Jump to content

Total ring of fractions

From Wikipedia, the free encyclopedia

In abstract algebra, the total quotient ring[1] or total ring of fractions[2] is a construction that generalizes the notion of the field of fractions of an integral domain to commutative rings R that may have zero divisors. The construction embeds R in a larger ring, giving every non-zero-divisor of R an inverse in the larger ring. If the homomorphism from R to the new ring is to be injective, no further elements can be given an inverse.

Definition

[edit]

Let be a commutative ring and let be the set of elements that are not zero divisors in ; then is a multiplicatively closed set. Hence we may localize the ring at the set to obtain the total quotient ring .

If is a domain, then and the total quotient ring is the same as the field of fractions. This justifies the notation , which is sometimes used for the field of fractions as well, since there is no ambiguity in the case of a domain.

Since in the construction contains no zero divisors, the natural map is injective, so the total quotient ring is an extension of .

Examples

[edit]
  • For a product ring A × B, the total quotient ring Q(A × B) is the product of total quotient rings Q(A) × Q(B). In particular, if A and B are integral domains, it is the product of quotient fields.
  • In an Artinian ring, all elements are units or zero divisors. Hence the set of non-zero-divisors is the group of units of the ring, , and so . But since all these elements already have inverses, .
  • In a commutative von Neumann regular ring R, the same thing happens. Suppose a in R is not a zero divisor. Then in a von Neumann regular ring a = axa for some x in R, giving the equation a(xa − 1) = 0. Since a is not a zero divisor, xa = 1, showing a is a unit. Here again, .

The total ring of fractions of a reduced ring

[edit]

Proposition — Let A be a reduced ring that has only finitely many minimal prime ideals, (e.g., a Noetherian reduced ring). Then

Geometrically, is the Artinian scheme consisting (as a finite set) of the generic points of the irreducible components of .

Proof: Every element of Q(A) is either a unit or a zero divisor. Thus, any proper ideal I of Q(A) is contained in the set of zero divisors of Q(A); that set equals the union of the minimal prime ideals since Q(A) is reduced. By prime avoidance, I must be contained in some . Hence, the ideals are maximal ideals of Q(A). Also, their intersection is zero. Thus, by the Chinese remainder theorem applied to Q(A),

.

Let S be the multiplicatively closed set of non-zero-divisors of A. By exactness of localization,

,

which is already a field and so must be .

Generalization

[edit]

If is a commutative ring and is any multiplicatively closed set in , the localization can still be constructed, but the ring homomorphism from to might fail to be injective. For example, if , then is the trivial ring.

Citations

[edit]

References

[edit]
  • Matsumura, Hideyuki (1980), Commutative algebra (2nd ed.), Benjamin/Cummings, ISBN 978-0-8053-7026-3, OCLC 988482880
  • Matsumura, Hideyuki (1989), Commutative ring theory, Cambridge University Press, ISBN 978-0-521-36764-6, OCLC 23133540