CALCULUS - SINGLE VARIABLE
[edit]
x as infinite if it satisfies the conditions |x| > 1, |x| > 1 + 1, |x| > 1 + 1 + 1, ..., and infinitesimal if x ≠ 0 and a similar set of conditions holds for x and the reciprocals of the positive integers
Continuity and Limit
[edit]
the function has a limit L at an input p, if f(x) gets closer and closer to L as x moves closer and closer to p
continuity of
by saying that an infinitesimal change in x necessarily produces an infinitesimal change in y
A function f is said to be continuous at c if it is both defined at c and its value at c equals the limit of f as x approaches c:
We have here assumed that c is a limit point of the domain of f.
Differential Calculus
[edit]
![{\displaystyle m={\frac {\text{rise}}{\text{run}}}={\frac {{\text{change in }}y}{{\text{change in }}x}}={\frac {\Delta y}{\Delta x}}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/313c6a18c1b2ec00c8ae723e70d431b0037382aa)
For every positive real number
, there exists a positive real number
such that, for every
such that
and
then
is defined, and
Leibniz Derivative Notation
[edit]
The first derivative of
is denoted by
, read as "the derivative of
with respect to
".
for the
-th derivative of
Lagrange Derivative Notation
[edit]
The first derivative is written as
for the
th derivative of
.
Newton Derivative Notation
[edit]
If
is a function of
, then the first and second derivatives can be written as
and
Differential Operator Derivative Notation
[edit]
and higher derivatives are written with a superscript, so the
-th derivative is
Let f(x) = x2 be the squaring function.
Leibniz Derivative Example
[edit]
Differentiation is linear
[edit]
with respect to
is:
- The constant factor rule
![{\displaystyle (af)'=af'}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6291e92052625956c2878f31568286eb49d7f7b9)
- The sum rule
![{\displaystyle (f+g)'=f'+g'}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0f270ddd2712ae72925b275fb59dc9acc980100e)
- The difference rule
![{\displaystyle (f-g)'=f'-g'.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d06f579d309ffef1a25a87592e47f5ed3c950372)
, then
For the functions
and
, the derivative of the function
with respect to
is
In Leibniz's notation this is written
The derivative of the function
is
In Leibniz's notation, this is written as:
often abridged to
If z = f(y) and y = g(x)
and
If y = f(u) and u = g(x):
or for short,
The derivative function is therefore:
Chain Rule Higher Derivatives
[edit]
Looks like the product rule.
f(u) and u = g(x):
The quotient rule is a consequence of the chain rule and the product rule. To see this, write the function f(x)/g(x) as the product f(x) · 1/g(x). First apply the product rule:
y = g(x) has an inverse function. Call its inverse function f so that we have x = f(y).
The derivative of
for any (nonvanishing) function f is:
wherever f is non-zero.
In Leibniz's notation, this is written
![{\displaystyle {\frac {d(1/f)}{dx}}=-{\frac {1}{f^{2}}}{\frac {df}{dx}}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8e6209ff6d72121457b966cd6fcdbaa8c164e5a1)
Derivatives of exponential and logarithmic functions
[edit]
![{\displaystyle {\frac {d}{dx}}\left(c^{ax}\right)={ac^{ax}\ln c},\qquad c>0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a0eb5316862c6dfff1b4d22412fc37d067eb78af)
![{\displaystyle {\frac {d}{dx}}\left(e^{ax}\right)=ae^{ax}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d4776a5cb8042caaab597c3fed9f9b6512da714e)
![{\displaystyle {\frac {d}{dx}}\left(\log _{c}x\right)={1 \over x\ln c},\qquad c>1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d5454cb43b2a4a0e32180761fd2449ae4c349561)
![{\displaystyle {\frac {d}{dx}}\left(\ln x\right)={1 \over x},\qquad x>0.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/15310a5517899d0508a71fb509871eb7950fa717)
![{\displaystyle {\frac {d}{dx}}\left(x^{x}\right)=x^{x}(1+\ln x).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1895546a3efac9f88d2743606898b1820c57f3c6)
![{\displaystyle {\frac {d}{dx}}\left(f(x)^{g(x)}\right)=g(x)f(x)^{g(x)-1}{\frac {df}{dx}}+f(x)^{g(x)}\ln {(f(x))}{\frac {dg}{dx}},\qquad {\text{if }}f(x)>0,{\text{ and if }}{\frac {df}{dx}}{\text{ and }}{\frac {dg}{dx}}{\text{ exist.}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/207166e06e2e083d468406ccad332f6b4a4236ca)
![{\displaystyle {\frac {df_{i}}{dx}}{\text{ exists. }}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7c7e37598f520806fe5a3b90d4d88102f72242a2)
wherever f is positive.
Derivatives of Trigonometric Functions
[edit]
|
|
|
|
|
|
|
|
|
|
|
|
Derivatives of integrals
[edit]
![{\displaystyle F(x)=\int _{a(x)}^{b(x)}f(x,t)\,dt,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/405156f2059687b8afdfdc90403ba4b8711f784a)
where the functions
and
are both continuous in both
and
in some region of the
plane, including
, and the functions
and
are both continuous and both have continuous derivatives for
. Then for
:
![{\displaystyle F'(x)=f(x,b(x))\,b'(x)-f(x,a(x))\,a'(x)+\int _{a(x)}^{b(x)}{\frac {\partial }{\partial x}}\,f(x,t)\;dt\,.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/89bde7b7a93124df4bd85f35585179cdf3647b66)
Integrals Rational Functions
[edit]
Integrals Exponential Functions
[edit]
Integrals Trigonometric functions
[edit]
![{\displaystyle \int \sin {x}\,dx=-\cos {x}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/537de256cbb401203900fd3623cdbc85e31cc70b)
![{\displaystyle \int \cos {x}\,dx=\sin {x}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e1aae2ec756513ea8f93deb874803c61e291dd8a)
![{\displaystyle \int \tan {x}\,dx=\ln {\left|\sec {x}\right|}+C=-\ln {\left|\cos {x}\right|}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8ba69bfbc21d12dd3e94c05e4f9d280c3f52cf4e)
![{\displaystyle \int \arcsin {x}\,dx=x\arcsin {x}+{\sqrt {1-x^{2}}}+C,{\text{ for }}\vert x\vert \leq 1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a38337d06245b040820006688435ef614e588596)
![{\displaystyle \int \arccos {x}\,dx=x\arccos {x}-{\sqrt {1-x^{2}}}+C,{\text{ for }}\vert x\vert \leq 1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4c8d8a2085c30cedfe650ba3b5d33fd248a4dba0)
![{\displaystyle \int \arctan {x}\,dx=x\arctan {x}-{\frac {1}{2}}\ln {\vert 1+x^{2}\vert }+C,{\text{ for all real }}x}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2065fbb624268a059bbb9b42814a78ba22f5cc0e)
![{\displaystyle \int \ln x\,dx=x\ln x-x+C=x(\ln x-1)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/764f1381e37d05fadaa444e4cea58e7d94dba432)
![{\displaystyle \int \log _{a}x\,dx=x\log _{a}x-{\frac {x}{\ln a}}+C={\frac {x}{\ln a}}(\ln x-1)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2deb77fcd99e1fcee728b7a76062e520964b8977)
Power Rule Integration
[edit]