Talk:Vedic square
This article is rated Start-class on Wikipedia's content assessment scale. It is of interest to the following WikiProjects: | |||||||||||
|
hi vedic squares are great u should like totally go to tgs to go and learn about them go and try thrm any day u want on here come and have a look plz plzzzzz —Preceding unsigned comment added by 82.35.174.78 (talk) 16:47, 12 September 2008 (UTC)
What should the article ultimately involve?
[edit]I mostly came across this article by accident but I think it's got some serious potential, and is just requiring the attention of someone who really knows what they are talking about. I think when this article is complete it should have a structure something like:
- introduction+example
- Geometric properties
- The Vedic Square in Art
- Algebraic properties
- Generalisations
- References etc
Although there may be more topics deserving of a mention than I realise. Where do you see this article going - how much do you reckon it should involve? --Paul Carpenter (talk) 12:55, 25 September 2009 (UTC)
Very Big Concept
[edit]This is called Group Theory & this is very easy to understand Modulle concept. I want to highlight some operations in given example it says that o but actually this is called operations which we need to perform on the figure.
A group is a set G, together with an operation '*' that combines any two elements a and b to form another element denoted a * b, then this is formed called (G,*)satisfy below requirement called Group
Operation 1--> Closure For all a, b in G, the result of the operation a * b is also in G
Operation 2--> Associativity For all a, b and c in G, the equation (a * b) * c = a * (b * c) must satisfy
Operation 3-->Identity element There exists an element E in G, such that for every element a in G, the equation E * a = a * E = a
Operation 4 -->Inverse element For each a in G, there exists an element b in G such that a * b = b * a = E, where E is the identity element
If anobody have any qestions or concern please mail me on nitu612@gmail.com
Thanks, Nitin Lawand —Preceding unsigned comment added by 167.88.178.70 (talk) 11:01, 7 May 2010 (UTC)
- I'm not entirely sure how this is relevant to the article in question - the article actually mentions how the vedic square forms a semigroup but not a group. Paul Carpenter (talk) 16:23, 9 May 2010 (UTC)
Change colour scheme
[edit]Does the current colour scheme for shading the digital roots have any significance? If not, may I suggest changing it to one in which the digital roots with similar patterns (simply rotated 90°) have similar colours? I've chosen
- Red for 1 and 8: the most prominent colour for the "ellipses"
- Blue for 2 and 7: a less prominent colour for the simplest pattern
- Green for 3 and 6: to match yellow for some Vedic cube slices
- Grey for 4 and 5: the least prominent colour for the "arcs"
- Yellow for 9: it has no complement and dark yellow looks off)
as in the attached image, but am open to suggestions for change.