Jump to content

Wolf 1346

From Wikipedia, the free encyclopedia

Wolf 1346
Location of Wolf 1346 (circled)
Observation data
Epoch J2000.0[1]      Equinox J2000.0[1]
Constellation Vulpecula
Right ascension 20h 34m 21.88470s
Declination +25° 03′ 49.7504″
Apparent magnitude (V) 11.546[2]
Characteristics
Evolutionary stage White dwarf
Spectral type DA2.4[3]
U−B color index −0.784[2]
B−V color index −0.075[2]
J−H color index −0.033[4]
J−K color index −0.147[4]
Astrometry
Radial velocity (Rv)71.0±7.4[5] km/s
Proper motion (μ) RA: −403.387[1] mas/yr
Dec.: −563.404[1] mas/yr
Parallax (π)67.4085 ± 0.0367 mas[1]
Distance48.39 ± 0.03 ly
(14.835 ± 0.008 pc)
Details[6]
Mass0.636±0.005 M
Radius0.0139±0.0006[7] R
Luminosity0.0332+0.0056
−0.0048
 L
Surface gravity (log g)8.015±0.006 cgs
Temperature21608±153 K
Age60[8][a] Myr
Other designations
Gaia DR2 1831553382794173824, GJ 794, HD 340611, HIP 101516, AC +25°68981, G 186-31, LAWD 82, LFT 1554, LHS 3562, LSPM J2034+2503, LTT 16005, NLTT 49494, PLX 4895.00, PM 20322+2454, PM J20343+2503, WD 2032+248, Wolf 1346, TIC 298186852, TYC 2161-1038-1, GCRV 12872, 2MASS J20342188+2503498, WISEA J203421.56+250343.8[9]
Database references
SIMBADdata

Wolf 1346, otherwise known as HD 340611 and WD 2032+248, is a star in the northern constellation of Vulpecula. With an apparent magnitude of 11.546, it is too faint to be seen by the naked eye but can be observed using a telescope with an aperture of 51 mm (2.0 in) or larger.[10] It is located at a distance of approximately 48.4 light-years (14.8 pc) according to Gaia EDR3 parallax measurements, and is receding away from the Sun at a heliocentric radial velocity of +71.0 km/s.

Properties

[edit]

This is a young, non-magnetic[8] white dwarf with an age of 60 million years. It is a little less than two-thirds the mass of the Sun and just 1.4% the radius, that is 1.5 times the size of Earth or 9,670 km (6,010 mi). With an effective temperature of 21,608 K (21,335 °C; 38,435 °F), it shines with 3.3% of the Sun's luminosity. It belongs to the thin disk of the Milky Way.[11] There is marginal indication that the star is orbited by a binary companion.[12]

It has the spectral type DA2.4,[3] indicating that the atmosphere is dominated by hydrogen, which is the only element whose spectral lines show up in the star's visible spectrum.[13] It has been subject to multiple ultraviolet spectroscopic observations. Silicon lines were discovered in 1984 from spectra obtained by the International Ultraviolet Explorer.[14] The abundance of silicon in the photosphere has been measured at log(Si/H)=−7.5 ± 0.2,[13] which, compared to the solar value of log(Si/H)=−4.5,[14] is approximately one thousand times less. This amount is comparable to what is expected from radiative levitation.[13] Carbon, nitrogen, and oxygen are absent in the spectra, consistent with theories of element diffusion.[15] Observations by the Hopkins Ultraviolet Telescope revealed that the Lyman-beta line shows signs of the dihydrogen cation (H2+), which, in cooler DA white dwarfs, causes similar signatures in the Lyman-alpha line.[16]

Notes

[edit]
  1. ^ This is just the cooling age.

References

[edit]
  1. ^ a b c d Brown, A. G. A.; et al. (Gaia collaboration) (2021). "Gaia Early Data Release 3: Summary of the contents and survey properties". Astronomy & Astrophysics. 649: A1. arXiv:2012.01533. Bibcode:2021A&A...649A...1G. doi:10.1051/0004-6361/202039657. S2CID 227254300. (Erratum: doi:10.1051/0004-6361/202039657e). Gaia EDR3 record for this source at VizieR.
  2. ^ a b c Koen, C.; Kilkenny, D.; van Wyk, F.; Marang, F. (21 April 2010). "UBV ( RI ) C JHK observations of Hipparcos -selected nearby stars" (PDF). Monthly Notices of the Royal Astronomical Society. 403 (4): 1949–1968. doi:10.1111/j.1365-2966.2009.16182.x. Retrieved 31 January 2025.
  3. ^ a b Gianninas, A.; Bergeron, P.; Ruiz, M. T. (20 December 2011). "A SPECTROSCOPIC SURVEY AND ANALYSIS OF BRIGHT, HYDROGEN-RICH WHITE DWARFS". The Astrophysical Journal. 743 (2): 138. doi:10.1088/0004-637X/743/2/138. ISSN 0004-637X. Retrieved 30 January 2025.
  4. ^ a b Cutri, Roc M.; Skrutskie, Michael F.; Van Dyk, Schuyler D.; Beichman, Charles A.; Carpenter, John M.; Chester, Thomas; Cambresy, Laurent; Evans, Tracey E.; Fowler, John W.; Gizis, John E.; Howard, Elizabeth V.; Huchra, John P.; Jarrett, Thomas H.; Kopan, Eugene L.; Kirkpatrick, J. Davy; Light, Robert M.; Marsh, Kenneth A.; McCallon, Howard L.; Schneider, Stephen E.; Stiening, Rae; Sykes, Matthew J.; Weinberg, Martin D.; Wheaton, William A.; Wheelock, Sherry L.; Zacarias, N. (2003). "VizieR Online Data Catalog: 2MASS All-Sky Catalog of Point Sources (Cutri+ 2003)". CDS/ADC Collection of Electronic Catalogues. 2246: II/246. Bibcode:2003yCat.2246....0C.
  5. ^ Kharchenko, N.V.; Scholz, R.‐D.; Piskunov, A.E.; Röser, S.; Schilbach, E. (2007). "Astrophysical supplements to the ASCC‐2.5: Ia. Radial velocities of ∼55000 stars and mean radial velocities of 516 Galactic open clusters and associations". Astronomische Nachrichten. 328 (9): 889–896. doi:10.1002/asna.200710776. ISSN 0004-6337. Retrieved 31 January 2025.
  6. ^ Vincent, O.; Barstow, M. A.; Jordan, S.; Mander, C.; Bergeron, P.; Dufour, P. (2024). "Classification and parameterization of a large Gaia sample of white dwarfs using XP spectra". Astronomy & Astrophysics. 682: A5. doi:10.1051/0004-6361/202347694. ISSN 0004-6361. Record for this source at VizieR.
  7. ^ Bédard, A.; Bergeron, P.; Fontaine, G. (10 October 2017). "Measurements of Physical Parameters of White Dwarfs: A Test of the Mass–Radius Relation". The Astrophysical Journal. 848 (1): 11. doi:10.3847/1538-4357/aa8bb6. ISSN 0004-637X. Record for this source at VizieR.
  8. ^ a b Berdyugin, Andrei V.; Piirola, Vilppu; Bagnulo, Stefano; Landstreet, John D.; Berdyugina, Svetlana V. (2022). "Highly sensitive search for magnetic fields in white dwarfs using broad-band circular polarimetry" (PDF). Astronomy & Astrophysics. 657: A105. doi:10.1051/0004-6361/202142173. ISSN 0004-6361. Retrieved 23 January 2025.
  9. ^ "Wolf 1346". SIMBAD. Centre de données astronomiques de Strasbourg. Retrieved 31 January 2025.
  10. ^ North, Gerald; James, Nick (2014). Observing Variable Stars, Novae and Supernovae. Cambridge University Press. p. 24. ISBN 978-1-107-63612-5.
  11. ^ Torres, S; Cantero, C; Rebassa-Mansergas, A; Skorobogatov, G; Jiménez-Esteban, F M; Solano, E (1 June 2019). "Random Forest identification of the thin disc, thick disc, and halo Gaia -DR2 white dwarf population". Monthly Notices of the Royal Astronomical Society. 485 (4): 5573–5589. doi:10.1093/mnras/stz814. ISSN 0035-8711. Retrieved 31 January 2025. Record for this source at VizieR.
  12. ^ Kervella, Pierre; Arenou, Frédéric; Mignard, François; Thévenin, Frédéric (2019). "Stellar and substellar companions of nearby stars from Gaia DR2: Binarity from proper motion anomaly" (PDF). Astronomy & Astrophysics. 623: A72. doi:10.1051/0004-6361/201834371. ISSN 0004-6361. Retrieved 23 January 2025.
  13. ^ a b c Holberg, J. B.; Barstow, M. A.; Bruhweiler, F. C.; Collins, J. (1996). "Photospheric Silicon in the DA White Dwarf Wolf 1346". The Astronomical Journal. 111: 2361. doi:10.1086/117969.
  14. ^ a b Wesemael, F.; Henry, R. B. C.; Shipman, H. L. (1984). "Metal abundances in the hot DA white dwarfs Wolf 1346 and Feige 24". The Astrophysical Journal. 287: 868. doi:10.1086/162745. ISSN 0004-637X.
  15. ^ Morvan, E.; Vauclair, G.; Vauclair, S. (July 1986). "Silicon abundances in Feige 24 and Wolf 1346 : results of the diffusion theory". Astronomy & Astrophysics. 163: 145–150. Bibcode:1986A&A...163..145M.
  16. ^ Koester, D.; Finley, D. S.; Allard, N. F.; Kruk, J. W.; Kimble, R. A. (1 June 1996). "Quasi-Molecular Satellites of Lyβ in the Spectrum of the DA White Dwarf Wolf 1346". The Astrophysical Journal. 463 (2): L93 – L99. doi:10.1086/310062. Retrieved 23 January 2025.