Template:Uniform hyperbolic tiles db
{{{{{1}}}|{{{2}}}|
|U73_0-name=Heptagonal tiling|
|U73_0-image2=Heptagonal tiling.svg|
|U73_0-image=Heptagonal tiling.svg|
|U73_0-vfigimage=Heptagonal tiling vertfig.png|
|U73_0-dimage=Order-7 triangular tiling.svg|
|U73_0-vfig=73|
|U73_0-Wythoff= 3 | 7 2|
|U73_0-group=[7,3], (*732)|
|U73_0-rotgroup=[7,3]+, (732)|
|U73_0-special=|
|U73_0-schl={7,3}|
|U73_0-dual=Order-7 triangular tiling|
|U73_0-CD=
|U73_0-CDf=
|U73_2-name=Order-7 triangular tiling|
|U73_2-image2=Order-7 triangular tiling.svg|
|U73_2-image=Order-7 triangular tiling.svg|
|U73_2-imagecaption=
|U73_2-vfigimage=Order-7 Triangular tiling vertfig.png|
|U73_2-dimage=Heptagonal tiling.svg|
|U73_2-vfig=37|
|U73_2-Wythoff= 7 | 3 2
|U73_2-group=[7,3], (*732)|
|U73_2-rotgroup=[7,3]+, (732)|
|U73_2-special=|
|U73_2-schl={3,7}|
|U73_2-dual=Heptagonal tiling|
|U73_2-CD=
|U73_2-CDf=
|U73_01-name=Truncated heptagonal tiling|
|U73_01-image2=Truncated heptagonal tiling.svg|
|U73_01-image=Truncated heptagonal tiling.svg|
|U73_01-imagecaption=
|U73_01-vfigimage=Truncated heptagonal tiling vertfig.png|
|U73_01-dimage=Ord7 triakis triang til.png|
|U73_01-vfig=3.14.14|
|U73_01-Wythoff= 2 3 | 7|
|U73_01-group=[7,3], (*732)|
|U73_01-rotgroup=[7,3]+, (732)|
|U73_01-special=|
|U73_01-schl=t{7,3}|
|U73_01-dual=Order-7 triakis triangular tiling|
|U73_01-CD=
|U73_01-CDf=
|U73_12-name=Truncated order-7 triangular tiling|
|U73_12-image2=Truncated order-7 triangular tiling.svg|
|U73_12-image=Truncated order-7 triangular tiling.svg|
|U73_12-imagecaption=
|U73_12-vfigimage=Order-7 truncated triangular tiling vertfig.png|
|U73_12-dimage=Order3 heptakis heptagonal til.png|
|U73_12-vfig=7.6.6|
|U73_12-Wythoff= 2 7 | 3
|U73_12-group=[7,3], (*732)|
|U73_12-rotgroup=[7,3]+, (732)|
|U73_12-special=|
|U73_12-schl=t{3,7}|
|U73_12-dual=Heptakis heptagonal tiling|
|U73_12-CD=
|U73_12-CDf=
|U73_1-name=Triheptagonal tiling|
|U73_1-image2=Triheptagonal tiling.svg|
|U73_1-image=Triheptagonal tiling.svg|
|U73_1-imagecaption=
|U73_1-vfigimage=Triheptagonal tiling vertfig.png|
|U73_1-dimage=Order73_qreg_rhombic_til.png|
|U73_1-vfig=(3.7)2|
|U73_1-Wythoff= 2 | 7 3|
|U73_1-group=[7,3], (*732)|
|U73_1-rotgroup=[7,3]+, (732)|
|U73_1-special=edge-transitive|
|U73_1-schl=r{7,3} or |
|U73_1-dual=Order-7-3 rhombille tiling|
|U73_1-CD= or
|U73_1-CDf=
|U73_02-name=Rhombitriheptagonal tiling|
|U73_02-image2=Rhombitriheptagonal tiling.svg|
|U73_02-image=Rhombitriheptagonal tiling.svg|
|U73_02-imagecaption=
|U73_02-vfigimage=Small rhombitriheptagonal tiling vertfig.png|
|U73_02-dimage=Deltoidal triheptagonal til.png|
|U73_02-vfig=3.4.7.4|
|U73_02-Wythoff= 3 | 7 2|
|U73_02-group=[7,3], (*732)|
|U73_02-rotgroup=[7,3]+, (732)|
|U73_02-special=|
|U73_02-schl=rr{7,3} or
|U73_02-dual=Deltoidal triheptagonal tiling|
|U73_02-CD= or
|U73_02-CDf=
|U73_012-name=Truncated triheptagonal tiling|
|U73_012-image2=Truncated triheptagonal tiling.svg|
|U73_012-image=Truncated triheptagonal tiling.svg|
|U73_012-imagecaption=
|U73_012-vfigimage=Great rhombitriheptagonal tiling vertfig.png|
|U73_012-dimage=Heptakis heptagonal tiling.png|
|U73_012-vfig=4.6.14|
|U73_012-Wythoff= 2 7 3 ||
|U73_012-group=[7,3], (*732)|
|U73_012-rotgroup=[7,3]+, (732)|
|U73_012-special=|
|U73_012-schl=tr{7,3} or |
|U73_012-dual=Order 3-7 kisrhombille|
|U73_012-CD= or
|U73_012-CDf=
|U73_s-name=Snub triheptagonal tiling|
|U73_s-image=Snub triheptagonal tiling.svg|
|U73_s-image2=Snub triheptagonal tiling.svg|
|U73_s-imagecaption=
|U73_s-vfigimage=Snub heptagonal tiling vertfig.png|
|U73_s-dimage=Ord7 3 floret penta til.png|
|U73_s-vfig=3.3.3.3.7|
|U73_s-Wythoff= | 7 3 2|
|U73_s-group=[7,3]+, (732)|
|U73_s-rotgroup=[7,3]+, (732)|
|U73_s-special=Chiral|
|U73_s-schl=sr{7,3} or |
|U73_s-dual=Order-7-3 floret pentagonal tiling|
|U73_s-CD= or
|U73_s-CDf=
|U83_0-name=Octagonal tiling|
|U83_0-image2=H2-8-3-dual.svg|
|U83_0-image=H2-8-3-dual.svg|
|U83_0-imagecaption=
|U83_0-vfigimage=octagonal tiling vertfig.png|
|U83_0-dimage=Uniform tiling 83-t2.png|
|U83_0-vfig=83|
|U83_0-Wythoff= 3 | 8 2
2 8 | 4
4 4 4 ||
|U83_0-group=[8,3], (*832)
[8,4], (*842)
[(4,4,4)], (*444)|
|U83_0-rotgroup=[8,3]+, (832)
[8,4]+, (842)
[(4,4,4)]+, (444)|
|U83_0-special=|
|U83_0-schl={8,3}
t{4,8}|
|U83_0-dual=Order-8 triangular tiling|
|U83_0-CD=
|U83_0-CDf=
|U83_2-name=Order-8 triangular tiling|
|U83_2-image2=H2-8-3-primal.svg|
|U83_2-image=H2-8-3-primal.svg|
|U83_2-imagecaption=
|U83_2-vfigimage=Order-8 Triangular tiling vertfig.png|
|U83_2-dimage=Uniform tiling 83-t0.png|
|U83_2-vfig=38|
|U83_2-Wythoff= 8 | 3 2
4 | 3 3
|U83_2-group=[8,3], (*832)
[(4,3,3)], (*433)
[(4,4,4)], (*444)|
|U83_2-rotgroup=[8,3]+, (832)
[(4,3,3)]+, (433)
[(4,4,4)]+, (444)|
|U83_2-special=|
|U83_2-schl={3,8}
(3,4,3)|
|U83_2-dual=Octagonal tiling|
|U83_2-CD=
|U83_2-CDf=
|U83_01-name=Truncated octagonal tiling|
|U83_01-image2=H2-8-3-trunc-dual.svg|
|U83_01-image=H2-8-3-trunc-dual.svg|
|U83_01-imagecaption=
|U83_01-vfigimage=Truncated octagonal tiling vertfig.png|
|U83_01-dimage=|
|U83_01-vfig=3.16.16|
|U83_01-Wythoff= 2 3 | 8|
|U83_01-group=[8,3], (*832)|
|U83_01-rotgroup=[8,3]+, (832)|
|U83_01-special=|
|U83_01-schl=t{8,3}|
|U83_01-dual=Order-8 triakis triangular tiling|
|U83_01-CD=
|U83_01-CDf=
|U83_12-name=Truncated order-8 triangular tiling|
|U83_12-image2=H2-8-3-trunc-primal.svg|
|U83_12-image=H2-8-3-trunc-primal.svg|
|U83_12-imagecaption=
|U83_12-vfigimage=Order-8 truncated triangular tiling vertfig.png|
|U83_12-dimage=|
|U83_12-vfig=8.6.6|
|U83_12-Wythoff= 2 8 | 3
4 3 3 |
|U83_12-group=[8,3], (*832)
[(4,3,3)], (*433)|
|U83_12-rotgroup=[8,3]+, (832)
[(4,4,3)]+, (443)|
|U83_12-special=|
|U83_12-schl=t{3,8}|
|U83_12-dual=Octakis octagonal tiling|
|U83_12-CD=
|U83_12-CDf=
|U83_1-name=Trioctagonal tiling|
|U83_1-image2=H2-8-3-rectified.svg|
|U83_1-image=H2-8-3-rectified.svg|
|U83_1-imagecaption=
|U83_1-vfigimage=Trioctagonal tiling vertfig.png|
|U83_1-dimage=|
|U83_1-vfig=(3.8)2|
|U83_1-Wythoff= 2 | 8 3|
3 3 | 4|
|U83_1-group=[8,3], (*832)
[(4,3,3)], (*433)|
|U83_1-rotgroup=[8,3]+, (832)
[(4,3,3)]+, (433)|
|U83_1-special=edge-transitive|
|U83_1-schl=r{8,3} or |
|U83_1-dual=Order-8-3 rhombille tiling|
|U83_1-CD= or
|U83_1-CDf=
|U83_02-name=Rhombitrioctagonal tiling|
|U83_02-image2=H2-8-3-cantellated.svg|
|U83_02-image=H2-8-3-cantellated.svg|
|U83_02-imagecaption=
|U83_02-vfigimage=Small rhombitrioctagonal tiling vertfig.png|
|U83_02-dimage=|
|U83_02-vfig=3.4.8.4|
|U83_02-Wythoff= 3 | 8 2|
|U83_02-group=[8,3], (*832)
[8,3+], (3*4)|
|U83_02-rotgroup=[8,3]+, (832)
[(4,4,3)]+, (443)|
|U83_02-special=|
|U83_02-schl=rr{8,3} or
s2{3,8}|
|U83_02-dual=Deltoidal trioctagonal tiling|
|U83_02-CD= or
|U83_02-CDf=
|U83_012-name=Truncated trioctagonal tiling|
|U83_012-image2=H2-8-3-omnitruncated.svg|
|U83_012-image=H2-8-3-omnitruncated.svg|
|U83_012-imagecaption=
|U83_012-vfigimage=Great rhombitrioctagonal tiling vertfig.png|
|U83_012-dimage=|
|U83_012-vfig=4.6.16|
|U83_012-Wythoff= 2 8 3 ||
|U83_012-group=[8,3], (*832)|
|U83_012-rotgroup=[8,3]+, (832)|
|U83_012-special=|
|U83_012-schl=tr{8,3} or |
|U83_012-dual=Order 3-8 kisrhombille|
|U83_012-CD= or
|U83_012-CDf=
|U83_s-name=Snub trioctagonal tiling|
|U83_s-image2=H2-8-3-snub.svg|
|U83_s-image=H2-8-3-snub.svg|
|U83_s-imagecaption=
|U83_s-vfigimage=Snub octagonal tiling vertfig.png|
|U83_s-dimage=Ord8 3 floret penta til.png|
|U83_s-vfig=3.3.3.3.8|
|U83_s-Wythoff= | 8 3 2|
|U83_s-group=[8,3]+, (832)|
|U83_s-rotgroup=[8,3]+, (832)|
|U83_s-special=Chiral|
|U83_s-schl=sr{8,3} or |
|U83_s-dual=Order-8-3 floret pentagonal tiling|
|U83_s-CD= or
or
|U83_s-CDf=
|U54_0-name=Order-4 pentagonal tiling|
|U54_0-image2=H2-5-4-dual.svg|
|U54_0-image=H2-5-4-dual.svg|
|U54_0-imagecaption=
|U54_0-vfigimage=Order-4 pentagonal tiling vertfig.png|
|U54_0-dimage=Uniform tiling 54-t2.png|
|U54_0-vfig=54|
|U54_0-Wythoff= 4 | 5 2
2 | 5 5|
|U54_0-group=[5,4], (*542)
[5,5], (*552)|
|U54_0-rotgroup=[5,4]+, (542)
[5,5]+, (552)|
|U54_0-special=|
|U54_0-schl={5,4}
r{5,5} or |
|U54_0-dual=Order-5 square tiling|
|U54_0-CD= or
|U54_0-CDf=
|U54_2-name=Order-5 square tiling|
|U54_2-image2=H2-5-4-primal.svg|
|U54_2-image=H2-5-4-primal.svg|
|U54_2-imagecaption=
|U54_2-vfigimage=Order-5 square tiling vertfig.png|
|U54_2-dimage=Uniform tiling 54-t0.png|
|U54_2-vfig=45|
|U54_2-Wythoff= 5 | 4 2
|U54_2-group=[5,4], (*542)||
|U54_2-rotgroup=[5,4]+, (542)|
|U54_2-special=|
|U54_2-schl={4,5}|
|U54_2-dual=Order-4 pentagonal tiling|
|U54_2-CD=
|U54_2-CDf=
|U54_01-name=Truncated pentagonal tiling|
|U54_01-image2=H2-5-4-trunc-dual.svg|
|U54_01-image=H2-5-4-trunc-dual.svg|
|U54_01-imagecaption=
|U54_01-vfigimage=Truncated pentagonal tiling vertfig.png|
|U54_01-dimage=Order-5 tetrakis square tiling.png|
|U54_01-vfig=4.10.10|
|U54_01-Wythoff= 2 4 | 5
2 5 5 ||
|U54_01-group=[5,4], (*542)
[5,5], (*552)|
|U54_01-rotgroup=[5,4]+, (542)
[5,5]+, (552)|
|U54_01-special=|
|U54_01-schl=t{5,4}|
|U54_01-dual=Order-5 tetrakis square tiling|
|U54_01-CD= or
|U54_01-CDf=
|U54_12-name=Truncated order-5 square tiling|
|U54_12-image2=H2-5-4-trunc-primal.svg|
|U54_12-image=H2-5-4-trunc-primal.svg|
|U54_12-imagecaption=7
|U54_12-vfigimage=Order-5 truncated square tiling vertfig.png|
|U54_12-dimage=Order-4 pentakis pentagonal tiling.png|
|U54_12-vfig=8.8.5|
|U54_12-Wythoff= 2 5 | 4
|U54_12-group=[5,4], (*542)|
|U54_12-rotgroup=[5,4]+, (542)|
|U54_12-special=|
|U54_12-schl=t{4,5}|
|U54_12-dual=Order-4 pentakis pentagonal tiling|
|U54_12-CD=
|U54_12-CDf=
|U54_1-name=Tetrapentagonal tiling|
|U54_1-image2=H2-5-4-rectified.svg|
|U54_1-image=H2-5-4-rectified.svg|
|U54_1-imagecaption=
|U54_1-vfigimage=Tetrapentagonal tiling vertfig.png|
|U54_1-dimage=Order-5-4 quasiregular rhombic tiling.png|
|U54_1-vfig=(4.5)2|
|U54_1-Wythoff= 2 | 5 4
5 5 | 2|
|U54_1-group=[5,4], (*542)
[5,5], (*552)|
|U54_1-rotgroup=[5,4]+, (542)
[5,5]+, (552)|
|U54_1-special=edge-transitive|
|U54_1-schl=r{5,4} or
rr{5,5} or |
|U54_1-dual=Order-5-4 rhombille tiling|
|U54_1-CD= or
or
|U54_1-CDf=
|U54_02-name=Rhombitetrapentagonal tiling|
|U54_02-image2=H2-5-4-cantellated.svg|
|U54_02-image=H2-5-4-cantellated.svg|
|U54_02-imagecaption=
|U54_02-vfigimage=Small rhombitetrapentagonal tiling vertfig.png|
|U54_02-dimage=Deltoidal tetrapentagonal tiling.png|
|U54_02-vfig=4.4.5.4|
|U54_02-Wythoff= 4 | 5 2|
|U54_02-group=[5,4], (*542)|
|U54_02-rotgroup=[5,4]+, (542)|
|U54_02-special=|
|U54_02-schl=rr{5,4} or |
|U54_02-dual=Deltoidal tetrapentagonal tiling|
|U54_02-CD= or
|U54_02-CDf=
|U54_012-name=Truncated tetrapentagonal tiling|
|U54_012-image2=H2-5-4-omnitruncated.svg|
|U54_012-image=H2-5-4-omnitruncated.svg|
|U54_012-imagecaption=
|U54_012-vfigimage=Great rhombitetrapentagonal tiling vertfig.png|
|U54_012-dimage=Order-4 bisected pentagonal tiling.png|
|U54_012-vfig=4.8.10|
|U54_012-Wythoff= 2 5 4 ||
|U54_012-group=[5,4], (*542)|
|U54_012-rotgroup=[5,4]+, (542)|
|U54_012-special=|
|U54_012-schl=tr{5,4} or |
|U54_012-dual=Order-4-5 kisrhombille tiling|
|U54_012-CD= or
|U54_012-CDf=
|U54_s-name=Snub tetrapentagonal tiling|
|U54_s-image2=H2-5-4-snub.svg|
|U54_s-image=H2-5-4-snub.svg|
|U54_s-imagecaption=
|U54_s-vfigimage=Snub pentagonal tiling vertfig.png|
|U54_s-dimage=Order-5-4 floret pentagonal tiling.png|
|U54_s-vfig=3.3.4.3.5|
|U54_s-Wythoff= | 5 4 2|
|U54_s-group=[5,4]+, (542)|
|U54_s-rotgroup=[5,4]+, (542)|
|U54_s-special=Chiral|
|U54_s-schl=sr{5,4} or |
|U54_s-dual=Order-5-4 floret pentagonal tiling|
|U54_s-CD= or
|U54_s-CDf=
|U55_0-name=Order-5 pentagonal tiling|
|U55_0-image2=Uniform tiling 552-t0.png|
|U55_0-image=H2 tiling 255-1.png|
|U55_0-imagecaption=
|U55_0-vfigimage=Order-5 pentagonal tiling vertfig.png|
|U55_0-dimage=Uniform tiling 552-t2.png|
|U55_0-vfig=55|
|U55_0-Wythoff= 5 | 5 2|
|U55_0-group=[5,5], (*552)|
|U55_0-rotgroup=[5,5]+, (552)|
|U55_0-special=|
|U55_0-schl={5,5}|
|U55_0-dual=self dual|
|U55_0-CD=
|U55_0-CDf=
|U55_01-name=Truncated order-5 pentagonal tiling|
|U55_01-image2=Uniform tiling 552-t01.png|
|U55_01-image=H2 tiling 255-3.png|
|U55_01-imagecaption=
|U55_01-vfigimage=Truncated pentagonal tiling vertfig.png|
|U55_01-dimage=Order-5 pentakis pentagonal tiling.png|
|U55_01-vfig=5.10.10|
|U55_01-Wythoff= 2 5 | 5|
|U55_01-group=[5,5], (*552)|
|U55_01-rotgroup=[5,5]+, (552)|
|U55_01-special=|
|U55_01-schl=t{5,5}|
|U55_01-dual=Order-5 pentakis pentagonal tiling|
|U55_01-CD=
|U55_01-CDf=
|U55_1-name=tetrapentagonal tiling|
|U55_1-image2=Uniform tiling 552-t1.png|
|U55_1-image=H2 tiling 255-2.png|
|U55_1-imagecaption=
|U55_1-vfigimage=Tetrapentagonal tiling vertfig.png|
|U55_1-dimage=Order-5-5 quasiregular rhombic tiling.png|
|U55_1-vfig=54|
|U55_1-Wythoff= 2 | 5 5|
|U55_1-group=[5,5], (*552)
[5,4], (*542)|
|U55_1-rotgroup=[5,5]+, (552)
[5,4]+, (542)|
|U55_1-special=edge-transitive|
|U55_1-schl=r{5,5} or |
|U55_1-dual=Order-5-5 rhombille tiling|
|U55_1-CD=
=
|U55_1-CDf=
=
|U55_02-name=Rhombitetrapentagonal tiling|
|U55_02-image2=Uniform tiling 552-t02.png|
|U55_02-image=H2 tiling 255-5.png|
|U55_02-imagecaption=
|U55_02-vfigimage=Small rhombitetrapentagonal tiling vertfig.png|
|U55_02-dimage=Deltoidal tetrapentagonal tiling.png
|U55_02-vfig=54
|U55_02-Wythoff= 5 5 | 2
|U55_02-group=[5,5], (*552)
|U55_02-rotgroup=[5,5]+, (552)
|U55_02-special=|
|U55_02-schl=rr{5,5} or |
|U55_02-dual=Deltoidal tetrapentagonal tiling|
|U55_02-CD= or
|U55_02-CDf=
|U55_012-name=Truncated tetrapentagonal tiling|
|U55_012-image2=Uniform tiling 552-t012.png|
|U55_012-image=H2 tiling 255-7.png|
|U55_012-imagecaption=
|U55_012-vfigimage=Great rhombitetrapentagonal tiling vertfig.png|
|U55_012-dimage=Order-5 bisected pentagonal tiling.png|
|U55_012-vfig=4.10.10|
|U55_012-Wythoff= 2 5 5 ||
|U55_012-group=[5,5], (*552)|
|U55_012-rotgroup=[5,5]+, (552)
|U55_012-special=|
|U55_012-schl=tr{5,5} or |
|U55_012-dual=Order-5-5 kisrhombille tiling|
|U55_012-CD= or
|U55_012-CDf=
|U55_s-name=Snub pentapentagonal tiling|
|U55_s-image2=Uniform tiling 552-snub.png|
|U55_s-image=Uniform tiling 552-snub.png|
|U55_s-imagecaption=
|U55_s-vfigimage=Snub pentagonal tiling vertfig.png|
|U55_s-dimage=Order-5-5 floret pentagonal tiling.png|
|U55_s-vfig=3.3.5.3.5|
|U55_s-Wythoff= | 5 5 2|
|U55_s-group=[5+,4], (5*2)
[5,5]+, (552)
|U55_s-rotgroup=[5,5]+, (552)
|U55_s-special=|
|U55_s-schl=s{5,4}
sr{5,5}|
|U55_s-dual=Order-5-5 floret pentagonal tiling|
|U55_s-CD= or
|U55_s-CDf=
|U64_0-name=Order-4 hexagonal tiling|
|U64_0-image2=Uniform tiling 64-t0.png|
|U64_0-image=H2 tiling 246-1.png|
|U64_0-imagecaption=
|U64_0-vfigimage=Order-4 hexagonal tiling vertfig.png|
|U64_0-dimage=Uniform tiling 64-t2.png|
|U64_0-vfig=64|
|U64_0-Wythoff= 4 | 6 2|
|U64_0-rotgroup=[6,4]+, (642)|
|U64_0-group=[6,4], (*642)|
|U64_0-special=|
|U64_0-schl={6,4}|
|U64_0-dual=Order-6 square tiling|
|U64_0-CD=
|U64_0-CDf=
|U64_2-name=Order-6 square tiling|
|U64_2-image2=Uniform tiling 64-t2.png|
|U64_2-image=H2 tiling 246-4.png|
|U64_2-imagecaption=
|U64_2-vfigimage=Order-6 square tiling vertfig.png|
|U64_2-dimage=Uniform tiling 64-t0.png|
|U64_2-vfig=46|
|U64_2-Wythoff= 6 | 4 2
|U64_2-group=[6,4], (*642)|
|U64_2-rotgroup=[6,4]+, (642)
|U64_2-special=|
|U64_2-schl={4,6}|
|U64_2-dual=Order-4 hexagonal tiling|
|U64_2-CD=
|U64_2-CDf=
|U64_01-name=Truncated order-4 hexagonal tiling|
|U64_01-image2=Uniform tiling 64-t01.png|
|U64_01-image=H2 tiling 246-3.png|
|U64_01-imagecaption=
|U64_01-vfigimage=Order-4 truncated hexagonal tiling vertfig.png|
|U64_01-dimage=|
|U64_01-vfig=4.12.12|
|U64_01-Wythoff= 2 4 | 6
2 6 6 ||
|U64_01-group=[6,4], (*642)
[6,6], (*662)|
|U64_01-rotgroup=[6,4]+, (642)
[6,6]+, (662)|
|U64_01-special=|
|U64_01-schl=t{6,4}
tr{6,6} or |
|U64_01-dual=Order-6 tetrakis square tiling|
|U64_01-CD= or
|U64_01-CDf=
|U64_12-name=Truncated order-6 square tiling|
|U64_12-image2=Uniform tiling 64-t12.png|
|U64_12-image=H2 tiling 246-6.png|
|U64_12-imagecaption=
|U64_12-vfigimage=Order-6 truncated square tiling vertfig.png|
|U64_12-dimage=|
|U64_12-vfig=8.8.6|
|U64_12-Wythoff= 2 6 | 4
|U64_12-group=[6,4], (*642)
[(3,3,4)], (*334)|
|U64_12-rotgroup=[6,4]+, (642)
[(3,3,4)]+, (334)|
|U64_12-special=|
|U64_12-schl=t{4,6}|
|U64_12-dual=Order-4 hexakis hexagonal tiling|
|U64_12-CD=
|U64_12-CDf=
|U64_1-name=Tetrahexagonal tiling|
|U64_1-image2=Uniform tiling 64-t1.png|
|U64_1-image=H2 tiling 246-2.png|
|U64_1-imagecaption=
|U64_1-vfigimage=Tetrahexagonal tiling vertfig.png|
|U64_1-dimage=|
|U64_1-vfig=(4.6)2|
|U64_1-Wythoff= 2 | 6 4|
|U64_1-group=[6,4], (*642)
[6,6], (*662)
[(4,4,3)], (*443)
[(∞,3,∞,3)], (*3232)|
|U64_1-rotgroup=[6,4]+, (642)
[6,6]+, (662)
[(4,4,3)]+, (443)
[(∞,3,∞,3)]+, (3232)|
|U64_1-special=edge-transitive|
|U64_1-schl=r{6,4} or
rr{6,6}
r(4,4,3)
t0,1,2,3(∞,3,∞,3)|
|U64_1-dual=Order-6-4 quasiregular rhombic tiling|
|U64_1-CD= or
or
|U64_1-CDf=
|U64_02-name=Rhombitetrahexagonal tiling|
|U64_02-image2=Uniform tiling 64-t02.png|
|U64_02-image=H2 tiling 246-5.png|
|U64_02-imagecaption=
|U64_02-vfigimage=Small rhombitetrahexagonal tiling vertfig.png|
|U64_02-dimage=|
|U64_02-vfig=4.4.6.4|
|U64_02-Wythoff= 4 | 6 2|
|U64_02-group=[6,4], (*642)|
|U64_02-rotgroup=[6,4]+, (642)|
|U64_02-special=|
|U64_02-schl=rr{6,4} or |
|U64_02-dual=Deltoidal tetrahexagonal tiling|
|U64_02-CD=
|U64_02-CDf=
|U64_012-name=Truncated tetrahexagonal tiling|
|U64_012-image2=Uniform tiling 64-t012.png|
|U64_012-image=H2 tiling 246-7.png|
|U64_012-imagecaption=
|U64_012-vfigimage=Great rhombitetrahexagonal tiling vertfig.png|
|U64_012-dimage=|
|U64_012-vfig=4.8.12|
|U64_012-Wythoff= 2 6 4 ||
|U64_012-group=[6,4], (*642)|
|U64_012-rotgroup=[6,4]+, (642)|
|U64_012-special=|
|U64_012-schl=tr{6,4} or |
|U64_012-dual=Order-4-6 kisrhombille tiling|
|U64_012-CD= or
|U64_012-CDf=
|U64_s-name=Snub tetrahexagonal tiling|
|U64_s-image2=Uniform tiling 64-snub.png|
|U64_s-image=Uniform tiling 64-snub.png|
|U64_s-imagecaption=
|U64_s-vfigimage=Snub hexagonal tiling vertfig.png|
|U64_s-dimage=|
|U64_s-vfig=3.3.4.3.6|
|U64_s-Wythoff= | 6 4 2|
|U64_s-group=[6,4]+, (642)|
|U64_s-rotgroup=[6,4]+, (642)|
|U64_s-special=Chiral|
|U64_s-schl=sr{6,4} or |
|U64_s-dual=Order-6-4 floret pentagonal tiling|
|U64_s-CD= or
|U64_s-CDf=
|U65_0-name=Order-5 hexagonal tiling|
|U65_0-image2=Uniform tiling 65-t0.png|
|U65_0-image=H2 tiling 256-1.png|
|U65_0-vfigimage=Hexagonal tiling vertfig.png|
|U65_0-dimage=H2chess 256b.png|
|U65_0-vfig=65|
|U65_0-Wythoff= 5 | 6 2|
|U65_0-group=[6,5], (*652)|
|U65_0-rotgroup=[6,5]+, (652)|
|U65_0-special=|
|U65_0-schl={6,5}|
|U65_0-dual=Order-6 pentagonal tiling|
|U65_0-CD=
|U65_0-CDf=
|U65_2-name=Order-6 pentagonal tiling|
|U65_2-image2=Uniform tiling 65-t2.png|
|U65_2-image=H2 tiling 256-4.png|
|U65_2-imagecaption=
|U65_2-vfigimage=Order-6 pentagonal tiling vertfig.png|
|U65_2-dimage=Uniform tiling 65-t0.png|
|U65_2-vfig=56|
|U65_2-Wythoff= 6 | 5 2
|U65_2-group=[6,5], (*652)|
|U65_2-rotgroup=[6,5]+, (652)|
|U65_2-special=|
|U65_2-schl={5,6}|
|U65_2-dual=Order-5 hexagonal tiling|
|U65_2-CD=
|U65_2-CDf=
|U65_01-name=Truncated order-5 hexagonal tiling|
|U65_01-image2=Uniform tiling 65-t01.png|
|U65_01-image=H2 tiling 256-3.png|
|U65_01-imagecaption=
|U65_01-vfigimage=Truncated Hexagonal tiling vertfig.png|
|U65_01-dimage=Order-6_pentakis_pentagonal_tiling.png|
|U65_01-vfig=5.12.12|
|U65_01-Wythoff= 2 5 | 6|
|U65_01-group=[6,5], (*652)|
|U65_01-rotgroup=[6,5]+, (652)|
|U65_01-special=|
|U65_01-schl=t{6,5}|
|U65_01-dual=Order-6 pentakis pentagonal tiling|
|U65_01-CD=
|U65_01-CDf=
|U65_12-name=Truncated order-6 pentagonal tiling|
|U65_12-image2=Uniform tiling 65-t12.png|
|U65_12-image=H2 tiling 256-6.png|
|U65_12-imagecaption=
|U65_12-vfigimage=Order-6 truncated pentagonal tiling vertfig.png|
|U65_12-dimage=H2chess 256e.png|
|U65_12-vfig=6.10.10|
|U65_12-Wythoff= 2 6 | 5
3 5 5 |
|U65_12-group=[6,5], (*652)
[(5,5,3)], (*553)|
|U65_12-rotgroup=[6,5]+, (652)|
|U65_12-special=|
|U65_12-schl=t{5,6}
t(5,5,3)|
|U65_12-dual=Order-5 hexakis hexagonal tiling|
|U65_12-CD=
|U65_12-CDf=
|U65_1-name=Pentahexagonal tiling|
|U65_1-image2=Uniform tiling 65-t1.png|
|U65_1-image=H2 tiling 256-2.png|
|U65_1-imagecaption=
|U65_1-vfigimage=Pentahexagonal tiling vertfig.png|
|U65_1-dimage=|
|U65_1-vfig=(5.62|
|U65_1-Wythoff= 2 | 6 5|
|U65_1-group=[6,5], (*652)|
|U65_1-rotgroup=[6,5]+, (652)|
|U65_1-special=edge-transitive|
|U65_1-schl=r{6,5} or |
|U65_1-dual=Order-6-5 rhombille tiling|
|U65_1-CD=
|U65_1-CDf=
|U65_02-name=Rhombipentahexagonal tiling|
|U65_02-image2=Uniform tiling 65-t02.png|
|U65_02-image=H2 tiling 256-5.png|
|U65_02-imagecaption=
|U65_02-vfigimage=Small rhombipentahexagonal tiling vertfig.png|
|U65_02-dimage=Deltoidal_pentahexagonal_tiling.png|
|U65_02-vfig=5.4.6.4|
|U65_02-Wythoff= 5 | 6 2|
|U65_02-group=[6,5], (*652)|
|U65_02-rotgroup=[6,5]+, (652)|
|U65_02-special=|
|U65_02-schl=rr{6,5} or
|U65_02-dual=Deltoidal pentahexagonal tiling|
|U65_02-CD=
|U65_02-CDf=
|U65_012-name=Truncated pentahexagonal tiling|
|U65_012-image2=Uniform tiling 65-t012.png|
|U65_012-image=H2 tiling 256-7.png|
|U65_012-imagecaption=
|U65_012-vfigimage=Great rhombipentahexagonal tiling vertfig.png|
|U65_012-dimage=H2checkers_256.png|
|U65_012-vfig=4.10.12|
|U65_012-Wythoff= 2 6 5 ||
|U65_012-group=[6,5], (*652)|
|U65_012-rotgroup=[6,5]+, (652)|
|U65_012-special=|
|U65_012-schl=tr{6,5} or |
|U65_012-dual=Order 5-6 kisrhombille|
|U65_012-CD=
|U65_012-CDf=
|U65_s-name=Snub pentahexagonal tiling|
|U65_s-image=Uniform tiling 65-snub.png|
|U65_s-image2=Uniform tiling 65-snub.png|
|U65_s-imagecaption=
|U65_s-vfigimage=Snub Hexagonal tiling vertfig.png|
|U65_s-dimage=|
|U65_s-vfig=3.3.5.3.6|
|U65_s-Wythoff= | 6 5 2|
|U65_s-group=[6,5]+, (652)|
|U65_s-rotgroup=[6,5]+, (652)|
|U65_s-special=Chiral|
|U65_s-schl=sr{6,5} or |
|U65_s-dual=Order-6-5 floret pentagonal tiling|
|U65_s-CD=
|U65_s-CDf=
|U66_0-name=Order-6 hexagonal tiling|
|U66_0-image2=Uniform tiling 66-t2.png|
|U66_0-image=H2 tiling 266-1.png|
|U66_0-imagecaption=
|U66_0-vfigimage=Order-6 hexagonal tiling vertfig.png|
|U66_0-dimage=Uniform tiling 66-t0.png|
|U66_0-vfig=66|
|U66_0-Wythoff= 6 | 6 2|
|U66_0-group=[6,6], (*662)|
|U66_0-rotgroup=[6,6]+, (662)|
|U66_0-special=|
|U66_0-schl={6,6}|
|U66_0-dual=self dual|
|U66_0-CD=
|U66_0-CDf=
|U66_01-name=Truncated order-6 hexagonal tiling|
|U66_01-image2=Uniform tiling 66-t01.png|
|U66_01-image=H2 tiling 266-3.png|
|U66_01-imagecaption=
|U66_01-vfigimage=Truncated hexagonal tiling vertfig.png|
|U66_01-dimage=|
|U66_01-vfig=6.12.12|
|U66_01-Wythoff= 2 6 | 6
3 6 6 ||
|U66_01-group=[6,6], (*662)
[(6,6,3)], (*663)|
|U66_01-rotgroup=[6,6]+, (662)|
|U66_01-special=|
|U66_01-schl=t{6,6} or h2{4,6}
t(6,6,3)|
|U66_01-dual=Order-6 hexakis hexagonal tiling|
|U66_01-CD= =
=
|U66_01-CDf=
|U66_1-name=hexahexagonal tiling|
|U66_1-image2=Uniform tiling 66-t1.png|
|U66_1-image=H2 tiling 266-2.png|
|U66_1-imagecaption=
|U66_1-vfigimage=hexahexagonal tiling vertfig.png|
|U66_1-dimage=|
|U66_1-vfig=64|
|U66_1-Wythoff= 2 | 6 6|
|U66_1-group=[6,6], (*662)|
|U66_1-rotgroup=[6,6]+, (662)|
|U66_1-special=edge-transitive|
|U66_1-schl=r{6,6} or |
|U66_1-dual=Order-6-6 quasiregular rhombic tiling|
|U66_1-CD=
|U66_1-CDf=
|U66_02-name=Rhombihexahexagonal tiling|
|U66_02-image2=Uniform tiling 66-t02.png|
|U66_02-image=H2 tiling 266-5.png|
|U66_02-imagecaption=
|U66_02-vfigimage=Small rhombihexahexagonal tiling vertfig.png|
|U66_02-dimage=|
|U66_02-vfig=(4.6)2|
|U66_02-Wythoff= 6 | 6 2|
|U66_02-group=[6,6], (*662)|
|U66_02-rotgroup=[6,6]+, (662)|
|U66_02-special=|
|U66_02-schl=rr{6,6} or |
|U66_02-dual=Deltoidal hexahexagonal tiling|
|U66_02-CD=
|U66_02-CDf=
|U66_012-name=Truncated hexahexagonal tiling|
|U66_012-image2=Uniform tiling 66-t012.png|
|U66_012-image=H2 tiling 266-7.png|
|U66_012-imagecaption=
|U66_012-vfigimage=Great rhombihexahexagonal tiling vertfig.png|
|U66_012-dimage=|
|U66_012-vfig=6.12.12|
|U66_012-Wythoff= 2 6 6 ||
|U66_012-group=[6,6], (*662)|
|U66_012-rotgroup=[6,6]+, (662)|
|U66_012-special=|
|U66_012-schl=tr{6,6} or |
|U66_012-dual=Order-6-6 kisrhombille tiling|
|U66_012-CD=
|U66_012-CDf=
|U66_s-name=Snub hexahexagonal tiling|
|U66_s-image2=Uniform tiling 66-snub.png|
|U66_s-image=Uniform tiling 66-snub.png|
|U66_s-imagecaption=
|U66_s-vfigimage=Snub hexagonal tiling vertfig.png|
|U66_s-dimage=|
|U66_s-vfig=3.3.6.3.6|
|U66_s-Wythoff= | 6 6 2|
|U66_s-group=[6,6]+, (662)
[6+,4], (6*2)|
|U66_s-rotgroup=[6,6]+, (662)|
|U66_s-special=|
|U66_s-schl=s{6,4}
sr{6,6}|
|U66_s-dual=Order-6-6 floret hexagonal tiling|
|U66_s-CD=
|U66_s-CDf=
|U74_0-name=Order-4 heptagonal tiling|
|U74_0-image2=Uniform tiling 74-t0.png|
|U74_0-image=H2 tiling 247-1.png|
|U74_0-imagecaption=
|U74_0-vfigimage=Order-4 heptagonal tiling vertfig.png|
|U74_0-dimage=Uniform tiling 74-t2.png|
|U74_0-vfig=74|
|U74_0-Wythoff= 4 | 7 2
2 | 7 7|
|U74_0-group=[7,4], (*742)
[7,7], (*772)|
|U74_0-rotgroup=[7,4]+, (742)
[7,7]+, (772)|
|U74_0-special=|
|U74_0-schl={7,4}
r{7,7}|
|U74_0-dual=Order-7 square tiling|
|U74_0-CD=
|U74_0-CDf=
|U74_2-name=Order-7 square tiling|
|U74_2-image2=Uniform tiling 74-t2.png|
|U74_2-image=H2 tiling 247-4.png|
|U74_2-imagecaption=
|U74_2-vfigimage=Order-7 square tiling vertfig.png|
|U74_2-dimage=Uniform tiling 74-t0.png|
|U74_2-vfig=47|
|U74_2-Wythoff= 7 | 4 2
|U74_2-group=[7,4], (*742)||
|U74_2-rotgroup=[7,4]+, (742)|
|U74_2-special=|
|U74_2-schl={4,7}|
|U74_2-dual=Order-4 heptagonal tiling|
|U74_2-CD=
|U74_2-CDf=
|U74_01-name=Truncated heptagonal tiling|
|U74_01-image2=Uniform tiling 74-t01.png|
|U74_01-image=H2 tiling 247-3.png|
|U74_01-imagecaption=
|U74_01-vfigimage=Truncated heptagonal tiling vertfig.png|
|U74_01-dimage=Hyperbolic domains 772.png|
|U74_01-vfig=4.14.14|
|U74_01-Wythoff= 2 4 | 7
2 7 7 ||
|U74_01-group=[7,4], (*742)
[7,7], (*772)|
|U74_01-rotgroup=[7,4]+, (742)
[7,7]+, (772)|
|U74_01-special=|
|U74_01-schl=t{7,4}|
|U74_01-dual=Order-7 tetrakis square tiling|
|U74_01-CD= or
|U74_01-CDf=
|U74_12-name=Truncated order-7 square tiling|
|U74_12-image2=Uniform tiling 74-t12.png|
|U74_12-image=H2 tiling 247-6.png|
|U74_12-imagecaption=
|U74_12-vfigimage=Order-7 truncated square tiling vertfig.png|
|U74_12-dimage=Ord4 heptakis heptagonal til.png|
|U74_12-vfig=8.8.7|
|U74_12-Wythoff= 2 7 | 4
|U74_12-group=[7,4], (*742)
|U74_12-rotgroup=[7,4]+, (742)
|U74_12-special=|
|U74_12-schl=t{4,7}|
|U74_12-dual=Order-4 heptakis heptagonal tiling
|U74_12-CD=
|U74_12-CDf=
|U74_1-name=Tetraheptagonal tiling|
|U74_1-image2=Uniform tiling 74-t1.png|
|U74_1-image=H2 tiling 247-2.png|
|U74_1-imagecaption=
|U74_1-vfigimage=Tetraheptagonal tiling vertfig.png|
|U74_1-dimage=Ord74 qreg rhombic til.png|
|U74_1-vfig=(4.7)2|
|U74_1-Wythoff= 2 | 7 4
7 7 | 2|
|U74_1-group=[7,4], (*742)
[7,7], (*772)|
|U74_1-rotgroup=[7,4]+, (742)
[7,7]+, (772)|
|U74_1-special=edge-transitive|
|U74_1-schl=r{7,4} or
rr{7,7}|
|U74_1-dual=Order-7-4 rhombille tiling|
|U74_1-CD=
|U74_1-CDf=
|U74_02-name=Rhombitetraheptagonal tiling|
|U74_02-image2=Uniform tiling 74-t02.png|
|U74_02-image=H2 tiling 247-5.png|
|U74_02-imagecaption=
|U74_02-vfigimage=Small rhombitetraheptagonal tiling vertfig.png|
|U74_02-dimage=Deltoidal tetraheptagonal tiling.png|
|U74_02-vfig=4.4.7.4|
|U74_02-Wythoff= 4 | 7 2|
|U74_02-group=[7,4], (*742)||
|U74_02-rotgroup=[7,4]+, (742)|
|U74_02-special=|
|U74_02-schl=rr{7,4} or |
|U74_02-dual=Deltoidal tetraheptagonal tiling|
|U74_02-CD=
|U74_02-CDf=
|U74_012-name=Truncated tetraheptagonal tiling|
|U74_012-image2=Uniform tiling 74-t012.png|
|U74_012-image=H2 tiling 247-7.png|
|U74_012-imagecaption=
|U74_012-vfigimage=Great rhombitetraheptagonal tiling vertfig.png|
|U74_012-dimage=Order-4 bisected heptagonal tiling.png|
|U74_012-vfig=4.8.14|
|U74_012-Wythoff= 2 7 4 ||
|U74_012-group=[7,4], (*742)||
|U74_012-rotgroup=[7,4]+, (742)|
|U74_012-special=|
|U74_012-schl=tr{7,4} or |
|U74_012-dual=Order-4-7 kisrhombille tiling|
|U74_012-CD=
|U74_012-CDf=
|U74_s-name=Snub tetraheptagonal tiling|
|U74_s-image2=Uniform tiling 74-snub.png|
|U74_s-image=Uniform tiling 74-snub.png|
|U74_s-imagecaption=
|U74_s-vfigimage=Snub heptagonal tiling vertfig.png|
|U74_s-dimage=Order-7-4 floret pentagonal tiling.png|
|U74_s-vfig=3.3.4.3.7|
|U74_s-Wythoff= | 7 4 2|
|U74_s-group=[7,4]+, (742)||
|U74_s-rotgroup=[7,4]+, (742)|
|U74_s-special=Chiral|
|U74_s-schl=sr{7,4} or |
|U74_s-dual=Order-7-4 floret pentagonal tiling|
|U74_s-CD=
|U74_s-CDf=
|U77_0-name=Order-7 heptagonal tiling|
|U77_0-image2=Uniform tiling 77-t2.png|
|U77_0-image=H2 tiling 277-1.png|
|U77_0-imagecaption=
|U77_0-vfigimage=Order-7 heptagonal tiling vertfig.png|
|U77_0-dimage=Uniform tiling 77-t0.png|
|U77_0-vfig=77|
|U77_0-Wythoff= 7 | 7 2|
|U77_0-group=[7,7], (*772)|
|U77_0-rotgroup=[7,7]+, (772)|
|U77_0-special=|
|U77_0-schl={7,7}|
|U77_0-dual=self dual|
|U77_0-CD=
|U77_0-CDf=
|U77_01-name=Truncated order-7 heptagonal tiling|
|U77_01-image2=Uniform tiling 77-t01.png|
|U77_01-image=H2 tiling 277-3.png|
|U77_01-imagecaption=
|U77_01-vfigimage=Truncated order-7 heptagonal tiling vertfig.png|
|U77_01-dimage=Order7 heptakis heptagonal til.png|
|U77_01-vfig=7.14.14|
|U77_01-Wythoff= 2 7 | 7|
|U77_01-group=[7,7], (*772)|
|U77_01-rotgroup=[7,7]+, (772)|
|U77_01-special=|
|U77_01-schl=t{7,7}|
|U77_01-dual=Order-7 heptakis heptagonal tiling|
|U77_01-CD=
|U77_01-CDf=
|U77_s-name=Snub heptaheptagonal tiling|
|U77_s-image2=Uniform tiling 77-snub.png|
|U77_s-image=Uniform tiling 77-snub.png|
|U77_s-imagecaption=
|U77_s-vfigimage=Snub heptaheptagonal tiling vertfig.png|
|U77_s-dimage=Order-7-7 floret pentagonal tiling.png|
|U77_s-vfig=3.3.7.3.7|
|U77_s-Wythoff= | 7 7 2|
|U77_s-group=[7,7]+, (772)
[7+,4], (7*2)|
|U77_s-rotgroup=[7,7]+, (772)|
|U77_s-special=|
|U77_s-schl=sr{7,7} or |
|U77_s-dual=Order-7-7 floret pentagonal tiling|
|U77_s-CD=
|U77_s-CDf=
|U84_0-name=Order-4 octagonal tiling|
|U84_0-image2=Uniform tiling 84-t0.png|
|U84_0-image=H2 tiling 248-1.png|
|U84_0-imagecaption=
|U84_0-vfigimage=Order-4 octagonal tiling vertfig.png|
|U84_0-dimage=Uniform tiling 84-t2.png|
|U84_0-vfig=84|
|U84_0-Wythoff= 4 | 8 2|
|U84_0-group=[8,4], (*842)
[8,8], (*882)|
|U84_0-rotgroup=[8,4]+, (842)
[8,8]+, (882)|
|U84_0-special=|
|U84_0-schl={8,4}
r{8,8}|
|U84_0-dual=Order-8 square tiling|
|U84_0-CD= or
|U84_0-CDf=
|U84_2-name=Order-8 square tiling|
|U84_2-image2=Uniform tiling 84-t2.png|
|U84_2-image=H2 tiling 248-4.png|
|U84_2-imagecaption=
|U84_2-vfigimage=Order-8 square tiling vertfig.png|
|U84_2-dimage=Uniform tiling 84-t0.png|
|U84_2-vfig=48|
|U84_2-Wythoff= 8 | 4 2
|U84_2-group=[8,4], (*842)|
|U84_2-rotgroup=[8,4]+, (842)|
|U84_2-special=|
|U84_2-schl={4,8}|
|U84_2-dual=Order-4 octagonal tiling|
|U84_2-CD=
|U84_2-CDf=
|U84_01-name=Truncated order-4 octagonal tiling|
|U84_01-image2=Uniform tiling 84-t01.png|
|U84_01-image=H2 tiling 248-3.png|
|U84_01-imagecaption=
|U84_01-vfigimage=Order-4 truncated octagonal tiling vertfig.png|
|U84_01-dimage=|
|U84_01-vfig=4.16.16|
|U84_01-Wythoff= 2 8 | 8
2 8 8 ||
|U84_01-group=[8,4], (*842)
[8,8], (*882)|
|U84_01-rotgroup=[8,4]+, (842)
[8,8]+, (882)|
|U84_01-special=|
|U84_01-schl=t{8,4}
tr{8,8} or |
|U84_01-dual=Order-8 tetrakis square tiling|
|U84_01-CD= or
|U84_01-CDf=
|U84_1-name=Tetraoctagonal tiling|
|U84_1-image2=Uniform tiling 84-t1.png|
|U84_1-image=H2 tiling 248-2.png|
|U84_1-imagecaption=
|U84_1-vfigimage=Tetraoctagonal tiling vertfig.png|
|U84_1-dimage=|
|U84_1-vfig=(4.8)2|
|U84_1-Wythoff= 2 | 8 4|
|U84_1-group=[8,4], (*842)
[8,8], (*882)
[(4,4,4)], (*444)
[(∞,4,∞,4)], (*4242)|
|U84_1-rotgroup=[8,4]+, (842)
[8,8]+, (882)
[(4,4,4)]+, (444)
[(∞,4,∞,4)]+, (4242)|
|U84_1-special=edge-transitive|
|U84_1-schl=r{8,4} or
rr{8,8}
rr(4,4,4)
t0,1,2,3(∞,4,∞,4)|
|U84_1-dual=Order-8-4 quasiregular rhombic tiling|
|U84_1-CD= or
or
|U84_1-CDf=
|U84_02-name=Rhombitetraoctagonal tiling|
|U84_02-image2=Uniform tiling 84-t02.png|
|U84_02-image=H2 tiling 248-5.png|
|U84_02-imagecaption=
|U84_02-vfigimage=Small rhombitetraoctagonal tiling vertfig.png|
|U84_02-dimage=|
|U84_02-vfig=4.4.8.4|
|U84_02-Wythoff= 4 | 8 2|
|U84_02-group=[8,4], (*842)|
|U84_02-rotgroup=[8,4]+, (842)|
|U84_02-special=|
|U84_02-schl=rr{8,4} or |
|U84_02-dual=Deltoidal tetraoctagonal tiling|
|U84_02-CD= or
|U84_02-CDf=
|U84_012-name=Truncated tetraoctagonal tiling|
|U84_012-image2=Uniform tiling 84-t012.png|
|U84_012-image=H2 tiling 248-7.png|
|U84_012-imagecaption=
|U84_012-vfigimage=Great rhombitetraoctagonal tiling vertfig.png|
|U84_012-dimage=|
|U84_012-vfig=4.8.16|
|U84_012-Wythoff= 2 8 4 ||
|U84_012-group=[8,4], (*842)|
|U84_012-rotgroup=[8,4]+, (842)|
|U84_012-special=|
|U84_012-schl=tr{8,4} or |
|U84_012-dual=Order-4-8 kisrhombille tiling|
|U84_012-CD= or
|U84_012-CDf=
|U84_s-name=Snub tetraoctagonal tiling|
|U84_s-image2=Uniform tiling 84-snub.png|
|U84_s-image=Uniform tiling 84-snub.png|
|U84_s-imagecaption=
|U84_s-vfigimage=Order-4 snub octagonal tiling vertfig.png|
|U84_s-dimage=|
|U84_s-vfig=3.3.4.3.8|
|U84_s-Wythoff= | 8 4 2|
|U84_s-group=[8,4]+, (842)|
|U84_s-rotgroup=[8,4]+, (842)|
|U84_s-special=Chiral|
|U84_s-schl=sr{8,4} or |
|U84_s-dual=Order-8-4 floret pentagonal tiling|
|U84_s-CD=
|U84_s-CDf=
|U85_0-name=Order-5 octagonal tiling|
|U85_0-image2=Uniform tiling 85-t0.png|
|U85_0-image=H2 tiling 258-1.png|
|U85_0-imagecaption=
|U85_0-vfigimage=Order-5 octagonal tiling vertfig.png|
|U85_0-dimage=Uniform tiling 85-t2.png|
|U85_0-vfig=85|
|U85_0-Wythoff= 5 h 8 2|
|U85_0-rotgroup=[8,5]+, (852)|
|U85_0-group=[8,5], (*852)|
|U85_0-special=|
|U85_0-schl={8,5}|
|U85_0-dual=Order-8 pentagonal tiling|
|U85_0-CD=
|U85_0-CDf=
|U85_2-name=Order-8 pentagonal tiling|
|U85_2-image2=Uniform tiling 85-t2.png|
|U85_2-image=H2 tiling 258-4.png|
|U85_2-imagecaption=
|U85_2-vfigimage=Order-8 pentagonal tiling vertfig.png|
|U85_2-dimage=Uniform tiling 85-t0.png|
|U85_2-vfig=58|
|U85_2-Wythoff= 8 h 5 2
|U85_2-group=[8,5], (*852)|
|U85_2-rotgroup=[8,5]+, (852)
|U85_2-special=|
|U85_2-schl={5,8}|
|U85_2-dual=Order-5 octagonal tiling|
|U85_2-CD=
|U85_2-CDf=
|U85_01-name=Truncated order-5 octagonal tiling|
|U85_01-image2=Uniform tiling 85-t01.png|
|U85_01-image=H2 tiling 258-3.png|
|U85_01-imagecaption=
|U85_01-vfigimage=Order-5 truncated octagonal tiling vertfig.png|
|U85_01-dimage=|
|U85_01-vfig=5.15.15|
|U85_01-Wythoff= 2 5 h 8|
|U85_01-group=[8,5], (*852)|
|U85_01-rotgroup=[8,5]+, (852)|
|U85_01-special=|
|U85_01-schl=t{8,5}|
|U85_01-dual=Order-8 pentakis pentagonal tiling|
|U85_01-CD=
|U85_01-CDf=
|U85_10-name=Truncated order-8 pentagonal tiling|
|U85_10-image2=Uniform tiling 85-t10.png|
|U85_10-image=H2 tiling 258-5.png|
|U85_10-imagecaption=
|U85_10-vfigimage=Order-8 truncated pentagonal tiling vertfig.png|
|U85_10-dimage=|
|U85_10-vfig=8.10.10|
|U85_10-Wythoff= 2 8 h 5
|U85_10-group=[8,5], (*852)|
|U85_10-rotgroup=[8,5]+, (852)|
|U85_10-special=|
|U85_10-schl=t{5,8}|
|U85_10-dual=Order-5 octakis octagonal tiling|
|U85_10-CD=
|U85_10-CDf=
|U85_1-name=pentaoctagonal tiling|
|U85_1-image2=Uniform tiling 85-t1.png|
|U85_1-image=H2 tiling 258-2.png|
|U85_1-imagecaption=
|U85_1-vfigimage=pentaoctagonal tiling vertfig.png|
|U85_1-dimage=|
|U85_1-vfig=(5.8)2|
|U85_1-Wythoff= 2 h 8 5|
|U85_1-group=[8,5], (*852)|
|U85_1-rotgroup=[8,5]+, (852)|
|U85_1-special=edge-transitive|
|U85_1-schl=r{8,5} or |
|U85_1-dual=Order-8-5 quasiregular rhombic tiling|
|U85_1-CD=
|U85_1-CDf=
|U85_02-name=Rhombipentaoctagonal tiling|
|U85_02-image2=Uniform tiling 85-t02.png|
|U85_02-image=H2 tiling 258-5.png|
|U85_02-imagecaption=
|U85_02-vfigimage=Small rhombipentaoctagonal tiling vertfig.png|
|U85_02-dimage=|
|U85_02-vfig=5.4.8.4|
|U85_02-Wythoff= 5 h 8 2|
|U85_02-group=[8,5], (*852)|
|U85_02-rotgroup=[8,5]+, (852)|
|U85_02-special=|
|U85_02-schl=rr{8,5} or |
|U85_02-dual=Deltoidal pentaoctagonal tiling|
|U85_02-CD=
|U85_02-CDf=
|U85_010-name=Truncated pentaoctagonal tiling|
|U85_010-image2=Uniform tiling 85-t010.png|
|U85_010-image=H2 tiling 258-7.png|
|U85_010-imagecaption=
|U85_010-vfigimage=Great rhombipentaoctagonal tiling vertfig.png|
|U85_010-dimage=|
|U85_010-vfig=4.10.15|
|U85_010-Wythoff= 2 8 5 h|
|U85_010-group=[8,5], (*852)|
|U85_010-rotgroup=[8,5]+, (852)|
|U85_010-special=|
|U85_010-schl=tr{8,5} or |
|U85_010-dual=Order-5-8 kisrhombille tiling|
|U85_010-CD=
|U85_010-CDf=
|U85_s-name=Snub pentaoctagonal tiling|
|U85_s-image2=Uniform tiling 85-snub.png|
|U85_s-image=Uniform tiling 85-snub.png|
|U85_s-imagecaption=
|U85_s-vfigimage=Snub octagonal tiling vertfig.png|
|U85_s-dimage=|
|U85_s-vfig=3.3.5.3.8|
|U85_s-Wythoff= h 8 5 2|
|U85_s-group=[8,5]+, (852)|
|U85_s-rotgroup=[8,5]+, (852)|
|U85_s-special=Chiral|
|U85_s-schl=sr{8,5} or |
|U85_s-dual=Order-8-5 floret pentagonal tiling|
|U85_s-CD=
|U85_s-CDf=
|U86_0-name=Order-6 octagonal tiling|
|U86_0-image2=Uniform tiling 86-t0.png|
|U86_0-image=H2 tiling 268-1.png|
|U86_0-imagecaption=
|U86_0-vfigimage=Order-6 octagonal tiling vertfig.png|
|U86_0-dimage=Uniform tiling 86-t2.png|
|U86_0-vfig=86|
|U86_0-Wythoff= 6 | 8 2|
|U86_0-rotgroup=[8,6]+, (862)|
|U86_0-group=[8,6], (*862)|
|U86_0-special=|
|U86_0-schl={8,6}|
|U86_0-dual=Order-8 hexagonal tiling|
|U86_0-CD=
|U86_0-CDf=
|U86_2-name=Order-8 hexagonal tiling|
|U86_2-image2=Uniform tiling 86-t2.png|
|U86_2-image=H2 tiling 268-4.png|
|U86_2-imagecaption=
|U86_2-vfigimage=Order-8 hexagonal tiling vertfig.png|
|U86_2-dimage=Uniform tiling 86-t0.png|
|U86_2-vfig=68|
|U86_2-Wythoff= 8 | 6 2
|U86_2-group=[8,6], (*862)|
|U86_2-rotgroup=[8,6]+, (862)
|U86_2-special=|
|U86_2-schl={6,8}|
|U86_2-dual=Order-6 octagonal tiling|
|U86_2-CD=
|U86_2-CDf=
|U86_01-name=Truncated order-6 octagonal tiling|
|U86_01-image2=Uniform tiling 86-t01.png|
|U86_01-image=H2 tiling 268-3.png|
|U86_01-imagecaption=
|U86_01-vfigimage=Order-6 truncated octagonal tiling vertfig.png|
|U86_01-dimage=|
|U86_01-vfig=6.16.16|
|U86_01-Wythoff= 2 6 | 8|
|U86_01-group=[8,6], (*862)|
|U86_01-rotgroup=[8,6]+, (862)|
|U86_01-special=|
|U86_01-schl=t{8,6}|
|U86_01-dual=Order-8 hexakis hexagonal tiling|
|U86_01-CD=
|U86_01-CDf=
|U86_12-name=Truncated order-8 hexagonal tiling|
|U86_12-image2=Uniform tiling 86-t12.png|
|U86_12-image=H2 tiling 268-6.png|
|U86_12-imagecaption=
|U86_12-vfigimage=Order-8 truncated hexagonal tiling vertfig.png|
|U86_12-dimage=|
|U86_12-vfig=8.12.12|
|U86_12-Wythoff= 2 8 | 6
|U86_12-group=[8,6], (*862)|
|U86_12-rotgroup=[8,6]+, (862)|
|U86_12-special=|
|U86_12-schl=t{6,8}|
|U86_12-dual=Order-6 octakis octagonal tiling|
|U86_12-CD=
|U86_12-CDf=
|U86_1-name=hexaoctagonal tiling|
|U86_1-image2=Uniform tiling 86-t1.png|
|U86_1-image=H2 tiling 268-2.png|
|U86_1-imagecaption=
|U86_1-vfigimage=hexaoctagonal tiling vertfig.png|
|U86_1-dimage=|
|U86_1-vfig=(6.8)2|
|U86_1-Wythoff= 2 | 8 6|
|U86_1-group=[8,6], (*862)|
|U86_1-rotgroup=[8,6]+, (862)|
|U86_1-special=edge-transitive|
|U86_1-schl=r{8,6} or |
|U86_1-dual=Order-8-6 quasiregular rhombic tiling|
|U86_1-CD=
|U86_1-CDf=
|U86_02-name=Rhombihexaoctagonal tiling|
|U86_02-image2=Uniform tiling 86-t02.png|
|U86_02-image=H2 tiling 268-5.png|
|U86_02-imagecaption=
|U86_02-vfigimage=Small rhombihexaoctagonal tiling vertfig.png|
|U86_02-dimage=|
|U86_02-vfig=6.4.8.4|
|U86_02-Wythoff= 6 | 8 2|
|U86_02-group=[8,6], (*862)|
|U86_02-rotgroup=[8,6]+, (862)|
|U86_02-special=|
|U86_02-schl=rr{8,6} or |
|U86_02-dual=Deltoidal hexaoctagonal tiling|
|U86_02-CD=
|U86_02-CDf=
|U86_012-name=Truncated hexaoctagonal tiling|
|U86_012-image2=Uniform tiling 86-t012.png|
|U86_012-image=H2 tiling 268-7.png|
|U86_012-imagecaption=
|U86_012-vfigimage=Great rhombihexaoctagonal tiling vertfig.png|
|U86_012-dimage=|
|U86_012-vfig=4.12.16|
|U86_012-Wythoff= 2 8 6 ||
|U86_012-group=[8,6], (*862)|
|U86_012-rotgroup=[8,6]+, (862)|
|U86_012-special=|
|U86_012-schl=tr{8,6} or |
|U86_012-dual=Order-6-8 kisrhombille tiling|
|U86_012-CD= or
|U86_012-CDf=
|U86_s-name=Snub hexaoctagonal tiling|
|U86_s-image2=Uniform tiling 86-snub.png|
|U86_s-image=Uniform tiling 86-snub.png|
|U86_s-imagecaption=
|U86_s-vfigimage=Snub octagonal tiling vertfig.png|
|U86_s-dimage=|
|U86_s-vfig=3.3.6.3.8|
|U86_s-Wythoff= | 8 6 2|
|U86_s-group=[8,6]+, (862)|
|U86_s-rotgroup=[8,6]+, (862)|
|U86_s-special=Chiral|
|U86_s-schl=sr{8,6} or |
|U86_s-dual=Order-8-6 floret pentagonal tiling|
|U86_s-CD= or
|U86_s-CDf=
|U88_0-name=Order-8 octagonal tiling|
|U88_0-image2=Uniform tiling 88-t2.png|
|U88_0-image=H2 tiling 288-1.png|
|U88_0-imagecaption=
|U88_0-vfigimage=Order-8 octagonal tiling vertfig.png|
|U88_0-dimage=Uniform tiling 88-t0.png|
|U88_0-vfig=88|
|U88_0-Wythoff= 8 | 8 2|
|U88_0-group=[8,8], (*882)|
|U88_0-rotgroup=[8,8]+, (882)|
|U88_0-special=|
|U88_0-schl={8,8}|
|U88_0-dual=self dual|
|U88_0-CD=
|U88_0-CDf=
|U88_01-name=Truncated order-8 octagonal tiling|
|U88_01-image2=Uniform tiling 88-t01.png|
|U88_01-image=H2 tiling 288-3.png|
|U88_01-imagecaption=
|U88_01-vfigimage=Truncated order-8 octagonal tiling vertfig.png|
|U88_01-dimage=|
|U88_01-vfig=8.16.16|
|U88_01-Wythoff= 2 8 | 4|
|U88_01-group=[8,8], (*882)
[(8,8,4)], (*884)|
|U88_01-rotgroup=[8,8]+, (882)
[(8,8,4)]+, (884)|
|U88_01-special=|
|U88_01-schl=t{8,8}
t(8,8,4)|
|U88_01-dual=Order-8 octakis octagonal tiling|
|U88_01-CD=
|U88_01-CDf=
|U88_s-name=Snub octaoctagonal tiling|
|U88_s-image2=Uniform tiling 88-snub.png|
|U88_s-image=Uniform tiling 88-snub.png|
|U88_s-imagecaption=
|U88_s-vfigimage=Snub octaoctagonal tiling vertfig.png|
|U88_s-dimage=|
|U88_s-vfig=3.3.8.3.8|
|U88_s-Wythoff= | 8 8 2|
|U88_s-group=[8,8]+, (882)
[8+,4], (8*2)|
|U88_s-rotgroup=[8,8]+, (882)|
|U88_s-special=|
|U88_s-schl=s{8,4}
sr{8,8}|
|U88_s-dual=Order-8-8 floret hexagonal tiling|
|U88_s-CD= or
|U88_s-CDf=
|Ui3_0-name=Order-3 apeirogonal tiling|
|Ui3_0-image=H2-I-3-dual.svg|
|Ui3_0-vfigimage=|
|Ui3_0-dimage=Uniform tiling i3-t4.png|
|Ui3_0-vfig=∞3|
|Ui3_0-Wythoff= 3 | ∞ 2
2 ∞ | ∞
∞ ∞ ∞ ||
|Ui3_0-group=[∞,3], (*∞32)
[∞,∞], (*∞∞2)
[(∞,∞,∞)], (*∞∞∞)|
|Ui3_0-rotgroup=[∞,3]+, (∞32)
[∞,∞]+, (∞∞2)
[(∞,∞,∞)]+, (∞∞∞)|
|Ui3_0-special=|
|Ui3_0-schl={∞,3}
t{∞,∞}
t(∞,∞,∞)|
|Ui3_0-dual=Infinite-order triangular tiling|
|Ui3_0-CD=
|Ui3_0-CDf=
|Ui3_2-name=Infinite-order triangular tiling|
|Ui3_2-image=H2 tiling 23i-4.png|
|Ui3_2-imagecaption=
|Ui3_2-vfigimage=|
|Ui3_2-dimage=H2-I-3-dual.svg|
|Ui3_2-vfig=3∞|
|Ui3_2-Wythoff= ∞ | 3 2
|Ui3_2-group=[∞,3], (*∞32)|
|Ui3_2-rotgroup=[∞,3]+, (∞32)|
|Ui3_2-special=|
|Ui3_2-schl={3,∞}|
|Ui3_2-dual=Order-3 apeirogonal tiling|
|Ui3_2-CD=
|Ui3_2-CDf=
|Ui3_01-name=Truncated order-3 apeirogonal tiling|
|Ui3_01-image=H2 tiling 23i-3.png|
|Ui3_01-imagecaption=
|Ui3_01-vfigimage=|
|Ui3_01-dimage=|
|Ui3_01-vfig=3.∞.∞|
|Ui3_01-Wythoff= 2 3 | ∞|
|Ui3_01-group=[∞,3], (*∞32)|
|Ui3_01-rotgroup=[∞,3]+, (∞32)|
|Ui3_01-special=|
|Ui3_01-schl=t{∞,3}|
|Ui3_01-dual=Infinite-order triakis triangular tiling|
|Ui3_01-CD=
|Ui3_01-CDf=
|Ui3_12-name=Infinite-order truncated triangular tiling|
|Ui3_12-image=H2 tiling 23i-6.png|
|Ui3_12-imagecaption=
|Ui3_12-vfigimage=|
|Ui3_12-dimage=|
|Ui3_12-vfig=∞.6.6|
|Ui3_12-Wythoff= 2 ∞ | 3
|Ui3_12-group=[∞,3], (*∞32)|
|Ui3_12-rotgroup=[∞,3]+, (∞32)|
|Ui3_12-special=|
|Ui3_12-schl=t{3,∞}|
|Ui3_12-dual=apeirokis apeirogonal tiling|
|Ui3_12-CD=
|Ui3_12-CDf=
|Ui3_1-name=Triapeirogonal tiling|
|Ui3_1-image=H2 tiling 23i-2.png|
|Ui3_1-imagecaption=
|Ui3_1-vfigimage=|
|Ui3_1-dimage=|
|Ui3_1-vfig=(3.∞)2|
|Ui3_1-Wythoff= 2 | ∞ 3|
|Ui3_1-group=[∞,3], (*∞32)|
|Ui3_1-rotgroup=[∞,3]+, (∞32)|
|Ui3_1-special=edge-transitive|
|Ui3_1-schl=r{∞,3} or |
|Ui3_1-dual=Order-3-infinite rhombille tiling|
|Ui3_1-CD= or
|Ui3_1-CDf=
|Ui3_02-name=Rhombitriapeirogonal tiling|
|Ui3_02-image=H2 tiling 23i-5.png|
|Ui3_02-imagecaption=
|Ui3_02-vfigimage=|
|Ui3_02-dimage=|
|Ui3_02-vfig=3.4.∞.4|
|Ui3_02-Wythoff= 3 | ∞ 2|
|Ui3_02-group=[∞,3], (*∞32)
[∞,3+], (3*∞)|
|Ui3_02-rotgroup=[∞,3]+, (∞32)
[(∞,3,3)]+, (∞33)|
|Ui3_02-special=|
|Ui3_02-schl=rr{∞,3} or
s2{3,∞}|
|Ui3_02-dual=Deltoidal triapeirogonal tiling|
|Ui3_02-CD= or
|Ui3_02-CDf=
|Ui3_012-name=Truncated triapeirogonal tiling|
|Ui3_012-image=H2 tiling 23i-7.png|
|Ui3_012-imagecaption=
|Ui3_012-vfigimage=|
|Ui3_012-dimage=|
|Ui3_012-vfig=4.6.∞|
|Ui3_012-Wythoff= 2 ∞ 3 ||
|Ui3_012-group=[∞,3], (*∞32)|
|Ui3_012-rotgroup=[∞,3]+, (∞32)|
|Ui3_012-special=|
|Ui3_012-schl=tr{∞,3} or |
|Ui3_012-dual=Order 3-infinite kisrhombille|
|Ui3_012-CD= or
|Ui3_012-CDf=
|Ui3_s-name=Snub triapeirogonal tiling|
|Ui3_s-image=Uniform tiling i32-snub.png|
|Ui3_s-imagecaption=
|Ui3_s-vfigimage=|
|Ui3_s-dimage=|
|Ui3_s-vfig=3.3.3.3.∞|
|Ui3_s-Wythoff= | ∞ 3 2|
|Ui3_s-group=[∞,3]+, (∞32)|
|Ui3_s-rotgroup=[∞,3]+, (∞32)|
|Ui3_s-special=Chiral|
|Ui3_s-schl=sr{∞,3} or |
|Ui3_s-dual=Order-3-infinite floret pentagonal tiling|
|Ui3_s-CD= or
|Ui3_s-CDf=
|Ui33_s-name=Snub triapeirotrigonal tiling
|Ui33_s-image=H2 snub 33ia.png|
|Ui33_s-imagecaption=
|Ui33_s-vfigimage=|
|Ui33_s-dimage=|
|Ui33_s-vfig=3.3.3.3.3.∞|
|Ui33_s-Wythoff= | ∞ 3 3|
|Ui33_s-group=[(∞,3,3)]+, (∞33)|
|Ui33_s-rotgroup=[(∞,3,3)]+, (∞33)|
|Ui33_s-special=Chiral|
|Ui33_s-schl=s{3,∞}
s(∞,3,3)|
|Ui33_s-dual=Order-i-3-3_t0 dual tiling|
|Ui33_s-CD=
|Ui33_s-CDf=
|Ui4_0-name=Order-4 apeirogonal tiling|
|Ui4_0-image=H2 tiling 24i-1.png|
|Ui4_0-vfigimage=|
|Ui4_0-dimage=Uniform tiling i4-t3.png|
|Ui4_0-vfig=∞4|
|Ui4_0-Wythoff= 4 | ∞ 2
2 | ∞ ∞
∞ ∞ | ∞|
|Ui4_0-group=[∞,4], (*∞42)
[∞,∞], (*∞∞2)
[(∞,∞,∞)], (*∞∞∞)
(*∞∞∞∞)|
|Ui4_0-rotgroup=[∞,4]+, (∞42)
[∞,∞]+, (∞∞2)
[(∞,∞,∞)]+, (∞∞,∞)|
|Ui4_0-special=edge-transitive|
|Ui4_0-schl={∞,4}
r{∞,∞}
t(∞,∞,∞)
t0,1,2,3(∞,∞,∞,∞)|
|Ui4_0-dual=Infinite-order square tiling|
|Ui4_0-CD=
|Ui4_0-CDf=
|Ui4_2-name=Infinite-order square tiling|
|Ui4_2-image=H2 tiling 24i-4.png|
|Ui4_2-imagecaption=
|Ui4_2-vfigimage=|
|Ui4_2-dimage=H2 tiling 24i-1.png|
|Ui4_2-vfig=4∞|
|Ui4_2-Wythoff= ∞ | 4 2
|Ui4_2-group=[∞,4], (*∞42)|
|Ui4_2-rotgroup=[∞,4]+, (∞42)|
|Ui4_2-special=|
|Ui4_2-schl={4,∞}|
|Ui4_2-dual=Order-4 apeirogonal tiling|
|Ui4_2-CD=
|Ui4_2-CDf=
|Ui4_01-name=Truncated order-4 apeirogonal tiling|
|Ui4_01-image=H2 tiling 24i-3.png|
|Ui4_01-imagecaption=
|Ui4_01-vfigimage=|
|Ui4_01-dimage=|
|Ui4_01-vfig=4.∞.∞|
|Ui4_01-Wythoff= 2 4 | ∞
2 ∞ ∞ ||
|Ui4_01-group=[∞,4], (*∞42)
[∞,∞], (*∞∞2)|
|Ui4_01-rotgroup=[∞,4]+, (∞42)
[∞,∞]+, (∞∞2)|
|Ui4_01-special=|
|Ui4_01-schl=t{∞,4}
tr{∞,∞} or |
|Ui4_01-dual=Infinite-order tetrakis square tiling|
|Ui4_01-CD= or
|Ui4_01-CDf=
|Ui4_12-name=Infinite-order truncated square tiling|
|Ui4_12-image=H2 tiling 24i-6.png|
|Ui4_12-imagecaption=
|Ui4_12-vfigimage=|
|Ui4_12-dimage=|
|Ui4_12-vfig=∞.8.8|
|Ui4_12-Wythoff= 2 ∞ | 4
|Ui4_12-group=[∞,4], (*∞42)|
|Ui4_12-rotgroup=[∞,4]+, (∞42)|
|Ui4_12-special=|
|Ui4_12-schl=t{4,∞}|
|Ui4_12-dual=apeirokis apeirogonal tiling|
|Ui4_12-CD=
|Ui4_12-CDf=
|Ui4_1-name=tetraapeirogonal tiling|
|Ui4_1-image=H2 tiling 24i-2.png|
|Ui4_1-imagecaption=
|Ui4_1-vfigimage=|
|Ui4_1-dimage=|
|Ui4_1-vfig=(4.∞)2|
|Ui4_1-Wythoff= 2 | ∞ 4
∞ | ∞ 2|
|Ui4_1-group=[∞,4], (*∞42)
[∞,∞], (*∞∞2)|
|Ui4_1-rotgroup=[∞,4]+, (∞42)
[∞,∞]+, (∞∞2)|
|Ui4_1-special=edge-transitive|
|Ui4_1-schl=r{∞,4} or
rr{∞,∞} or |
|Ui4_1-dual=Order-4-infinite rhombille tiling|
|Ui4_1-CD= or
|Ui4_1-CDf=
|Ui4_02-name=Rhombitetraapeirogonal tiling|
|Ui4_02-image=H2 tiling 24i-5.png|
|Ui4_02-imagecaption=
|Ui4_02-vfigimage=|
|Ui4_02-dimage=|
|Ui4_02-vfig=4.4.∞.4|
|Ui4_02-Wythoff= 4 | ∞ 2|
|Ui4_02-group=[∞,4], (*∞42)|
|Ui4_02-rotgroup=[∞,4]+, (∞42)|
|Ui4_02-special=|
|Ui4_02-schl=rr{∞,4} or |
|Ui4_02-dual=Deltoidal tetraapeirogonal tiling|
|Ui4_02-CD= or
|Ui4_02-CDf=
|Ui4_012-name=Truncated tetraapeirogonal tiling|
|Ui4_012-image=H2 tiling 24i-7.png|
|Ui4_012-imagecaption=
|Ui4_012-vfigimage=|
|Ui4_012-dimage=|
|Ui4_012-vfig=4.8.∞|
|Ui4_012-Wythoff= 2 ∞ 4 ||
|Ui4_012-group=[∞,4], (*∞42)|
|Ui4_012-rotgroup=[∞,4]+, (∞42)|
|Ui4_012-special=|
|Ui4_012-schl=tr{∞,4} or |
|Ui4_012-dual=Order 4-infinite kisrhombille|
|Ui4_012-CD= or
|Ui4_012-CDf=
|Ui4_s-name=Snub tetraapeirogonal tiling|
|Ui4_s-image=Uniform tiling i42-snub.png|
|Ui4_s-imagecaption=
|Ui4_s-vfigimage=|
|Ui4_s-dimage=|
|Ui4_s-vfig=3.3.4.3.∞|
|Ui4_s-Wythoff= | ∞ 4 2|
|Ui4_s-group=[∞,4]+, (∞42)|
|Ui4_s-rotgroup=[∞,4]+, (∞42)|
|Ui4_s-special=Chiral|
|Ui4_s-schl=sr{∞,4} or |
|Ui4_s-dual=Order-4-infinite floret pentagonal tiling|
|Ui4_s-CD= or
|Ui4_s-CDf=
|Ui5_0-name=Order-5 apeirogonal tiling|
|Ui5_0-image=H2 tiling 25i-1.png|
|Ui5_0-vfigimage=|
|Ui5_0-dimage=
|Ui5_0-vfig=∞5|
|Ui5_0-Wythoff= 5 | ∞ 2|
|Ui5_0-group=[∞,5], (*∞52)|
|Ui5_0-rotgroup=[∞,5]+,|
|Ui5_0-special=edge-transitive|
|Ui5_0-schl={∞,5}|
|Ui5_0-dual=Infinite-order pentagonal tiling|
|Ui5_0-CD=
|Ui5_0-CDf=
|Ui5_2-name=Infinite-order pentagonal tiling|
|Ui5_2-image=H2 tiling 25i-4.png|
|Ui5_2-imagecaption=
|Ui5_2-vfigimage=|
|Ui5_2-dimage=H2 tiling 25i-1.png|
|Ui5_2-vfig=5∞|
|Ui5_2-Wythoff= ∞ | 5 2
|Ui5_2-group=[∞,5], (*∞52)|
|Ui5_2-rotgroup=[∞,5]+, (∞52)|
|Ui5_2-special=|
|Ui5_2-schl={5,∞}|
|Ui5_2-dual=Order-5 apeirogonal tiling|
|Ui5_2-CD=
|Ui5_2-CDf=
|Ui5_01-name=Truncated order-5 apeirogonal tiling|
|Ui5_01-image=H2 tiling 25i-3.png|
|Ui5_01-imagecaption=
|Ui5_01-vfigimage=|
|Ui5_01-dimage=|
|Ui5_01-vfig=5.∞.∞|
|Ui5_01-Wythoff= 2 5 | ∞|
|Ui5_01-group=[∞,5], (*∞52)|
|Ui5_01-rotgroup=[∞,5]+, (∞52)|
|Ui5_01-special=|
|Ui5_01-schl=t{∞,5}|
|Ui5_01-dual=Infinite-order pentakis pentagonal tiling|
|Ui5_01-CD=
|Ui5_01-CDf=
|Ui5_12-name=Infinite-order truncated pentagonal tiling|
|Ui5_12-image=H2 tiling 25i-6.png|
|Ui5_12-imagecaption=
|Ui5_12-vfigimage=|
|Ui5_12-dimage=|
|Ui5_12-vfig=∞.8.8|
|Ui5_12-Wythoff= 2 ∞ | 5
|Ui5_12-group=[∞,5], (*∞52)|
|Ui5_12-rotgroup=[∞,5]+, (∞52)|
|Ui5_12-special=|
|Ui5_12-schl=t{5,∞}|
|Ui5_12-dual=apeirokis apeirogonal tiling|
|Ui5_12-CD=
|Ui5_12-CDf=
|Ui5_1-name=pentaapeirogonal tiling|
|Ui5_1-image=H2 tiling 25i-2.png|
|Ui5_1-imagecaption=
|Ui5_1-vfigimage=|
|Ui5_1-dimage=|
|Ui5_1-vfig=(5.∞)2|
|Ui5_1-Wythoff= 2 | ∞ 5|
|Ui5_1-group=[∞,5], (*∞52)|
|Ui5_1-rotgroup=[∞,5]+, (∞52)|
|Ui5_1-special=edge-transitive|
|Ui5_1-schl=r{∞,5} or |
|Ui5_1-dual=Order-5-infinite rhombille tiling|
|Ui5_1-CD= or
|Ui5_1-CDf=
|Ui5_02-name=Rhombipentaapeirogonal tiling|
|Ui5_02-image=H2 tiling 25i-5.png|
|Ui5_02-imagecaption=
|Ui5_02-vfigimage=|
|Ui5_02-dimage=|
|Ui5_02-vfig=5.4.∞.4|
|Ui5_02-Wythoff= 5 | ∞ 2|
|Ui5_02-group=[∞,5], (*∞52)|
|Ui5_02-rotgroup=[∞,5]+, (∞52)|
|Ui5_02-special=|
|Ui5_02-schl=rr{∞,5} or |
|Ui5_02-dual=Deltoidal pentaapeirogonal tiling|
|Ui5_02-CD= or
|Ui5_02-CDf=
|Ui5_012-name=Truncated pentaapeirogonal tiling|
|Ui5_012-image=H2 tiling 25i-7.png|
|Ui5_012-imagecaption=
|Ui5_012-vfigimage=|
|Ui5_012-dimage=|
|Ui5_012-vfig=5.8.∞|
|Ui5_012-Wythoff= 2 ∞ 5 ||
|Ui5_012-group=[∞,5], (*∞52)|
|Ui5_012-rotgroup=[∞,5]+, (∞52)|
|Ui5_012-special=|
|Ui5_012-schl=tr{∞,5} or |
|Ui5_012-dual=Order 5-infinite kisrhombille|
|Ui5_012-CD= or
|Ui5_012-CDf=
|Ui5_s-name=Snub pentaapeirogonal tiling|
|Ui5_s-image=Uniform tiling i52-snub.png|
|Ui5_s-imagecaption=
|Ui5_s-vfigimage=|
|Ui5_s-dimage=|
|Ui5_s-vfig=3.3.5.3.∞|
|Ui5_s-Wythoff= | ∞ 5 2|
|Ui5_s-group=[∞,5]+, (∞52)|
|Ui5_s-rotgroup=[∞,5]+, (∞52)|
|Ui5_s-special=Chiral|
|Ui5_s-schl=sr{∞,5} or |
|Ui5_s-dual=Order-5-infinite floret pentagonal tiling|
|Ui5_s-CD= or
|Ui5_s-CDf=
|Ui6_0-name=Order-6 apeirogonal tiling|
|Ui6_0-image=H2 tiling 26i-1.png|
|Ui6_0-vfigimage=|
|Ui6_0-dimage=
|Ui6_0-vfig=∞6|
|Ui6_0-Wythoff= 6 | ∞ 2|
|Ui6_0-group=[∞,6], (*∞62)|
|Ui6_0-rotgroup=[∞,6]+,|
|Ui6_0-special=edge-transitive|
|Ui6_0-schl={∞,6}|
|Ui6_0-dual=Infinite-order hexagonal tiling|
|Ui6_0-CD=
|Ui6_0-CDf=
|Ui6_2-name=Infinite-order hexagonal tiling|
|Ui6_2-image=H2 tiling 26i-4.png|
|Ui6_2-imagecaption=
|Ui6_2-vfigimage=|
|Ui6_2-dimage=H2 tiling 26i-1.png|
|Ui6_2-vfig=6∞|
|Ui6_2-Wythoff= ∞ | 6 2
|Ui6_2-group=[∞,6], (*∞62)|
|Ui6_2-rotgroup=[∞,6]+, (∞62)|
|Ui6_2-special=|
|Ui6_2-schl={6,∞}|
|Ui6_2-dual=Order-6 apeirogonal tiling|
|Ui6_2-CD=
|Ui6_2-CDf=
|Uii_0-name=Infinite-order apeirogonal tiling|
|Uii_0-image=H2 tiling 2ii-1.png|
|Uii_0-vfigimage=|
|Uii_0-dimage=File:H2 tiling 2ii-4.png|
|Uii_0-vfig=∞∞|
|Uii_0-Wythoff= ∞ | ∞ 2
∞ ∞ | ∞|
|Uii_0-group=[∞,∞], (*∞∞2)
[(∞,∞,∞)], (*∞∞∞)|
|Uii_0-rotgroup=[∞,∞]+, (∞∞2)
[(∞,∞,∞)]+, (∞∞∞)|
|Uii_0-special=|
|Uii_0-schl={∞,∞}|
|Uii_0-dual=self-dual|
|Uii_0-CD=
|Uii_0-CDf=
|Uii_s-name=Snub apeiroapeirogonal tiling|
|Uii_s-image=Uniform tiling ii2-snub.png|
|Uii_s-imagecaption=
|Uii_s-vfigimage=|
|Uii_s-dimage=File:Uniform_tiling_ii2-snub.png|
|Uii_s-vfig=3.3.∞.3.∞|
|Uii_s-Wythoff= | ∞ ∞ 2|
|Uii_s-group=[∞,∞]+, (∞∞2)|
|Uii_s-rotgroup=[∞,∞]+, (∞∞2)|
|Uii_s-special=Chiral|
|Uii_s-schl=s{∞,4}
sr{∞,∞} or |
|Uii_s-dual=Infinitely-infinite-order floret pentagonal tiling|
|Uii_s-CD= or
|Uii_s-CDf=
|U433_0-name=Alternated octagonal tiling|
|U433_0-image=Uniform tiling 433-t0.png|
|U433_0-imagecaption=
|U433_0-vfigimage=Uniform tiling 433-t0 vertfig.png|
|U433_0-dimage=Uniform_dual_tiling_433-t0.png|
|U433_0-vfig=(3.4)3|
|U433_0-Wythoff= 3 | 3 4|
|U433_0-group=[(4,3,3)], (*433)
[(4,4,4)]+, (444)|
|U433_0-rotgroup=[(4,3,3)]+, (433)
[(4,4,4)]+, (444)|
|U433_0-special=|
|U433_0-schl=(4,3,3)
s(4,4,4)|
|U433_0-dual=Alternated octagonal tiling#Dual tiling|
|U433_0-CD=
|U433_0-CDf=
|U433_12-name=Cantic octagonal tiling|
|U433_12-image=H2 tiling 334-6.png|
|U433_12-image2=Uniform tiling 433-t12.png|
|U433_12-imagecaption=
|U433_12-vfigimage=Uniform tiling 433-t12 vertfig.png|
|U433_12-dimage=Uniform_dual_tiling_433-t12.png|
|U433_12-vfig=3.6.4.6|
|U433_12-Wythoff= 4 3 | 3
|U433_12-group=[(4,3,3)], (*433)|
|U433_12-rotgroup=[(4,3,3)]+, (433)|
|U433_12-special=|
|U433_12-schl=h2{8,3}|
|U433_12-dual=Order-4-3-3 t12 dual tiling|
|U433_12-CD= =
|U433_12-CDf=
|U433_s-name=Snub order-8 triangular tiling|
|U433_s-image=Uniform tiling 433-snub2.png|
|U433_s-imagecaption=
|U433_s-vfigimage=Uniform tiling 433-snub vertfig.png|
|U433_s-dimage=Uniform_dual_tiling_433-snub.png|
|U433_s-vfig=3.3.3.3.3.4|
|U433_s-Wythoff= | 4 3 3|
|U433_s-group=[8,3+], (3*4)
[(4,3,3)]+, (433)|
|U433_s-rotgroup=[(4,3,3)]+, (433)|
|U433_s-special=|
|U433_s-schl=s{3,8}
s(4,3,3)|
|U433_s-dual=Order-4-3-3 snub dual tiling|
|U433_s-CD=
|U433_s-CDf=
|U443_0-name=Alternated order-4 hexagonal tiling|
|U443_0-image=H2 tiling 344-1.png|
|U443_0-imagecaption=
|U443_0-vfigimage=Uniform tiling 443-t0 vertfig.png|
|U443_0-dimage=Uniform_dual_tiling_443-t0.png|
|U443_0-vfig=(3.4)4|
|U443_0-Wythoff= 4 | 3 4|
|U443_0-group=[(4,4,3)], (*443)|
|U443_0-rotgroup=[(4,4,3)]+, (443)|
|U443_0-special=|
|U443_0-schl=h{6,4} or (3,4,4)|
|U443_0-dual=Order-4-4-3_t0 dual tiling|
|U443_0-CD= or
|U443_0-CDf=
|U443_01-name=Cantic order-4 hexagonal tiling|
|U443_01-image=Uniform tiling 443-t01.png|
|U443_01-imagecaption=
|U443_01-vfigimage=Uniform tiling 443-t01 vertfig.png|
|U443_01-dimage=Uniform_dual_tiling_443-t01.png|
|U443_01-vfig=3.8.4.8|
|U443_01-Wythoff= 4 4 | 3
|U443_01-group=[(4,4,3)], (*443)|
|U443_01-rotgroup=[(4,4,3)]+, (443)|
|U443_01-special=|
|U443_01-schl=t0,1(4,4,3)|
|U443_01-dual=Order-4-4-3 t01 dual tiling|
|U443_01-CD=
|U443_01-CDf=
|U443_s-name=Snub order-6 square tiling|
|U443_s-image=Uniform tiling 443-snub1.png|
|U443_s-imagecaption=
|U443_s-vfigimage=Uniform tiling 443-snub vertfig.png|
|U443_s-dimage=Uniform_dual_tiling_443-snub.png|
|U443_s-vfig=3.3.3.4.3.4|
|U443_s-Wythoff= | 4 4 3|
|U443_s-group=[(4,4,3)]+, (443)
[6,4+], (4*3)|
|U443_s-rotgroup=[(4,4,3)]+, (443)|
|U443_s-special=|
|U443_s-schl=s(4,4,3)
s{4,6}|
|U443_s-dual=Order-4-4-3 snub dual tiling|
|U443_s-CD=
|U443_s-CDf=
|U7H_2-name=Order-7 heptagrammic tiling|
|U7H_2-image2=|
|U7H_2-image=Hyperbolic_tiling_7-2_7.png|
|U7H_2-imagecaption=Partially drawn heptagram facets
|U7H_2-vfigimage=|
|U7H_2-dimage=|
|U7H_2-vfig=(7/2)7|
|U7H_2-Wythoff= 7 | 7/2 2
|U7H_2-group=[7,3], (*732)|
|U7H_2-rotgroup=[7,3]+, (732)|
|U7H_2-special=|
|U7H_2-schl={7/2,7}|
|U7H_2-dual=Heptagrammic-order heptagonal tiling|
|U7H_2-CD=
|U7H_2-CDf=
|U7H_0-name=Heptagrammic-order heptagonal tiling|
|U7H_0-image2=|
|U7H_0-image=Hyperbolic tiling 7 7-2.png|
|U7H_0-imagecaption=
|U7H_0-vfigimage=|
|U7H_0-dimage=|
|U7H_0-vfig=77/2|
|U7H_0-Wythoff= 7/2 | 7 2
|U7H_0-group=[7,3], (*732)|
|U7H_0-rotgroup=[7,3]+, (732)|
|U7H_0-special=|
|U7H_0-schl={7,7/2}|
|U7H_0-dual=Order-7 heptagrammic tiling|
|U7H_0-CD=
|U7H_0-CDf=
|U75_0-name=Order-5 heptagonal tiling|
|U75_0-image2=Uniform tiling 65-t0.png|
|U75_0-image=H2_tiling_257-1.png|
|U75_0-vfigimage=Hexagonal tiling vertfig.png|
|U75_0-dimage=H2chess 257b.png|
|U75_0-vfig=75|
|U75_0-Wythoff= 5 | 7 2|
|U75_0-group=[7,5], (*752)|
|U75_0-rotgroup=[7,5]+, (752)|
|U75_0-special=|
|U75_0-schl={7,5}|
|U75_0-dual=Order-7 pentagonal tiling|
|U75_0-CD=
|U75_0-CDf=
}}
![](http://up.wiki.x.io/wikipedia/commons/thumb/4/43/Test_Template_Info-Icon_-_Version_%282%29.svg/50px-Test_Template_Info-Icon_-_Version_%282%29.svg.png)
This template is used for hyperbolic uniform tiling stat tables.
{{Uniform hyperbolic tiles db|Reg hyperbolic tiling stat table|U73_0}}
produces:
Heptagonal tiling | |
---|---|
![]() Poincaré disk model of the hyperbolic plane | |
Type | Hyperbolic regular tiling |
Vertex configuration | 73 |
Schläfli symbol | {7,3} |
Wythoff symbol | 3 | 7 2 |
Coxeter diagram | ![]() ![]() ![]() ![]() ![]() |
Symmetry group | [7,3], (*732) |
Dual | Order-7 triangular tiling |
Properties | Vertex-transitive, edge-transitive, face-transitive |
See also
- {{Tessellation}}
- {{Polyhedra}}
Tables:
- {{Cupolae}}
- {{Polyhedron operators}}
- {{Reg hyperbolic tiling stat table}}
- {{Reg tiling stat table}}
- {{Uniform hyperbolic tiling stat table}}
- {{Uniform tiling full table}}
- {{Uniform tiling list table}}
- {{Uniform tiling stat table}}
Database:
- {{Regular polygon db}}
- {{Prism polyhedra db}}
- {{Reg polyhedra db}}
- {{Semireg dual polyhedra db}}
- {{Semireg polyhedra db}}
- {{Uniform hyperbolic tiles db}}
- {{Uniform polyhedra db}}
- {{Uniform tiles db}}
Info- and navboxes:
- {{Honeycombs}}
- {{Infobox polygon}}
- {{Infobox polyhedron}}
- {{Polyhedron types}}
- {{Tessellation}}
Other:
- {{Coxeter–Dynkin diagram}}
- {{Honeycomb}}