User:Tomruen/Stellations of 16-cell
Appearance
In 4-dimensional geometry, a stellation of a 16-cell is a 4-polytope constructed as volumes between hyperplane of the facets of a regular 16-cell.
Vertices
[edit]There are 4 sets of vertices as intersections of 4 hyperplanes:
Set | Typical member | Vertices | Distance from center | Convex polytope | Graph |
---|---|---|---|---|---|
1 | (2,0,0,0) | 8 | 2 | {3,3,4} | |
2 | (1,1,1,1) | 16 | 2 | {4,3,3} | |
3 | (2,2,2,0) | 32 | 2√3 | r{4,3,3} | |
4 | (4,2,2,2) | 64 | 2√7 | variation of t0,3{4,3,3} |
1-regions
[edit]These 4 sets define 7 1-regions (line segments):
Set | 1 1 | 1 2 | 1 3 | 1 4 | 2 3 | 3 3 | 3 4 |
---|---|---|---|---|---|---|---|
Length | 2√2 | 2 | 2√2 | 4 | 2 | 2√2 | 2√2 |
2-regions
[edit]The 4 sets define 8 types of 2-regions (triangles|
Set | 1 1 1 | 1 1 2 | 1 1 3 | 1 2 3 | 1 3 3 | 1 3 4 | 2 3 4 | 3 3 4 |
---|---|---|---|---|---|---|---|---|
Type | Equilateral | Isosceles right | Equilateral | Isosceles right | Equilateral | Isosceles right | Isosceles right | Equilateral |
3-regions
[edit]The 4 sets define 7 types of 3-regions (polyhedra):
Type | Description | Types of faces | Number |
---|---|---|---|
1 1 1 1 | Regular tetrahedron | 1 1 1 | 4 |
1 1 1 2 | Tetrahedron | 1 1 1 | 1 |
1 1 2 | 3 | ||
1 1 2 3 | Tetrahedron | 1 1 2 | 1 |
1 1 3 | 1 | ||
1 2 3 | 2 | ||
1 1 3 3 | Regular tetrahedron | 1 1 3 | 2 |
1 3 3 | 2 | ||
1 2 3 3 | Tetrahedron | 1 2 3 | 2 |
1 3 3 | 1 | ||
2 3 3 | 1 | ||
2 3 3 3 4 | Triangular dipyramid | 2 3 3 | 3 |
3 3 4 | 3 | ||
1 3 3 4 | Tetrahedron | 1 3 3 | 1 |
1 3 4 | 2 | ||
3 3 4 | 1 |
layers
[edit]There are 5 layers (polychora):
Layer | Component | Structure | Number of components |
---|---|---|---|
a | 16-cell | 1 1 1 1 | 1 |
b | Simplex | 1 1 1 1 1 1 1 2 |
16 |
c | Simplex | 1 1 2 3 |
32 |
d | Simplex | 1 1 2 3 1 1 3 3 1 2 3 3 |
96 |
e | 1 2 3 3 2 3 3 3 4 1 3 3 4 |
64 |
Stellations
[edit]There are 6 stellated forms:
Name | Composition | Description |
---|---|---|
A | a | 8 vertices of 16-cell |
B | a∪b | Compound of 2 tesseracts Partially regular [2γ4]β4 |
C | a∪b∪c | 24 vertices of 24-cell |
D | a∪b∪c∪d | |
e | e | |
De | a∪b∪c∪d∪e |
References
[edit]- The Stellated Forms of the Sixteen-Cell B. L. Chilton The American Mathematical Monthly Vol. 74, No. 4 (Apr., 1967), pp. 372-378