R. C.; Tobin, T. S.; Cochran, J. K.; Landman, N. H. (2024). "Ammonites as paleothermometers: Isotopically reconstructed temperatures of the Western Interior Seaway track global records". Palaeogeography, Palaeoclimatology, Palaeoecology. 656. 112594. Bibcode:2024PPP...65612594M. doi:10.1016/j.palaeo.2024.112594.
  475. ^ Harper, D. T.; Hönisch, B.; Bowen, G. J.; Zeebe, R. E.; Haynes, L. L.; Penman, D. E.; Zachos, J. C. (2024). "Long- and short-term coupling of sea surface temperature and atmospheric CO2 during the late Paleocene and early Eocene". Proceedings of the National Academy of Sciences of the United States of America. 121 (36). e2318779121. Bibcode:2024PNAS..12118779H. doi:10.1073/pnas.2318779121. PMC 11388285. PMID 39186648.
  476. ^ McCoy, J.; Gibson, M. E.; Hocking, E. P.; O'Keefe, J. M. K.; Riding, J. B.; Roberts, R.; Campbell, S.; Abbott, G. D.; Pound, M. J. (2024). "Temperate to tropical palaeoclimates on the northwest margin of Europe during the middle Cenozoic". Palaeontologia Electronica. 27 (2). 27.2.a43. doi:10.26879/1349.
  477. ^ Clark, P. U.; Shakun, J. D.; Rosenthal, Y.; Köhler, P.; Bartlein, P. J. (2024). "Global and regional temperature change over the past 4.5 million years" (PDF). Science. 383 (6685): 884–890. Bibcode:2024Sci...383..884C. doi:10.1126/science.adi1908. PMID 38386742.
  478. ^ Amarathunga, U.; Rohling, E. J.; Grant, K. M.; Francke, A.; Latimer, J.; Klaebe, R. M.; Heslop, D.; Roberts, A. P.; Hutchinson, D. K. (2024). "Mid-Pliocene glaciation preceded by a 0.5-million-year North African humid period". Nature Geoscience. 17 (7): 660–666. Bibcode:2024NatGe..17..660A. doi:10.1038/s41561-024-01472-8.
  479. ^ An, Z.; Zhou, W.; Zhang, Z.; Zhang, X.; Liu, Z.; Sun, Y.; Clemens, S. C.; Wu, L.; Zhao, J.; Shi, Z.; Ma, X.; Yan, H.; Li, G.; Cai, Y.; Yu, J.; Sun, Y.; Li, S.; Zhang, Y.; Stepanek, C.; Lohmann, G.; Dong, G.; Cheng, H.; Liu, Y.; Jin, Z.; Li, T.; Hao, Y.; Lei, J.; Cai, W. (2024). "Mid-Pleistocene climate transition triggered by Antarctic Ice Sheet growth" (PDF). Science. 385 (6708): 560–565. Bibcode:2024Sci...385..560A. doi:10.1126/science.abn4861. PMID 39088600.
  480. ^ jones, K. (February 28, 2024). "Estella Bergere Leopold, environmentalist and daughter of Aldo Leopold, dies at 97".