Jump to content

Sreenath Subrahmanyam

From Wikipedia, the free encyclopedia

Sreenath Subrahmanyam
NationalityIndian
Alma materLoyola College, Madras
Cranfield University
University of Kalmar
National Institutes of Health
Charles Sturt University
University of California, Berkeley
Known forEnvironmental Impact Assessments
Climate Change Adaptation
Training Programs on Ecology and Conservation Biology
AwardsSenior Research Fellowship
Commonwealth Award
NIH Fellow
Marie Curie Award
NASA NPP
Australian Endeavour Award
Lord Kings Norton Medal
Senspol Europe

Sreenath Subrahmanyam is a biologist and the director for the Institute of Bioecosciences, Virginia, United States of America.

Education

[edit]

Sreenath received his bachelor's degree in biological sciences from Loyola College, Madras, and a PhD diploma in biological sciences from Cranfield University, UK.[1] Sreenath is a Beahrs Fellow on the Natural Resources Management Program, University of California, Berkeley.[1]

Research

[edit]

Sreenath works on climate change adaptation strategies [2] in Western Ghats, India[2]computationally modelling tracheophytes and forest ecosystems.[3][4] Sreenath worked on Environmental impacts of the proposed lignite mine at Jayankondam.[5] At Cranfield University, Sreenath developed a new approach for the computational design of molecular imprinting,[6][7] which is followed by research groups around the world.[8][9][10][11] Sreenath proposed that natural receptors can be used in bio-recognition,[12] an idea which many researchers have successfully used in Biology.[13][14][15][16] Sreenath is a Fellow of the Royal Society of Biology, [3]

Training programs on ecology and conservation biology

[edit]

Sreenath continues to direct a number of training programs such as the Young Advantage Program, Environmental Leadership Program, and the Faculty Enrichment Program.

[edit]

Environmental impacts of thermal power plant: case study[5]

Salivary proteins of plant-feeding hemipteroids–implication in phytophagy[17]

Application of natural receptors in sensors and assays[12]

Analytical methods for determination of mycotoxins: a review[18]

Ecological modelling of a wetland for phytoremediating Cu, Zn and Mn in a gold–copper mine site using Typha domingensis (Poales: Typhaceae) near Orange, NSW, Australia[19]

Effective climate change adaptation strategies for biodiversity conservation[20]

References

[edit]
  1. ^ https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.269541
  2. ^ Subrahmanyam, Sreenath (21 April 2015). "Effective climate change adaptation strategies for biodiversity conservation". Frontiers in Environmental Science. 3. doi:10.3389/fenvs.2015.00032. ISSN 2296-665X.
  3. ^ Subrahmanyam, Sreenath; Das, Mukesh Lal; Kumara, Honnavalli N. (2021), "Climate Change Projections of Current and Future Distributions of the Endemic Loris lydekkerianus (Lorinae) in Peninsular India", Exploring Synergies and Trade-offs between Climate Change and the Sustainable Development Goals, Singapore: Springer Singapore, pp. 321–358, doi:10.1007/978-981-15-7301-9_13, ISBN 978-981-15-7300-2, retrieved 22 February 2023
  4. ^ Das, Mukesh Lal; Bondada, Sairuchir; Rajesh, Keshav; Subrahmanyam, Sreenath (19 October 2023). "Climate change impacts on habitat suitability of Cinnamomum travancoricum (Lauraceae), a critically endangered endemic vascular plant in the Western Ghats, India". Israel Journal of Ecology and Evolution: 1–19. doi:10.1163/22244662-bja10061. ISSN 1565-9801.
  5. ^ a b "Environmental Impacts of Thermal Power Plant: Case Study - Tamil Nadu".
  6. ^ US 8086415, Chen, Beining; Day, Richard Michael & Subrahmanyam, Sreenath et al., "Molecularly imprinted polymer", published 2011-12-27, assigned to Cranfield University 
  7. ^ Subrahmanyam, Sreenath; Piletsky, Sergey A; Piletska, Elena V; Chen, Beining; Karim, Kal; Turner, Anthony P.F (December 2001). "'Bite-and-Switch' approach using computationally designed molecularly imprinted polymers for sensing of creatinine11Editors Selection". Biosensors and Bioelectronics. 16 (9–12): 631–637. doi:10.1016/S0956-5663(01)00191-9. PMID 11679238.
  8. ^ "Probing Peptide Sequences on Their Ability to Generate Affinity Sites in Molecularly Imprinted Polymers". doi:10.1021/acs.langmuir.9b03410.s001. Retrieved 23 February 2023.
  9. ^ Yao, Wei; Ge, Chenyang; Zhang, Yilin; Xia, Xiao-Feng; Wang, Long; Wang, Dawei (20 May 2020). "Corrigendum: Synthesis of 2-Arylisoindoline Derivatives Catalyzed by Reusable 1,2,4-Triazole Iridium on Mesoporous Silica through a Cascade Borrowing Hydrogen Strategy". Chemistry – A European Journal. 26 (68): 16144. doi:10.1002/chem.202001951. ISSN 0947-6539. PMID 33284513.
  10. ^ Yuksel, Nilufer; Tektas, Sevgi (17 February 2022). "Molecularly imprinted polymers: preparation, characterisation, and application in drug delivery systems". Journal of Microencapsulation. 39 (2): 176–196. doi:10.1080/02652048.2022.2055185. ISSN 0265-2048. PMID 35319325.
  11. ^ Sempionatto, Juliane R.; Lasalde-Ramírez, José A.; Mahato, Kuldeep; Wang, Joseph; Gao, Wei (15 November 2022). "Wearable chemical sensors for biomarker discovery in the omics era". Nature Reviews Chemistry. 6 (12): 899–915. doi:10.1038/s41570-022-00439-w. ISSN 2397-3358. PMC 9666953. PMID 37117704.
  12. ^ a b Subrahmanyam, Sreenath; Piletsky, Sergey A.; Turner, Anthony P. F. (19 July 2002). "Application of Natural Receptors in Sensors and Assays". Analytical Chemistry. 74 (16): 3942–3951. doi:10.1021/ac025673+. ISSN 0003-2700. PMID 12199559.
  13. ^ Ligler, Frances S. (12 December 2008). "Perspective on Optical Biosensors and Integrated Sensor Systems". Analytical Chemistry. 81 (2): 519–526. doi:10.1021/ac8016289. ISSN 0003-2700. PMC 2666073. PMID 19140774.
  14. ^ "Coupling a Natural Receptor Protein with an Artificial Receptor to Afford a Semisynthetic Fluorescent Biosensor". doi:10.1021/ja035631i.s001. Retrieved 23 February 2023.
  15. ^ Hunt, Heather K.; Dahmen, Jeremy L.; Soteropulos, Carol E. (4 March 2014). Kudryashov, Alexis V.; Paxton, Alan H.; Ilchenko, Vladimir S.; Aschke, Lutz; Washio, Kunihiko (eds.). "Interfacing whispering gallery mode microresonators for environmental biosensing". SPIE Proceedings. Laser Resonators, Microresonators, and Beam Control XVI. 8960. SPIE: 89600O. Bibcode:2014SPIE.8960E..0OH. doi:10.1117/12.2041568.
  16. ^ Banerjee, Pratik; Franz, Briana; Bhunia, Arun K. (2010), "Mammalian Cell-Based Sensor System", Whole Cell Sensing Systems I, vol. 117, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 21–55, Bibcode:2010wcs1.book...21B, doi:10.1007/10_2009_21, ISBN 978-3-642-12361-0, PMID 20091291, retrieved 23 February 2023
  17. ^ Sharma, A.; Khan, A.N.; Subrahmanyam, S.; Raman, A.; Taylor, G.S.; Fletcher, M.J. (26 November 2013). "Salivary proteins of plant-feeding hemipteroids – implication in phytophagy". Bulletin of Entomological Research. 104 (2): 117–136. doi:10.1017/s0007485313000618. ISSN 0007-4853. PMID 24280006. S2CID 12267200.
  18. ^ Turner, Nicholas W.; Subrahmanyam, Sreenath; Piletsky, Sergey A. (January 2009). "Analytical methods for determination of mycotoxins: A review". Analytica Chimica Acta. 632 (2): 168–180. Bibcode:2009AcAC..632..168T. doi:10.1016/j.aca.2008.11.010. ISSN 0003-2670. PMID 19110091.
  19. ^ Subrahmanyam, Sreenath; Adams, Allan; Raman, Anantanarayanan; Hodgkins, Dennis; Heffernan, Mark (20 December 2017). "Ecological modelling of a wetland for phytoremediating Cu, Zn and Mn in a gold–copper mine site using Typha domingensis (Poales: Typhaceae) near Orange, NSW, Australia". European Journal of Ecology. 3 (2): 77–91. doi:10.1515/eje-2017-0016. ISSN 1339-8474. S2CID 73569738.
  20. ^ Subrahmanyam, Sreenath (21 April 2015). "Effective climate change adaptation strategies for biodiversity conservation". Frontiers in Environmental Science. 3. doi:10.3389/fenvs.2015.00032. ISSN 2296-665X.
[edit]