Jump to content

Rotzo Formation

Coordinates: 45°42′N 11°06′E / 45.7°N 11.1°E / 45.7; 11.1
From Wikipedia, the free encyclopedia
Rotzo Formation
Stratigraphic range: Early Pliensbachian
~192–187 Ma
[1]
Panorama of the Rotzo area with several of the Outcrops visible: Tonezza mountain at the left, Val d´Assa cliff in the center-front and Campolongo mountain in the right
TypeGeological formation
Unit ofCalcari Grigi Group
Sub-unitsTovel Member[2]
UnderliesMassone Oolitic Limestone
Overlies
AreaTrento Platform
Thickness250 m
Lithology
PrimaryLithified gray silty marl, gray grainstone, bioturbated/intraclastic/ooidal gray wackestone, mud banks and sand deposits.[3]
OtherLight-grey to yellowish-grey packstone with oolites, bioclasts, algal lumps, pellets, dasycladacean algae, foraminifera, lituolids, and miliolids
Location
LocationVicenza Province: Trentino-Alto Adige, Southern Alps
Coordinates45°42′N 11°06′E / 45.7°N 11.1°E / 45.7; 11.1
Approximate paleocoordinates32°06′S 16°42′E / 32.1°S 16.7°E / -32.1; 16.7
RegionVeneto
Country Italy
Type section
Named forRotzo
Rotzo Formation is located in Italy
Rotzo Formation
Rotzo Formation (Italy)

The Rotzo Formation (also known in older literature as the Noriglio Grey Limestone Formation) is a geological formation in Italy, dating to roughly between 192 and 186 million years ago and covering the Pliensbachian stage of the Jurassic Period in the Mesozoic Era.[4] Has been traditionally classified as a Sinemurian-Pliensbachian Formation, but a large and detailed dataset of isotopic 13C and 87Sr/86Sr data, estimated the Rotzo Formation to span only over the Early Pliensbachian, bracketed between the Jamesoni-Davoei biozones, marked in the Loppio Oolitic Limestone–Rotzo Fm contact by a carbon isotope excursion onset similar to the Sinemu-Pliens boundary event, while the other sequences fit with the a warm phase that lasts until the Davoei biozone.[1] The Rotzo Formation represented the Carbonate Platform, being located over the Trento Platform and surrounded by the Massone Oolite (marginal calcarenitic bodies), the Fanes Piccola Encrinite (condensed deposits and emerged lands), the Lombadian Basin Medolo Group and Belluno Basin Soverzene Formation (open marine), and finally towards the south, deep water deposits of the Adriatic Basin.[5] The Pliensbachian Podpeč Limestone of Slovenia, the Aganane Formation & the Calcaires du Bou Dahar of Morocco represent regional equivalents, both in deposition and faunal content.

Fossil prosauropod tracks have been reported from the formation.[6] This formation was deposited within a tropical lagoon environment, similar to modern Bahamas which was protected by oolitic shoals and bars from the open deep sea located to the east (Belluno Basin) and towards the west (Lombardia Basin). It is characterized by a rich paleontological content. It is notable mostly thanks to its great amount of big aberrant bivalves, among which is the genus Lithiotis, described in the second half of the nineteenth century. The unusual shape of Lithiotis and Cochlearites shells, extremely elongated and narrow, characterized by a spoon-like body space placed in a high position, rarely preserved, seems to suggest their adaptation to soft and muddy bottoms with a high sedimentation rate.[7] The Bellori outcrop displays about 20 m of limestones with intercalated clays and marls rich in organic matter and sometimes fossil wood (coal) and amber. The limestones are well stratified, with beds 10 cm to more than one metre thick, whereas the clayey levels range between 3 and 40 cm in thickness.[8][9]

Paleoenvironment

[edit]

The sedimentary cover of the Southern Alps has been recognized as a well-preserved section of the Mesozoic Tethys' southern continental margin, featuring a horst and graben structure linked to the rifting associated with the opening of the central North Atlantic that in the Late Triassic and Early Jurassic, created elevated blocks separated by troughs. While the western margin (Piedmont and Lombardy) quickly submerged in the Early Jurassic (As seen by the Saltrio Formation & Moltrasio Formation), the eastern regions maintained shallow water sedimentation, including the Friuli and Trento Platforms, this last one latter evolving into a pelagic plateau, and separated from the Lombardian basin by the Garda escarpment fault system.[10]

The Early Jurassic Calcari Grigi Group represents the shallow-water sedimentation phase of the Trento Platform, revealing several sites over an area of about 1,500 km2. The continuity of dinosaur tracks from the Hettangian-Pliensbachian interval indicates a stable connection between the Southern Alps' carbonate tidal flats and nearby vegetated lands and freshwater sources, although the exact locations of these lands remain uncertain.[11] Detailed sedimentological studies of the Calcari Grigi Group, particularly the Rotzo Formation, describe it as a shallow subtidal platform with an inner lagoon bordered by oolitic shoals.[8]

The Coste dell’Anglone ichnosite for example, situated on the margin of this lagoon within a sandy barrier complex, was influenced by pioneer plants like Hirmeriellaceae in semi-arid conditions. Sedimentary structures indicate a shallow water tidal environment with heterolithic stratification pointing to steady flows at low current velocities. The presence of dinosaur tracks and supratidal markers suggests repeated subaerial exposure, contrasting with previous interpretations of the site as fully subtidal.[11][12]

These findings align with the lagoon-barrier island complex scenario, featuring a subtidal ramp gently inclined to the west and an intertidal-supratidal barrier island complex trending approximately N-S, now corresponding to the Mt. Brento-Biaina and Mt. Baldo chains.[5][11]

Amoebae

[edit]

The presence of the families Centropyxidae and Difflugiidae testifies the presence of a mixed marine-terrestrial depositional system, lacking large bodies of water.[13]

Genus Species Location Material Notes Images

Centropyxis[13]

  • C. sp.

Tonezza del Cimone

Calcareous Skeleton

A testate amoebae, member of the family Centropyxidae inside Arcellinida.

Extant Example of the Genus Centropyxis

Difflugia[13]

  • D. sp.

Tonezza del Cimone

Calcareous Skeleton

A testate amoebae, member of the family Difflugiidae inside Arcellinida.

Extant Example of the Genus Difflugia

Pontigulasia[13]

  • P. sp.

Tonezza del Cimone

Calcareous Skeleton

A testate amoebae, member of the family Difflugiidae inside Arcellinida.

Extant Example of the Genus Pontigulasia

Foranimifera

[edit]
Genus Species Location Material Notes Images
Agerina[14]
  • A. martana
  • Altopiano di Asiago
  • Tonezza del Cimone
  • Altopiano di Folgaria
  • Recoaro
  • Gruppo del Pasubio
  • Monte Baldo
  • Monte Scandolara
Calcareous Skeletons A foraminifer of the Cornuspiridae family
Ammobaculites[14]
  • A. coprolithiformis
  • Altopiano di Asiago
  • Tonezza del Cimone
  • Altopiano di Folgaria
  • Recoaro
  • Gruppo del Pasubio
  • Monte Baldo
  • Monte Scandolara
Calcareous Skeletons A foraminifer of the family Ammomarginulininae.
Amijiella[14]
  • A. amiji
  • Altopiano di Asiago
  • Tonezza del Cimone
  • Altopiano di Folgaria
  • Recoaro
  • Gruppo del Pasubio
  • Monte Baldo
  • Monte Scandolara
Calcareous Skeletons A foraminifer of the Hauraniidae family
Bosniella[14]
  • B. oenensis
  • Altopiano di Asiago
  • Tonezza del Cimone
  • Altopiano di Folgaria
  • Recoaro
  • Gruppo del Pasubio
  • Monte Baldo
  • Monte Scandolara
Calcareous Skeletons A foraminifer of the Biokovinidae family
Cymbriaella[15]
  • C. Iorigae
  • Monte di Campoluzzo
  • Alpe Alba
Calcareous Skeletons A foraminifer of the Hauraniidae family
Duotaxis[14][16]
  • D. metula
  • Altopiano di Asiago
  • Tonezza del Cimone
  • Altopiano di Folgaria
  • Recoaro
  • Gruppo del Pasubio
  • Monte Baldo
  • Monte Scandolara
Calcareous Skeletons A foraminifer of the Verneuilinoidinae family

Everticyclammina[17]

  • E. praevirguliana
  • Camporosa
  • Rotzo
  • Monte Cimoncello di Toraro
  • Monte di Campoluzz
Calcareous Skeletons A foraminifer of the Everticyclamminidae family.
Frondicularia[18]
  • F. sp.
  • Bellori
  • Garzon di Scotto
  • Ponte dell`Anguillara
Calcareous Skeletons A foraminifer of the family Nodosariinae.
Glomospira[14]
  • G. sp.
  • Altopiano di Asiago
  • Tonezza del Cimone
  • Altopiano di Folgaria
  • Recoaro
  • Gruppo del Pasubio
  • Monte Baldo
  • Monte Scandolara
Calcareous Skeletons A foraminifer of the family Ammodiscidae.
Haurania[14]
  • H. amiji
  • H. deserta
  • H. ssp.
  • Altopiano di Asiago
  • Tonezza del Cimone
  • Altopiano di Folgaria
  • Recoaro
  • Gruppo del Pasubio
  • Monte Baldo
  • Monte Scandolara
  • Bellori
  • Garzon di Scotto
  • Ponte dell`Anguillara
Calcareous Skeletons A foraminifer of the family Hauraniinae.
Lituosepta[14][19]
  • L. recoarensis
  • L. compressa
  • L. ssp.
  • Altopiano di Asiago
  • Tonezza del Cimone
  • Altopiano di Folgaria
  • Recoaro
  • Gruppo del Pasubio
  • Monte Baldo
  • Monte Scandolara
  • Bellori
  • Ponte dell`Anguillara
Calcareous Skeletons A foraminifer of the Mesoendothyridae family.
Meandrovoluta[14][20]
  • M. asiagoensis
  • Altopiano di Asiago
  • Tonezza del Cimone
  • Altopiano di Folgaria
  • Monte Baldo
Calcareous Skeletons A foraminifer of the Cornuspiridae family
Mayncina[18][14]
  • M. termieri
  • Garzon di Scotto
  • Bellori
  • Ponte dell`Anguillara
Calcareous Skeletons A foraminifer of the Mayncinidae family
Orbitopsella[18][14]
  • O. primaeva
  • O. preacursor
  • O. dubari
  • O. spp.
  • Altopiano di Asiago
  • Tonezza del Cimone
  • Altopiano di Folgaria
  • Recoaro
  • Gruppo del Pasubio
  • Monte Baldo
  • Campomolon
  • Bellori
  • Ponte dell`Anguillara
Calcareous Skeletons A foraminifer of the Mesoendothyridae family.
Ophtalmidium[14]
  • O. concentricum
  • O. sp.
  • Altopiano di Asiago
  • Tonezza del Cimone
  • Altopiano di Folgaria
  • Recoaro
  • Gruppo del Pasubio
  • Monte Baldo
  • Monte Scandolara
Calcareous Skeletons A foraminifer of the family Ophthalmidiidae.
Paleomayncina[14]
  • P. termieri
  • Altopiano di Asiago
  • Tonezza del Cimone
  • Altopiano di Folgaria
  • Recoaro
  • Gruppo del Pasubio
  • Monte Baldo
  • Monte Scandolara
Calcareous Skeletons A foraminifer of the Planiseptinae family.
Pseudocyclammina[14]
  • P. liasica
  • P. spp.
  • Altopiano di Asiago
  • Tonezza del Cimone
  • Altopiano di Folgaria
  • Recoaro
  • Gruppo del Pasubio
  • Monte Baldo
  • Monte Scandolara
Calcareous Skeletons A foraminifer of the Pfenderinidae family.
Pseudopfenderina[14]
  • P. cf. butterlini
  • Altopiano di Asiago
  • Tonezza del Cimone
  • Altopiano di Folgaria
  • Recoaro
  • Gruppo del Pasubio
  • Monte Baldo
  • Monte Scandolara
Calcareous Skeletons A foraminifer of the Pseudopfenderininae family.

Invertebrates

[edit]

Microfossils of the Rotzo Formation consist of benthic foraminifera, calcareous algae, Ostracoda and coprolites. Foraminifera are mainly benthic agglutinated species belonging to the superfamily Lituolacea (suborder Textulariina), while lamellar and porcellaneous-walled species are very rare.[21] The bivalve Opisoma excavatum is very common.[22]

Sponges

[edit]
Genus Species Stratigraphic position Material Notes Images

Chaetetes[23]

  • C. (Pseudoseptifer) waehneri
  • Lancia refuge
  • Alpe Alba
  • Col Santo

Colonial Imprints

A Chaetetidan Demosponge, member of Chaetetinae. Monospecific assamblages with encrusting and symbiont forms are found abundantly on lagoonal facies, distributed in several stratigraphic horizons.

Specimen of the same genus

Anthozoa

[edit]
Genus Species Stratigraphic position Material Notes Images

Isastrea[24]

  • I. sp.
  • Rotzo

Colonial Imprints

A Scleractinian Coral, member of Montlivaltiidae. This Coral is often found in the Early Jurassic Tethys range, from the Iberian peninsula to Morocco.

Specimen of the same genus
Montlivaultia[25]
  • M. trochoidiformis
  • Sega di Noriglio
Colonial Imprints A Scleractinian Coral, member of Montlivaltiidae.
Pinacophyllum[24]
  • cf. P. sp.
  • Rotzo
Colonial Imprints A Scleractinian Coral, member of Stylophyllidae
Stylophyllopsis[24]
  • S. ex gr. rudis
  • Rotzo
Colonial Imprints A Scleractinian Coral, member of Stylophyllidae
Synastrea[24]
  • S. sp.
  • Rotzo
Colonial Imprints A Scleractinian Coral, member of Synastraeidae

Branchipods

[edit]
Genus Species Stratigraphic position Material Notes Images

Gibbirhynchia[26]

  • G. curviceps
  • Sospirolo
  • Isolated Shells

A Rhynchonellidan brachiopoda, member of Gibbirhynchiinae. Unusual genus in the Mediterranean region, more common on NW Europe

Linguithyris[26]

  • L. aspasia
  • Ballino
  • Sospirolo
  • Isolated Shells

A Terebratulidan brachiopoda, member of Nucleatidae. Typical Mediterranean region taxon in the Pliensbachian

Liospiriferina[26]

  • L. obtusa
  • Cortina d'Ampezzo
  • Sospirolo
  • Isolated Shells

A spiriferidan brachiopoda, member of Spiriferinidae. Typical Mediterranean region taxon in the Pliensbachian

Specimen of the same genus

Lychnothyris[27]

  • L. rotzoana
  • Sette Comuni
  • Erbezzo
  • Vajo dell'Anguilla
  • Cimoncello di Toraro
  • Campomolon
  • Isolated Shells

A Terebratulidan brachiopoda, member of Plectoconchidae. Typical Mediterranean region taxon in the Pliensbachian, the main Branchiopod locally associated with the Lithiotids facies, where they formed rare mass occurrences at discrete intervals.

Prionorhynchia[26]

  • P.? flabellum
  • Cortina d'Ampezzo
  • Sospirolo
  • Isolated Shells

A spiriferidan brachiopoda, member of Spiriferinidae. Typical Mediterranean region taxon in the Pliensbachian

Bivalves

[edit]

The Rotzo Formation is known mostly due to its massive bivalve associations of the genera Lithiotis, Cochlearites and Lithioperna that extended all along the Pliensbachian Trento Platform forming mass accumulations of specimens that formed Reef-Like structures.[28] This fauna appeared after the early Pliensbachian C-cycle perturbation, that triggered the diffusion of the Lithiotis Fauna, noted on the rapid widespread of this biota after the event layers.[28] All of the genera related with this fauna appeared on the lower Jurassic, and all but one became extinct before the Middle Jurassic.[18] This "Reefs" had a strong zonation, starting with the bivalves Gervilleioperna and Mytiloperna, restricted to intertidal and shallow-subtidal facies. Lithioperna is limited to lagoonal subtidal facies and even in some low-oxygen environments. Finally Lithiotis and Cochlearites are found in subtidal facies, constructing buildups.[18] This sections formed various kinds of ecosystems on the Trento platform, where it appeared in branched corals filled with (Spongiomorpha), Domal corals (Stromatoporida), tubular corals, Styllophyllidae corals, unidentified Cerioidea colonial corals, regular echinoid debris, sponges, and the solitary coral Opelismilia sp., with also aggregated snail shells.[18]

Genus Species Stratigraphic position Material Notes Images
Avicula[29]
  • A. spinicosta
  • Noriglio
Isolated Shells A clam, member of Aviculidae inside Ostreida

Cochlearites[30][31][32][18]

  • C. loppianus
  • Vaio del Paradiso
  • Bellori
  • Vaio dell'Anguilla
  • Campodalbero
  • Pasubio
  • Albaredo
  • Giazzera
  • Valgola
  • Valbona
  • Rotzo
  • Mezzaselv
  • Isolated Shells
  • Mass Accumulations of specimen

An oyster, member of Plicatostylidae inside Ostreida. A large bivalve, with a subequivalved shell, up to 60–70 cm high. It is one of the Three main bivalves recovered on the Lithiotis Facies, with its accumulations generally overlying megalodontid coquinas.[31]

Cypricardinia[29]
  • C. incurvata
  • Noriglio
  • Cornacalda
Isolated Shells A clam, member of Trapezidae inside Cardiida

Eomiodon[30][31][33]

  • E. serradensis
  • E. baroni
  • E. gardeti
  • E. vulgaris
  • Vaio del Paradiso
  • Bellori
  • Vaio dell'Anguilla
  • Campodalbero
  • Pasubio
  • Albaredo
  • Giazzera
  • Valgola
  • Valbona
  • Rotzo
  • Mezzaselv

Isolated Shells

A clam, member of Neomiodontidae inside Veneroidei. The so-called Eomiodon horizon represents the lower Rotzo Formation, composed of organic-rich marlstones with abundant specimens of this genus, typical of stressed environment with low salinity.[30] This genus considered an opportunistic shallow infaunal suspension feeder, and the marker genus for brackish environments.[33]

Gervillia[29][34]

  • G. buchi
  • G. lamellosa
  • G. volanensis
  • G. spp.
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Noriglio
  • Nosellari
  • Chiesa
  • Carbonare
  • Osteria alla Stanga
  • Between Chiesa S.Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Isolated Shells

An Oyster, member of Bakevelliidae inside Pteriida. Found on greater accumulations on lower shale-dominated levels

Specimen of the genus

Gervilleioperna[30][31][32]

  • G. ombonii
  • G. sp.
  • Vaio del Paradiso
  • Bellori
  • Vaio dell'Anguilla
  • Campodalbero
  • Pasubio
  • Albaredo
  • Giazzera
  • Valgola
  • Valbona
  • Rotzo
  • Mezzaselv

Isolated Shells

An oyster, member of Plicatostylidae inside Ostreida. On the Rotzo formation this genus become abundant along rootlets, indicative of a very shallow and restricted lagoon or marsh environment.[31]

Gresslya[29][27]
  • G. elongata
  • Vajo dell'Anguilla
  • Cimoncello di Toraro
  • Campomolon
  • Noriglio
Isolated Shells A clam, member of Ceratomyidae inside Pholadidea.
Homomya[25]
  • H. cf. punctifera
  • Sega di Noriglio
Isolated Shells A clam, member of Pleuromyidae inside Pholadidea.
Lima[25]
  • L. norigliensis
  • L. gigantea
  • Sega di Noriglio
Isolated Shells A clam, member of Limidae inside Pteriomorphia
Lithophaga[25]
  • L. tirolensis
  • Sega di Noriglio
Isolated Shells A mussel, member of the family Mytilidae inside Mytilida

Lithioperna[30][31][32][18]

  • L. scutata
  • L. spp.
  • Vaio del Paradiso
  • Bellori
  • Vaio dell'Anguilla
  • Campodalbero
  • Pasubio
  • Albaredo
  • Giazzera
  • Valgola
  • Valbona
  • Rotzo
  • Mezzaselv
  • Isolated Shells
  • Mass Accumulations of specimens

An oyster, member of Plicatostylidae inside Ostreida. This genus was found to be a bivalve with a byssate juvenile stage that developed different modes of life on the adulthood depending on the individual density and bottom firmness.[32]

Lithiotis[24][30][31][32][18]

  • L. problematica
  • L. spp.
  • Altipiano d'Asagio
  • Vaio del Paradiso
  • Bellori
  • Vaio dell'Anguilla
  • Campodalbero
  • Pasubio
  • Albaredo
  • Giazzera
  • Valgola
  • Valbona
  • Rotzo
  • Mezzaselv
  • Isolated Shells
  • Mass Accumulations of specimens

An oyster, member of Plicatostylidae inside Ostreida. It is the major Bivalve identified on the formation, and the genus that gives the name to the Lithiotis fauna.[31] Large, large and aberrant bivalves present on mostly of the Trento Platform.[32] Its accumulation have had different denominations on literature, such as banks, bioherms, biostromes, bivalve reefs or bivalve mounds.[31]

Lucina[25]
  • L spp.
  • Val d'Assa
  • Cornacalda
Isolated Shells A clam, member of Lucinidae inside Lucinida
Modiolus[25]
  • M. tirolensis
  • M. cf. hillana
  • Rotzo
  • Val d'Assa
Isolated Shells A mussel, member of the family Mytilidae inside Mytilida
Example of extant specimen

Mytiloperna[25][30][31][32]

  • M. mirabilis
  • M. bittneri
  • M. lepsii
  • M. transalpinus
  • M. cf. pernoides
  • M. spp.
  • Vaio del Paradiso
  • Bellori
  • Vaio dell'Anguilla
  • Val d'Assa
  • Sega di Noriglio
  • Cornacalda
  • Mandrielle
  • Monte Gaza
  • Ciago bei Verzano
  • Campodalbero
  • Pasubio
  • Albaredo
  • Giazzera
  • Valgola
  • Valbona
  • Rotzo
  • Mezzaselv

Isolated Shells

An oyster, member of the family Malleidae inside Ostreida.

Opisoma[30][31][22]

  • O. excavatum
  • O. menchikoffi
  • Vaio del Paradiso
  • Bellori
  • Vaio dell'Anguilla
  • Campodalbero
  • Pasubio
  • Albaredo
  • Giazzera
  • Valgola
  • Valbona
  • Rotzo
  • Mezzaselv

Isolated Shells

A clam, member of Astartidae inside Carditida. Is considered a genus that evolved from shallow burrowing ancestors, becoming a secondarily semi-infaunal edgewise recliner adapted to photosymbiosis.[22]

Pachygervillia[35]

  • P. anguillaensis
  • P. taramellii
  • Vaio dell’Anguilla
  • Vajo del Paradiso
  • Val di Sella
  • Viote section

Isolated Shells

An oyster, member of Plicatostylidae inside Ostreida.

Pachyrisma[34]

  • P. (Pachymegalodon) chamaeformis
  • P. (Durga) crassa
  • P. (Durga) nicolisi
  • P. ssp.
  • Bellori
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Nosellari
  • Chiesa
  • Carbonare
  • Osteria alla Stanga
  • Between Chiesa S.Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo
  • Cimoncello di Toraro
  • Campomolon

Isolated Shells

A clam, member of Megalodontidae inside Megalodontida.

Pecten[25]
  • P. norigliensis
  • P. lens
  • P. cf. norigliensis
  • P. cf. spatulatus
  • Sega di Noriglio
  • Cornacalda
  • Rotzo
  • Mte. Erio
Isolated Shells A scallop, member of the family Pectinidae inside Pectinida
Pleuromya[29]
  • P. elegans
  • P. cf. elongata
  • Sega di Noriglio
Isolated Shells A clam, member of Pleuromyidae inside Pholadidea.
Pholadomya[27]
  • P. athesiana
  • P. norigliensis
  • Vajo dell'Anguilla
  • Sega di Noriglio
  • Cimoncello di Toraro
  • Campomolon
Isolated Shells A clam, member of Pholadomyidae inside Pholadomyida.
Specimen of the genus
Protodiceras[27]
  • P. pumilum
  • P. spp.
  • Vajo dell'Anguilla
  • Cimoncello di Toraro
  • Campomolon
Isolated Shells A clam, member of Megalodontidae inside Megalodontida.

Pseudopachymytilus[30][31][32]

  • P. mirabilis
  • P. spp.
  • Vaio del Paradiso
  • Bellori
  • Vaio dell'Anguilla
  • Campodalbero
  • Pasubio
  • Albaredo
  • Giazzera
  • Valgola
  • Valbona
  • Rotzo
  • Mezzaselv

Isolated Shells

A clam, incertae sedis inside Pterioida. On the Rotzo formation this byssate bivalve indicates a shallow subtidal or intertidal environment.[32]

Pteria[27]
  • P. volanensis
  • Vajo dell'Anguilla
  • Cimoncello di Toraro
  • Campomolon
Isolated Shells An oyster, member of Pteriidae inside Ostreida.
Extant specimen of the genus
Tellina[25]
  • T?. cornacaldensis
  • Cornacalda
Isolated Shells A clam, member of Tellinidae inside Tellinoidea
Example of extant specimen

Ammonoidea

[edit]
Genus Species Stratigraphic position Material Notes Images

Charmasseiceras[36]

C. sp.

Serrada (Folgaria, Trento)

Shells

An ammonite of the family Schlotheimiidae. A very rare genus on the layers of the formation, being found only a few specimens.

Fuciniceras[36][37]

  • F. suejense
  • F. portisi

Shells

An Ammonite of the Family Hildoceratidae

Fuciniceras

Juraphyllites[36]

  • J. libertus

Contrada Ronchi (Recoaro Terme, Vicenza)

Shells

Type member of the family Juraphyllitidae. It is the most abundant Ammonite found on the Rotzo Formation

Juraphyllites (G)
Protogrammoceras[38]
  • P. gr. celebratum-italicum
  • Monte Baldo
Shells An Ammonite of the family Hildoceratidae.

Gastropoda

[edit]
Genus Species Stratigraphic position Material Notes Images

Anticonulus[39]

  • A. acutus

Certosa di Vedana

Shells

A marine gastropod (Top Snail) of the Family Trochidae inside Trochoidea.

Aptyxiella[25][34]

  • A. norigliensis
  • A. spp.
  • Bellori
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Nosellari
  • Sega di Noriglio
  • Chiesa
  • Carbonare
  • Osteria alla Stanga
  • Between Chiesa S.Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Shells

A marine gastropod (snail), member of Nerinellidae inside Nerineoidea.

Ataphrus[39]

  • A. (Ataphrus) latilabrus
  • A. (Ataphrus) cordevolensis

Certosa di Vedana

Shells

A marine gastropod (snail), type genus of the Family Ataphridae inside Trochoidea.

Austriacopsis[39]

  • A. austriaca

Certosa di Vedana

Shells

A marine gastropod (snail) of the Family Fissurellidae inside Fissurelloidea.

Discohelix[39]

  • D. excavata

Certosa di Vedana

Shells

A marine gastropod (snail), type genus of the Family Discohelicidae inside Vetigastropoda.

Eucyclidae[39]

Indeterminate

Certosa di Vedana

Shells

A marine gastropod (snail) of the Family Eucyclidae inside Seguenzioidea.

Eucyclus[39]

Certosa di Vedana

Shells

A marine gastropod (snail), type genus of the Family Eucyclidae inside Seguenzioidea.

Emarginula[39]

  • Certosa di Vedana
  • Val d'Arsa

Shells

A marine gastropod (limpet) of the family Fissurellidae inside Fissurelloidea.

Globularia[40]

  • G. sp.

Tonezza del Cimone

Shells

A marine gastropod (snail) of the family Ampullinidae inside Campaniloidea.

Guidonia[39]

  • G. pseudorotula

Certosa di Vedana

Shells

A marine gastropod (snail) of the family Trochonematidae inside Murchisoniina.

Natica[29]
  • N. tridentina
  • N. spp.
  • Albaredo bei Roveredo
  • Noriglio
Shells A marine gastropod (Moon snail) of the family Naticidae inside Sorbeoconcha

Neritopsis[39]

  • N. fabianii
  • N. spp.
  • Certosa di Vedana
  • Bellori

Shells

A marine gastropod (snail), type genus of the family Neritopsidae inside Cycloneritimorpha.

Patella[29]
  • P. conoidea
  • P. costata
  • P. (Scurria?) tirolensis
  • Noriglio
  • Cornacalda
  • Val d'Arsa
Shells A marine gastropod (limpet) of the family Patellidae inside Patellogastropoda

Plectotrochus[39]

  • P. sp.

Certosa di Vedana

Shells

A marine gastropod (Top snail) of the family Trochidae inside Trochoidea.

Proacirsa[39]

Certosa di Vedana

Shells

A marine gastropod (snail) of the family Gordenellidae inside Allogastropoda.

Pseudonerinea[40]

  • P. terebra

Tonezza del Cimone

Shells

A marine gastropod (snail) of the family Pseudonerineidae inside Nerineoidea.

Pseudorhytidopilus[39]

  • P. detonii

Certosa di Vedana

Shells

A marine gastropod (limpet) of the family Acmaeidae inside Patellogastropoda.

Tretospira[40]

  • T. tridentina

Tonezza del Cimone

Shells

A marine gastropod (periwinkle) of the family Purpurinidae inside Littorinoidea.

Trochus[29]
  • T. sinister
Noriglio Shells A marine gastropod (Top snail) of the family Trochidae inside Trochoidea.

Echinodermata

[edit]
Genus Species Stratigraphic position Material Notes Images
Hypodiadema[29]
  • H. sp.
  • Noriglio
Sclerites A Pseudodiadematidae Euechinoidean
Pentacrinites[29][25]
  • P. basaltiformis
  • P. sp.
  • Monte Pombo
Sections A Pentacrinitidae Isocrinidan

Polydiadema[41]

  • P. depressum
  • Monte Roite

Two specimens (MCV.20/02 and MCV.20/03)

An Emiratiidae Phymosomatoidan. This Echinoids are recovered from a marginal marine layer, with abundant bivalves, gastropods, small corals, often found in concentrations due to tempestites.[41]

Pseudodiadema[25]
  • P. roveredanum
  • P. cobellii
  • P. veronense
  • P. spp.
  • Monte Pombo
  • Sega di Noriglio
  • Albaredo bei Roveredo.
Multiple specimens A Pseudodiadematidae Euechinoidean

Crustacea

[edit]
Genus Species Stratigraphic position Material Notes Images
Cypris[29][25]
  • C. rotzoana
Noriglio Valves An Ostracodan of the family Cyprididae inside Podocopida

Klieana[42]

  • K. sp.

Tonezza del Cimone.[42]

Valves

An Ostracodan of the family Cytherideidae inside Cytheracea. The earliest record of the genus, the next youngest records of the genus are from Middle Jurassic sequences of France and Great Britain.[42]

Limnocythere[42]

  • L. sp.

Tonezza del Cimone.[42]

Valves

An Ostracodan of the family Limnocytherinae inside Cytheracea. High probability to be a new species of Limnocythere since the authors know of no other with similar posterolateral sulcation.[42]

Phlyctisoma[43]

  • P. cf.sinemuriana

Valbona Area.[43]

Slightly deformed Exuvia

An Erymid Decapodan Crustacean common on in mediterranean rocks. With a rostrum about 1.3 cm long and the cephalic part of carapace about 2.5 cm the specimen probably reached a total length between 9–10 cm, being one of the largest specimens belonging to this genus. Frequent association with Thalassinoides burrows.[43][44]

Phraterfabanella[42]

  • P. tridentinensis

Tonezza del Cimone.[42]

Valves

An Ostracodan of the family Cytherideidae inside Cytheracea. The assemblage is dominated (>95%) by this taxon.[42] It is a rather Medium-sized Ostracodan and markedly sexually dimorphic (males more elongate and more subrectangular versus shorter, more inflated and more subtriangular females).[42] it is likely that the palaeoenvironment was somewhat "stressed" and probably influenced by Salinity, where this genus would adapt better that Other Ostracodans (is related to the modern euryhaline species, Cyprideis torosa).[42]

Annelida

[edit]
Genus Species Stratigraphic position Material Notes Images

Schistomeringos[45]

  • S. expectatus
  • Between Ferrazza and Campodalbero
  • Between Nosellari and Dazio
  • Between Virti and Osteria alla Stanga
  • Between Chiesa S. Martino and Zaffoni

Isolated scolecodonts

A polychaete of the family Dorvilleidae. Unlike the modern counterparts that live in deeper environments, this species is found linked with shallow marine facies

Extant specimen of the same genus

Ichnofossils

[edit]

In the Western Venetian Prealps a shallow-water, oceanic carbonate platform system, the Trento platform, developed on the Early Jurassic, producing a large succession of massive to well-bedded white Limestones, several 100 m (330 ft) thick that are part of the Calcari Grigi Group, where the Rotzo Formation is the Upper Member.[46] On the local limestone of the Rotzo Formation deep burrowing is a very common type of biogenic activity, as is shown due to the presence of a large characteristic network of burrows which reach down to the lagoonal, marly-clayey assigned strata, suggesting intense bioturbation by large unknown organisms, perhaps giant decapod crustaceans (Probably members of the family Erymidae), although, the burrows found are not closely related to the ones of Shrimps or other decapods, but resemble those of Stomatopoda and Malacostraca.[46] Other includes abandoned burrows, vertical biogenic action and infilling on the sea substrate.[46]

Genus Species Stratigraphic position Material Notes Images

Asteriacites[47]

  • A. lumbricalis
  • Asteriacites isp.

Coste dell’Anglone dinosaur ichnosite

Star-shaped impressions

An ichnogenus that represents the resting trace resting activity of sea stars (Asteroidea) and brittle stars (Ophiuroidea).[47] The recovered from the Rotzo formation are probably from specimens trapped on tidal changes.[47]

Chomatichnus[46]

  • C. wegberensis

Campomolon, Valbona

Vertical burrows with preserved entrances

It is difficult to suggest this ichnogenus because on the Formation the vertical and lined burrow with a deep central crater typical of Chomatichnus is never preserved.[46] It resemble described burrows of endobenthic thalassinidean decapods, specially Callianassa subterranea of modern North Sea, Callianassa major, Callianassa californensis or Upogebia pugettensis.[46] It can be also Serpulidae Polychaetan burrows.

Chondrites[44][43][48][46]

  • C. isp.

Campomolon, Valbona

Burrowing and track Ichnofossils

In the Rotzo Formation Ophiomorpha irregulaire local specimens the walls are extensively reworked by small, secondary burrowers assigned to the ichnogenus Chondrites.[43] Interpreted as the feeding burrow of a sediment-ingesting animal.

Chondrites

Glossifungites[46]

  • G. isp.

Campomolon, Valbona

Infilled abandoned burrows by coarse-grained skeletal debris

On the local waters during the Lower Jurassic, water motion due to the hurricane action truncated many mounds causing changes on the deposition on the sea-floor and inducing various phases of substrate infillings with carbonate mud, fine-to coarse-grained skeletal debris and fecal pellets.[46] They are assigned to Priapulida, Serpulidae, Siboglinidae, Sabellidae or even Oweniidae.

Ophiomorpha[44][43][48][46]

  • O. irregulaire
  • cf. O. nodosa
  • O. isp. A
  • O. ? isp. B

Campomolon, Valbona

Burrowing and track Ichnofossils

Two major types of Ophiomorpha where recovered, a smaller one from 2–4 cm in size and the larger one from 5–15 cm in diameter.[48] They are complex burrow systems lined with pelletoidal sediments generally infilled by coarse-grained detritus.[44] Specimens Seems partly destroyed by weathering.[43]

Ophiomorpha

Skolithos[46]

  • S. isp.

Campomolon, Valbona

Infilled abandoned burrows by coarse-grained skeletal debris

Ichnofossils done by organisms advancing along the bottom surface. Very narrow, vertical or subvertical, slightly winding unlined shafts filled with mud. Locally, post hurricane burrows are found in fine-grained tempestite beds and muddy layers and they are Domichnia, Fodinichnia and Chemichnia.[46]

Skolithos

Thalassinoides[44][43][48][46]

  • T. suevicus
  • T.? isp. B

Campomolon, Valbona

Burrowing and track Ichnofossils

Thalassinoides suevicus has been found on mostly of the middle-upper part of the Rotzo Formation associated with muddy deposits. It ranges from 2–5 cm to 6–10 cm and the larger ones from 10 to 16 cm.[44] Y-shaped tunnels that seen in cross-section reveal circular walls made of pelletoidal grainstone, being more probably a fodichnia of a burrowing animal.[48] A few ichnofossils include simple cylindrical tubes up to 80 cm in length, that resemble crustacean described in Seychelles.[48]

Thalassinoides

Vertebrata

[edit]

Chondrichthyes

[edit]

Episodic surficial bioturbation is common on the Rotzo Formation, due to invertebrates or fishes which alter intensely but rapidly the substrate for many cm in depth.[46] It this case the Bioturbation is assigned to mollusc predatory Chondrichthyes, such as Hybodontidae and Heterodontidae.[46] It also resembles present day flat angel sharks or Squatinidae and Guitarfish such as Rhinobatos.[46]

Genus Species Stratigraphic position Material Notes Images

Chimaeriformes[49]

Indeterminate

  • Campiluzzi Tunnel, west of Monte Buso.
  • Teeth
  • Scales

Uncertain Holocephalii remains

Hybodontiformes[49] Indeterminate
  • Campiluzzi Tunnel, west of Monte Buso.
  • Teeth
  • Scales
Uncertain assignation

Hybodus[50][49]

  • H. sp.
  • Campiluzzi Tunnel, west of Monte Buso.
  • Teeth
  • First dorsal fin spine

A shark, type genus of the family Hybodontidae inside Hybodontiformes. A very prolific genus, found mostly on open marine units.

Actinopterygii

[edit]

Unidentified fish scales are known from the formation.[51]

Genus Species Stratigraphic position Material Notes Images

Ginglymodi[49]

Indeterminate

Campiluzzi Tunnel, west of Monte Buso.

  • Isolated Teeth
  • Isolated Scales

Remains of Ginglymodi bony fishes, previously referred to Semionotiformes and/or the genus Lepidotes

Lepidotes, example of Early Jurassic Ginglymodi fish

Pachycormiformes[50]

Indeterminate

Campiluzzi Tunnel, west of Monte Buso.

  • Isolated Teeth
  • Isolated Scales

Actinopterygii fishes, the oldest record of the family

Pholidophoriformes[52][51][50]

Indeterminate

Campiluzzi Tunnel, west of Monte Buso.

  • Complete Specimen
  • Isolated Teeth
  • Isolated Scales

Teleostei fishes, with genera know to form large Fish schools.

Pholidophorus[29]
  • P. beggiatianus
Sega di Noriglio
  • Partial specimen
A Bony fish, member of the family Pholidophoridae inside Pholidophoriformes
Example of specimen from the same genus

Pycnodontiformes[52][51][50]

Indeterminate

  • Campiluzzi Tunnel, west of Monte Buso
  • Sega di Noriglio
  • Isolated Teeth
  • Isolated Scales

Teleostei Fishes of small size, related to lagoonar environments, previously referred to the genus Pycnodus

Crocodyliformes

[edit]
Genus Species Location Material Notes Images

Teleosauridae?[52][51]

Indeterminate

Monte Pasubio

Isolated Teeth[52][53]

A Thalattosuchian Mesoeucrocodylian. It was cited the presence of fragmentary and poorly preserved remains of “Teleosauridae?”. The fossils were found on lagoonal deposits.[51]

Example of Thallatosuchian, Macrospondylus

Dinosaurs

[edit]

On the Inter-supratidal levels show that on the Rotzo Formation the Tracksites were rarely hit by Storm Waves.[54] Bella Lastra Tracksite recovers this environment, where the shales present (Where Fish & Crocodrylomorph Remains where found) are filled with plant roots, pollen grains, spores, freshwater ostracodes and the bivalve Eomiodon.[54] This was deposited mostly on a Lagoonar environment with abundant shed vegetation.[54] The main local Track record recovers specially Theropoda and Sauropoda, where the Sauropods are the most abundant tracks present (70%), moving the Otozum-like Sauropodomorphs of lower levels, with the climate changing from arid to humid.[54] The Coste dell’Anglone ichnosite is considered as derived from semi-arid tidal flat deposits, due to the abundance of Cheirolepidiaceae Pollen.[12] As the Pliensbachian Trento Platform is considered to be formed by a channelized barrier formed by sand, with reiterate tide emersions. The dinosaurs living here probably trampled on the subtidal flats looking for fishes trapped on tidal-derived ponds.[12]

Color key
Taxon Reclassified taxon Taxon falsely reported as present Dubious taxon or junior synonym Ichnotaxon Ootaxon Morphotaxon
Notes
Uncertain or tentative taxa are in small text; crossed out taxa are discredited.
Genus Species Location Member Material Notes Images

Anchisauripus[12][51][55]

  • A. isp. A
  • Coste dell'Anglone tracksite

Tovel Member

Footprints

Theropod tracks, type member of the ichnofamily Anchisauripodidae, incertae sedis inside Neotheropoda. Probably related to Coelophysidae, such as Procompsognathus and Panguraptor or Coelophysoidea, such as Lophostropheus. All tracks were probably produced by individuals with the same functional anatomy of the hind foot.[54]

Example of Anchisauripus track

Kayentapus[12][51][55][56]

  • K. isp. A
  • K. isp. B
  • Coste dell'Anglone tracksite
  • Bella Lasta tracksite
  • Stol dei Campiluzzi tracksite

Tovel Member

Footprints

Theropod tracks, member of the ichnofamily Eubrontidae, incertae sedis inside Neotheropoda. Includes Kayentapus sp. assigned to Sinosaurus-alike Theropods, but on the Rotzo Formation include also Abelisauroid-like tracks, similar to the foot of the genus Velocisaurus.[51] The tracks measure 30 cm long and have a distinctive robust digit III.[54] The Coste dell´Anglone tracksite had a pes with the metatarsal III elongated, as found on Dilophosaurus.[12]

Example of Kayentapus track

Moyenisauropus[57][55]

M. isp.

  • Marocche di Dro tracksite

Tovel Member

Footprints

Thyreophoran tracks, type member of the ichnofamily Moyenisauropodidae, incertae sedis inside Neornithischia. Is considered by some authors synonymous with the ichnogenus Anomoepus. The tracks adscribed share some morphological affinity with those referred to the Ankylosauridae, such as the ichnogenera Metatetrapodus and Tetrapodosaurus, and probably belonged to medium-sized Scelidosaurs or other kind of Thyreophorans. Include Specimens of up to 30 cm, suggesting +4 m long scelidosauroids.[57]

Otozoum?[57][55]

  • O.? isp.
  • Marocche di Dro tracksite

Tovel Member

Footprints

Sauropodomorph tracks, member of the ichnofamily Otozoidae, incertae sedis inside Sauropodomorpha. A single trackway that strongly differs from the others found on the same tracksite. It wears morphological and morphometrical appearance that suggests relationships with a prosauropod trackmaker.[57]

Example of Otozoum track

Parabrontopodus[58]

  • P. isp. A
  • P. isp. B
  • Marocche di Dro tracksite
  • Bella Lasta tracksite

Tovel Member

Footprints

Sauropod tracks, type member of the ichnofamily Parabrontopodidae, incertae sedis inside Sauropodomorpha. Tracks from large basal members of Sauropoda. The larger tracks comprise elliptic pes (L=70 cm; W=50 cm) and subcirluar manus prints (L=33 cm; W=30 cm), what are among the largest known dinosaur tracks of the lower jurassic.[54] While nearly destroyed, the Tracks resemble the foot of the genus Barapasaurus. There is a type B of Parabrontopodus slightly smaller that resemble the genus Vulcanodon.

Flora

[edit]
Rotzo Formation nearby land hosted Bahamian-type biomes (Gold Rock Beach in the picture) with nearby "Taxodium swamp"-like coniferous associations dominated by the Pagiophyllum producer

The Rotzo Formation was deposited on a Lagoon on the emerged Trento Platform, leading to a well preserved fossil flora record, collected and studied since the 19th century.[59] The great level of floral fossilization has even allow to discovery fossil amber on the Bellori section. This amber has allowed to determine that the environment was a shallow tropical lagoon, only a few metres deep, closed seawards by oolitic shoals and bars.[59] This levels are dominated by a high abundance of Classopollis sp. (Cheirolepidiaceae), associated with dry and wet climates in coastal areas. The abundance of this group of conifers is also proven by the high presence of cuticles of Pagiophyllum cf. rotzoanum.[60] Beyond this genera, spores are highly diversified, including from Sphenophyta, Selaginellales to Ferns, with abundance (more than 50%) of trilete spores (Deltoidospora), what suggest a good freshwater availability corresponding to a wet climate, proven also by the presence of aquatic miospores of algae such as Botryococcus and Pseudoschizaea.[59] The climate was arid on some seasons with monsoon months. The abundance of marine fauna on this sediments, including fragments of corals, bryozoans, bivalves, echinoids, and foraminifera, suggest transport from brackish lagoons and marshes, probably occurred during storm events.[59] Overall data points to a marshy and/or submerged paleoenvironment, comparable to the present-day Taxodium swamp or cypress swamp and a Bahamian-type marine environment in a rather wet monsoonal climate as in the modern southeastern Asia.[59][60]

Amber

[edit]

The Rotzo Formation records one of the few Early Jurassic assamblages with Amber in the world, the nicknamed "Bellori amber" found near the village of the same name.[61] Made mostly of small droplets of less than 1 mm with exceptionally preserved morphology its likely the amber producing plants were likely not stressed or affected by disease.[61] Due to the small size animal inclusion have not been found. However various plant materials, identified “mummified wood” and wood tissue are known.[61] Additionally large amounts of Circumpolles Cheirolepidiaceous pollen, and occasional freshwater algae Pseudoschizaea remains are included.[61] Several cuticle fragments are attributed to the araucariaceous or Hirmeriellaceae genus Pagiophyllum.[61] Those lived on a coastal and wet palaeoenvironment similar to the present-day Taxodium swamps with monsoonal seasons as in the modern southern Asia.[61]

Palynology

[edit]
Genus Species Location Material Notes

Accincitisporites[62][63]

  • A. sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla

Spores

Incertae sedis; affinities with the Pteridophyta

Alisporites[61]

  • A. sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla

Spores

Affinities with Voltzia (Willsiostrobus) and Corystospermales

Aratrisporites[61]

  • A. sp
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla

Spores

Affinities with Lycophytes, in situ in Cyclostrobus, Lycostrobus and Annalepis zeiller.

Auritulinasporites[62][61]

  • A. scanicus
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • Between Chiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Spores

Incertae sedis; affinities with the Pteridophyta

Baculatisporites[62][61]

  • B. comaumensis
  • B. sp
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • Between Chiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Spores

Affinities with the family Osmundaceae in the Polypodiopsida.

Calamospora[61]

  • C. sp
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla

Spores

Affinities with the Calamitaceae in the Equisetales.

Camarozonosporites[62][61]

  • C. cf. heskemensis
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • Between Chiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Spores

Affinities with the family Lycopodiaceae in the Lycopodiopsida.

Cabochonicus[63]

  • cf. C. carbunculus
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla

Spores

Affinities with Selaginellaceae

Chasmatosporites[61]

  • C. sp
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla

Spores

Affinities with the family Zamiaceae in the Cycadales. It is among the most abundant flora recovered on the upper section of the coeval Rya Formation, and was found to be similar to the pollen of the extant Encephalartos laevifolius.[64]

Classopollis[62][61]

  • C. sp
  • C. classoides
  • C. meyeriana
  • C. torosus
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • Between Chiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Pollen

Affinities with the Hirmeriellaceae in the Pinopsida.

Concavisporites[62][61]

  • C. crassexinius
  • C. sp. A
  • C. sp. B
  • C. sp. C
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • Between Chiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Spores

Incertae sedis; affinities with the Pteridophyta

Cycadopites[62][61]

  • C. sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • Between Chiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Pollen

Affinities with the family Cycadaceae and Bennettitaceae.

Deltoidospora[62][61]

  • D. minor
  • D. toralis
  • D. sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • Between Chiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Spores

Incertae sedis; affinities with the Pteridophyta

Densosporites[62][61]

  • D. fissus
  • D. sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • Between Chiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Spores

Affinities with the Selaginellaceae in the Lycopsida.

Eucommiidites[62][61]

  • E. troedssoni

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Pollen

Type pollen of the Erdtmanithecales, related to the Gnetales.

Foveosporites[62][61]

  • F. visscheri
  • F. sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • Between Chiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Spores.

Affinities with Selaginellaceae

Granuloperculatipollis[61]

  • G. sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla

Pollen

Affinities with the Hirmeriellaceae in the Pinopsida.

Horstisporites[62][63]

  • H. harrisii
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla

Spores

Affinities with the Selaginellaceae in the Lycopsida.

Hughesisporites[63]

  • cf. H. orlowskae
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla

Spores

Affinities with the Selaginellaceae in the Lycopsida.

Ischyosporites[62][61]

  • I. variegatus
  • I. sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • Between Chiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Spores

Incertae sedis; affinities with the Pteridophyta

Leptolepidites[62][61][63]

  • L. cf. major
  • L. sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • Between Chiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Spores

Affinities with the family Lycopodiaceae in the Lycopodiopsida.

Limbosporites[61]

  • L. sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla

Spores

Affinities with the family Lycopodiaceae in the Lycopodiopsida.

Lycopodiacidites[62][61]

  • L. cerebriformis
  • L. regulatus
  • L. sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • Between Chiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Spores

Affinities with the Ophioglossaceae in the Filicales.

Lycopodiumsporites[62][61][63]

  • L. semimuris
  • L. sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • BetweenChiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Spores

Affinities with the family Lycopodiaceae in the Lycopodiopsida

Monosulcites[61][63]

  • M. sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla

Pollen

Affinities with the family Karkeniaceae and Ginkgoaceae in the Ginkgoales.

Perinopollenites[61][63]

  • P. sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla

Pollen

Affinities with the family Cupressaceae in the Pinopsida.

Pinuspollenites[61][63]

  • P. sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla

Pollen

Affinities with the family Pinaceae in the Pinopsida.

Retitriletes[62][63]

  • R. semimuris
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • BetweenChiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Spores

Affinities with the family Lycopodiaceae in the Lycopodiopsida

Retusotriletes[62][63]

  • R. sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • BetweenChiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Spores

Affinities with the family Lycopodiaceae in the Lycopodiopsida

Skarbysporites[62][61][63]

  • S. puntii
  • S. elsendoornii
  • S. sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • BetweenChiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Spores

Incertae sedis; affinities with the Pteridophyta

Schizosporis[62][61][63]

  • S. cf. reticulatus
  • S. sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • BetweenChiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Cysts

Affinities with Chlorophyta

Spheripollenites[62][61][63]

  • S. sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla

Pollen

Affinities with the Hirmeriellaceae in the Pinopsida

Tigrisporites[62][61][63]

  • Ti. jonkeri
  • T. sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • BetweenChiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Spores

Incertae sedis; affinities with the Pteridophyta

Todisporites[62][61][63]

  • T. minor
  • T. cinctus
  • T. sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • BetweenChiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Spores

Affinities with the family Osmundaceae in the Polypodiopsida.

Trachysporites[62][61][63]

  • T. fuscus
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • BetweenChiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Spores

Incertae sedis; affinities with the Pteridophyta

Trileites[62][63]

  • cf. T. murrayi
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla

Spores

Affinities with Selaginellaceae

Verrutriletes[62]

  • cf.V. compostipunctatus
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla

Spores

Incertae sedis; affinities with the Pteridophyta

Vitreisporites[62][61][63]

  • V. pallidus
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • Between Chiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Pollen

From the family Caytoniaceae in the Caytoniales.

Dasycladales

[edit]
Genus Species Location Material Notes Images

Palaeodasycladus[18][56]

  • P. fragilis
  • P. mediterraneus
  • P. spp.
  • Coste dell'Anglone tracksite
  • Marocche di Dro tracksite
  • Bellori
  • Garzon di Scotto

Calcified Thalli

A Green Algae of the family Dasycladaceae. A reefal algae usually found in carbonate settings along all the Mediterranean

Sestrosphaera[65]
  • S. liasina
  • Malga Mandrielle
Calcified Thalli A Green Algae of the family Triploporellaceae.

Equisetales

[edit]
Genus Species Location Material Notes Images

Equisetites[66][67]

  • E. bunburyanus
  • E. veronensis
  • E. minor
  • Roverè di Velo
  • Campo Fontana
  • Val d´Assa
  • Pernigotti

Stems

Affinities with Equisetaceae. Related to humid environments, the stems of local Equisetopsids show a rather large grown cycle, like the Bamboo on the modern Southern Asia, implicating tall Plants influenced by a Tropical Climate.

Phyllotheca[66][67]

  • P. brongniartiana
  • P. equisetiformis
  • Roverè di Velo

Leaf Whorl

Affinities with Phyllothecaceae inside Equisetales

Phyllotheca brongniartiana from the Rotzo Formation

Pteridophytes

[edit]
Genus Species Location Material Notes Images

Coniopteris[67][68]

  • C. hymenophylloides
  • Rotzo

Fronds

Affinities with Polypodiales inside Polypodiidae.

Danaeites[66][67]

  • D. heeri
  • D. brongniartiana
  • Rotzo
  • Val d´Assa
  • Bienterle
  • Selva di Progno

Fronds

Affinities with Marattiales inside Marattiopsida.

Dictyophyllum[66][67]

  • D. sp.
  • Roverè di Velo

Fronds

Affinities with Dipteridaceae inside Gleicheniales.

Gleichenites[66][67]

  • G. elegans
  • Roverè di Velo

Fronds

Affinities with Gleicheniaceae inside Polypodiopsida

Hymenophyllites[66][67]

  • H. leckenbyi
  • Roverè di Velo

Fronds

Affinities with either Dicksoniaceae or Polypodiidae inside Polypodiopsida. Similar to the genus Coniopteris.

Laccopteris[66][67]

  • L. rotzana
  • Rotzo

Fronds

Affinities with Matoniaceae inside Gleicheniales.

Marzaria[66][67]

  • M. paroliniana
  • Roverè di Velo

Fronds

Affinities with Matoniaceae inside Gleicheniales.

Marzaria paroliniana from the Rotzo Formation

Matonidium[66][67]

  • M. rotzoana
  • Roverè di Velo

Fronds

Affinities with Matoniaceae inside Gleicheniales.

Phlebopteris[66][67]

  • P. polypodioides
  • Val d´Assa

Fronds

Affinities with Matoniaceae inside Gleicheniales.

Protorhipis[66][67]

  • P. asarifolia
  • Roverè di Velo

Fronds

Affinities with Dipteridaceae inside Gleicheniales. A rather lower Fern, with great resemblance with the modern genus Dipteris.

Corystospermales

[edit]
Genus Species Location Material Notes Images

Cycadopteris[66][69][70]

  • C. brauniana
  • C. heerii
  • C. heterophylla
  • Valle Zuliani
  • Rotzo
  • Roverè di Velo
  • Albaredo

Fronds

Affinities with Corystospermaceae inside Corystospermales. On the Roverè di Velo collection, C. brauniana is the most common Frond found. The Fronds belong to medium to large arboreal Ferns.

Cycadopteris brauniana and Cycadopteris sp., both recovered from different locations of the Rotzo Formation

"Cyclopteris"[66][67]

  • "C." minor
  • St. Bortolomeo

Fronds

Affinities with Corystospermaceae inside Corystospermales.

Dichopteris[66][67]

  • D. rhomboidalis
  • D. paroliniana
  • D. angustifolia
  • D. visianica
  • D. micophylla
  • Roverè di Velo
  • Val d´Assa
  • Val Juliani
  • Val Salorno

Fronds

Affinities with Corystospermaceae inside Corystospermales.. Represents the largest "Seed Fern" Leaf in the fossil record, with leaves up to 70 cm, having an habit resembling the extant angiosperm Nypa fruticans.[71]

Dichopteris visianica from the Rotzo Formation

Caytoniales

[edit]
Genus Species Location Material Notes Images

Pseudosagenopteris[66][67]

  • P. angustifolia
  • Roverè di Velo

Leaflets

Affinities with Caytoniaceae inside Caytoniales.

Sagenopteris[66][67]

  • S. reniformis
  • S. goeppertiana
  • S. nilssoniana
  • Roverè di Velo

Leaflets

Affinities with Caytoniaceae inside Caytoniales. There is a superficial doubt with the assignation to S. goeppertiana, and due to that Roverè di Velo specimen may be confirmed by comparing them with original Zigno's Material.

Sagenopteris nilssoniana from the Rotzo Formation

Cycadophyta

[edit]
Genus Species Location Material Notes Images
Androstrobus[72]
  • A. ssp.
  • Roverè di Velo
  • Rotzo
Reproductive structure Incertade sedis inside Cycadophyta
Apoldia[67]
  • A. tenera
  • Roverè di Velo
  • Rotzo
Leaflets Incertade sedis inside Cycadophyta. Related with Cycad-like trees.
Cycadospadix[72]
  • C spp.
  • Roverè di Velo
  • Rotzo
Reproductive structure Incertade sedis inside Bennettitales or Cycadophyta

Bennettitales

[edit]
Genus Species Location Material Notes Images
Blastolepis[72][73]
  • B. otozamitis
  • B. acuminata
  • Roverè di Velo
  • Rotzo
Reproductive structure Incertade sedis inside Bennettitales.
Cycadeospermum[72]
  • C spp.
  • Roverè di Velo
  • Rotzo
Reproductive structure Incertade sedis inside Bennettitales or Cycadophyta
Deltolepis[67][70]
  • D. mitra
  • Rotzo
Reproductive structure Incertade sedis inside Bennettitales or Cycadophyta

Lomatopteris[66][67]

  • L. jurensis
  • Roverè di Velo

Fronds

Incertade sedis inside Bennettitales.

Lomatopteris jurensis from the Rotzo Formation

Otozamites[69][67][70]

  • O.bunburyanus
  • O. veronensis
  • O. vicentinus
  • O. mattiellianus
  • O. nathorstii
  • O. feistmantelii
  • O. molinianus
  • O. massalongianus
  • O. spp.
  • Roverè di Velo
  • Rotzo
  • Val d´Assa
  • M. Pernigotti
  • S. Bortolomeo

Pinnate leaf fragments

Affinities with Williamsoniaceae inside Bennettitales. Overall, the genus Otozamites is among the most abundant flora genus recovered on some of the levels of the Rotzo Formation, and also one of the most diversified. It belongs to arbustive Bennetites.

Otozamites bunburyanus from the Rotzo Formation

Pterophyllum[69][67]

  • P. venetum
  • P. platyrachis
  • Roverè di Velo
  • Rotzo
  • Vall d´Assa
  • M. pernigotti
  • Scandolara

Leaflets

Affinities with Williamsoniaceae inside Bennettitales. This genus has been related with the more arboreal family Williamsoniaceae, although is more probably from a low arboreal to arbustive Bennetite.

Ptilophyllum[69][67][70]

  • P. grandifolium
  • P. triangulare
  • P. spp.
  • Roverè di Velo

Leaves

Affinities with Williamsoniaceae inside Bennettitales. Was previously ascribed by Guiscardi (Director of the Geology Department of the Napoles University between 1861 al 1885) to Pachypteris visianica and Cycadopteris brauniana.

Ptilophyllum grandifolium from the Rotzo Formation

Sphenozamites[69][67]

  • S. rossii
  • S. spp.
  • Roverè di Velo

Leaflets

Affinities with Williamsoniaceae inside Bennettitales. Related with Cycad-like trees.

Weltrichia[69][67]

  • W. oolithica
  • W. sp.
  • Roverè di Velo
  • Selva di Progno

Bennettite "Flower"

Affinities with Williamsoniaceae inside Bennettitales. Weltrichia is considered by some authors some kind of Bennetitalean Flower, putting that group on relationships with the Angiosperms.

Williamsonia[69][67]

  • W. italica
  • Monte raut
  • Roverè di Velo

Bennettite "Flower"

Affinities with Williamsoniaceae inside Bennettitales.

Williamsonia italica from the Rotzo Formation

Zamites[69][67]

  • Z. goepperti
  • Z. ribeiroanus
  • Z. rotzoanus
  • Rotzo
  • M. pernigotti
  • S. Bortolomeo

Leaflets

Incertade sedis inside Bennettitales. This genus has been related with the more arboreal family Williamsoniaceae, although is more probably from a low arboreal to arbustive Bennetite.

Ginkgoopsida

[edit]
Genus Species Location Material Notes Images

Trevisania[66][74]

  • T. furcellata

Val d´Assa

Leaves

Affinities with the genus Trichopitys, as probably a member of Karkeniaceae inside Ginkgoopsida, with strong resemblance with the genus Baiera, lumped in some papers as Baiera lindleyana.

Baiera a taxon that has been said to include Trevisania

Conifers

[edit]
Genus Species Location Material Notes Images

Brachyphyllum[74][69][70]

  • B. tropidimorphyrn
  • B. graciliforme
  • B. kendallianum
  • B. appropinquatum
  • B. praetermissum
  • Roverè di Velo
  • Pernigotti
  • Boca di Trappola
  • Rotzo
  • Valle Zulliani
  • Branched shoots
  • Isolated leaves

Affinities with Araucariaceae or Cheirolepidiaceae inside Coniferales. Brachyphyllum tropidimorphyrn shows close resemblance between African and Venetian conifers and its distribution suggests a lowland araucarian forest.[75]

Brachyphyllum kendallianum from the Rotzo Formation

Dactylethrophyllum[74][69][70]

  • D. peristictum
  • Scandolara

Branched shoots

Affinities with Cheirolepidiaceae inside Coniferales.

Desmiophyllum[66][70]

  • D. zeillerianum
  • D. rigidum
  • Roverè di Velo
  • Valle Zuliani

Isolated leaves

A possible Conifer leaf. Was suggested to have affinities with Czekanowskiales, sometimes found inside Ginkgoopsida, yet recent finds of it associated with the cone genera Sphaerostrobus and Ourostrobus points to a coniferophyte affinity, maybe as a member of Palissyaceae.[76]

Elatocladus[74]

  • E. zignoi
  • E. veronensis
  • cf. E. sp.
  • Roverè di Velo
  • Val d´Assa
  • Rotzo

Branched shoots

Affinities with Cupressaceae inside Coniferales. Arboreal plants similar to the modern genus Cunninghamia

Elatocladus zignoi from the Rotzo Formation

Pagiophyllum[60][69][74][70]

  • P. rotzoanum
  • P. vicentinum
  • P. veronense
  • P. magnipapillare
  • P. valdassense
  • P. robustum
  • P. revoltinum
  • Roverè di Velo
  • Val d´Assa
  • Rotzo
  • Pernigotti
  • Monte Carpani
  • Isolated Leaves
  • Branched Shoots
  • Cuticles

Affinities with Araucariaceae or Cheirolepidiaceae inside Coniferales. One of the specimens was assigned to Otozamites massalongianus, due to confusing the overlapping appearance and the Otozamites-like shape of the leaves of the apical portion of the main shoot.

Pagiophyllum rotzoanum from the Rotzo Formation

Pelourdea[66][67]

  • P. megaphylla
  • Roverè di Velo
  • Val d´Assa
  • Rotzo
  • Scandolara
  • Squaranton
  • Bienterle
  • Isolated Leaves
  • Pollen Organ

Incertae sedis inside Coniferales, initially identified as "Yuccites schimperianus", suggested as a member of its own family, the "Pelourdeaceae". A hygrophytic riparian conifer with herbaceous or shrubby habit. Some specimens are difficult to identify.

Stachyotaxus[69][74]

  • S. spp.
  • Valle Zuliani
  • Roverè di Velo

Branched shoots

Affinities with Palyssiaceae inside Coniferales. Extinct group conifer leaves with similarities with Sequoia or Amentotaxus. Maybe Includes the species "Taxites vicentina".

"Taxites vicentina"

Bibliography

[edit]
  1. ^ a b Franceschi, M.; Dal Corso, J.; Posenato, R.; Roghi, G.; Masetti, D.; Jenkyns, H. C. (2014). "Early Pliensbachian (Early Jurassic) C-isotope perturbation and the diffusion of the Lithiotis Fauna: Insights from the western Tethys". Palaeogeography, Palaeoclimatology, Palaeoecology. 410 (1): 255–263. Bibcode:2014PPP...410..255F. doi:10.1016/j.palaeo.2014.05.025. Retrieved 12 November 2021.
  2. ^ Castellarin, A.; Picotti, V.; Cantelli, L.; Claps, M.; Trombetta, L.; Selli, L.; Carton, A.; Borsato, A.; Daminato, F.; Nardin, M.; Santuliana, E.; Veronese, L.; Bollettinari, G. (2005). "Note Illustrative della Carta Geologica d'Italia alla scala 1:50.000, Foglio 080 Riva del Garda". Dipartimento Difesa del Suolo, Servizio Geologico d'Italia. 56 (2): 145. Retrieved 24 January 2022.
  3. ^ "PBDB".
  4. ^ Broglio Loriga, C.; Neri, C. (1976). "Aspetti paleobiologici e paleogeografici delle facies "Lithiotis" (Giurese inf.)". Rivista Italiana di Paleontologia e Stratigrafia. 82 (1): 651–151.
  5. ^ a b Masetti, D.; Fantoni, R.; Romano, R.; Sartorio, D.; Trevisani, E. (2012). "Tectonostratigraphic evolution of the Jurassic extensional basins of the eastern southern Alps and Adriatic foreland based on an integrated study of surface and subsurface data". AAPG Bulletin. 96 (11): 2065–2089. Bibcode:2012BAAPG..96.2065M. doi:10.1306/03091211087. Retrieved 12 November 2021.
  6. ^ Mietto, P.; Roghi, G.; Zorzin, R. (2000). "Le impronte di dinosauri liassici dei Monti Lessini Veronesi [The Liassic dinosaur tracks from the Veronese Monti Lessini]". Bollettino del Museo Civico di Storia Naturale di Verona. Geologia Paleontologia Preistoria. 24 (2): 55–72.
  7. ^ Masseti, D.; Posenato, R.; Bassi, D.; Fungagnoli, A. (2005). "The Rotzo Formation (Lower Jurassic) at the Valbona Pass (Vicenza Province)". IRIS Università degli Studi di Ferrara. 31 (5): 35–56. Retrieved 3 January 2022.
  8. ^ a b Neri, Mirco; Papazzoni, Cesare Andrea; Vescogni, Alessandro; Roghi, Guido (2015). "Cyclical variation in paleoenvironments of the Rotzo formation (Lower Jurassic, Lessini Mts., N Italy)". STAMPA. 33 (1): 74–75.
  9. ^ Urban, I. (2017). "Petrografia e geochimica delle ooliti del Giurassico inferiore della Piattaforma di Trento". Area 04 - Scienze della Terra > GEO/02 Geologia Stratigrafica e Sedimentologica. 1 (1): 1–203. Retrieved 3 January 2022.
  10. ^ Castellarin, A.; Picotti, V. (1990). "Jurassic tectonic framework of the eastern border of the Lombardian basin". Eclogae Geologicae Helvetiae. 83 (3): 683–700.
  11. ^ a b c Bernardi, M.; Petti, F. M.; Avanzini, M. (2010). "Palaeoenvironmental implications of Asteriacites lumbricalis in the coste dell'Anglone sinemurian dinosaur ichnosite (NE Italy)". Palaeontologia Electronica. 13 (3): 1–8.
  12. ^ a b c d e f Petti, F. M.; Bernardi, M.; Ferretti, P.; Tomasoni, R.; Avanzini, M. (2011). "Dinosaur tracks in a marginal marine environment: the Coste dell'Anglone ichnosite (Early Jurassic, Trento Platform, NE Italy)". Italian Journal of Geosciences. 130 (1): 27–41. Retrieved 3 January 2022.
  13. ^ a b c d BASSI, DAVIDE; FUGAGNOLI, ANNA; POSENATO, RENATO; SCOTT, DAVID B. (2008). "Testate Amoebae from the Early Jurassic of the Western Tethys, North-East Italy". Palaeontology. 51 (6): 1335–1339. Bibcode:2008Palgy..51.1335B. doi:10.1111/j.1475-4983.2008.00817.x. ISSN 0031-0239. S2CID 129670565.
  14. ^ a b c d e f g h i j k l m n o Fugagnoli, Anna (2004). "Trophic regimes of benthic foraminiferal assemblages in Lower Jurassic shallow water carbonates from northeastern Italy (Calcari Grigi, Trento Platform, Venetian Prealps)". Palaeogeography, Palaeoclimatology, Palaeoecology. 205 (1–2): 111–130. Bibcode:2004PPP...205..111F. doi:10.1016/j.palaeo.2003.12.004. ISSN 0031-0182.
  15. ^ Fugagnoli, Anna (1999). "Cymbriaella, a new foraminiferal genus (textulariina) from the early jurassic of the venetian prealps (Northeastern Italy)". Revue de Micropaléontologie. 42 (2): 99–110. Bibcode:1999RvMic..42...99F. doi:10.1016/s0035-1598(99)90102-2. ISSN 0035-1598.
  16. ^ Fugagnoli, A. (1996). "On the occurrence of Duotaxis metula Kristan (Foraminifera) in the Lower Jurassic (Calcari Grigi, Venetian Prealps, Italy)". Revue de paléobiologie. 15 (2): 385–392.
  17. ^ Fugagnoli, A. (2000-04-01). "First Record Of Everticyclamminaredmond 1964 (E. Praevirguliana N. Sp.; Foraminifera) From The Early Jurassic Of The Venetian Prealps (Calcari Grigi, Trento Platform, Northern Italy)". The Journal of Foraminiferal Research. 30 (2): 126–134. Bibcode:2000JForR..30..126F. doi:10.2113/0300126. ISSN 0096-1191.
  18. ^ a b c d e f g h i j Fraser, N.M.; Bottjer, D.J.; Fischer, A.G. (2004). "Dissecting "Lithiotis" Bivalves: Implications for the Early Jurassic Reef Eclipse". PALAIOS. 19 (1): 51–67. Bibcode:2004Palai..19...51F. doi:10.1669/0883-1351(2004)019<0051:DLBIFT>2.0.CO;2. S2CID 128632794. Retrieved 3 January 2022.
  19. ^ Fugagnoli, Anna; Bassi, Davide (2015). "Taxonomic And Biostratigraphic Reassessment Of Lituosepta Recoarensis Cati, 1959 (Foraminifera, Lituolacea)". The Journal of Foraminiferal Research. 45 (4): 402–412. Bibcode:2015JForR..45..402F. doi:10.2113/gsjfr.45.4.402. hdl:11392/2337234. ISSN 0096-1191.
  20. ^ Fugagnoli, A.; Giannetti, A.; Rettori, R. (2003). "A new foraminiferal genus (Miliolina) from the Early Jurassic of the Southern Alps (Calcari Grigi Formation, Northeastern Italy)" (PDF). Revista Española de Micropaleontología. 35 (1): 43–50.
  21. ^ Monaco, P.; Giannetti, A. (2001). "Stratigrafia tafonomica nel Giurassico inferiore dei Calcari Grigi della Piattaforma di Trento". Atti Ticinensi di Scienze della Terra. 42 (1): 175–209. Retrieved 3 January 2022.
  22. ^ a b c Posenato, R. (2013). "Opisoma excavatum Boehm, a Lower Jurassic photosymbiotic alatoform-chambered bivalve". Lethaia. 46 (2): 424–437. Bibcode:2013Letha..46..424P. doi:10.1111/let.12020. Retrieved 3 January 2022.
  23. ^ Avanzini, M.; Broglio Loriga, C. (1996). "Chaetetid facies from the uppermost Calcari Grigi of the Southern Alps (Lower Jurassic, Gruppo del Pasubio, Trento, Italy)". Memorie di Scienze Geologiche Università di Padova. 48: 55–64. Retrieved 20 January 2024.
  24. ^ a b c d e Geyer, O. F. (1977). "Die "Lithiotis-Kalke" im Bereich der unterjurassischen Tethys". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 153 (3): 304–340.
  25. ^ a b c d e f g h i j k l m von Gloeckelsthurn, L. T. (1890). Zur Kenntnis der Fauna der" Grauen Kalke" der Südalpen. Hölder.
  26. ^ a b c d Vörös, A. (1993). "Jurassic microplate movements and brachiopod migrations in the western part of the Tethys". Palaeogeography, Palaeoclimatology, Palaeoecology. 100 (1–2): 125–145. Bibcode:1993PPP...100..125V. doi:10.1016/0031-0182(93)90037-J. Retrieved 13 November 2023.
  27. ^ a b c d e Bassi, Davide; Angiolini, Lucia; Nebelsick, James H.; Posenato, Renato (2024). "Success and demise of exceptionally preserved terebratulide brachiopod accumulations in a Jurassic (early Pliensbachian) tropical lagoonal setting (Southern Alps, Italy): Brachiopod response to environmental changes". Palaeogeography, Palaeoclimatology, Palaeoecology. 648: 112262. Bibcode:2024PPP...64812262B. doi:10.1016/j.palaeo.2024.112262. ISSN 0031-0182.
  28. ^ a b Franceschi, M.; Dal Corso, J.; Posenato, R.; Roghi, G.; Masetti, D.; Jenkyns, H.C. (2014). "Early Pliensbachian (Early Jurassic) C-isotope perturbation and the diffusion of the Lithiotis Fauna: Insights from the western Tethys". Palaeogeography, Palaeoclimatology, Palaeoecology. 410 (4): 255–263. Bibcode:2014PPP...410..255F. doi:10.1016/j.palaeo.2014.05.025. Retrieved 3 January 2022.
  29. ^ a b c d e f g h i j k l Lepsius, R. G. (1878). Das Westliche Süd-Tirol: geologisch dargestellt. Verlag von Wilhelm Hertz.
  30. ^ a b c d e f g h i Bassi, D.; Boomer, I.; Fugagnoli, A.; Loriga, C.; Posenato, R.; Whatley, R.C. (1999). "Faunal assemblages and palaeoenvironment of shallow water black shales in the Tonezza area (Calcari Grigi, Early Jurassic, Southern Alps)" (PDF). Annali dell'Università di Ferrara, Sezione di Scienze della Terra. 8 (3): 1–16. Retrieved 3 January 2022.
  31. ^ a b c d e f g h i j k l Posenato, R.; Masetti, D. (2012). "Environmental control and dynamics of Lower Jurassic bivalve build-ups in the Trento Platform (Southern Alps, Italy)". Palaeogeography, Palaeoclimatology, Palaeoecology. 361 (2): 1–13. Bibcode:2012PPP...361....1P. doi:10.1016/j.palaeo.2012.07.001. Retrieved 3 January 2022.
  32. ^ a b c d e f g h i Posenato, R.; Avanzini, M. (2004). "Short note–Nota breve "Lithiotis" beds of the Rotzo Formation (Calcari Grigi Group, Lower Jurassic) from Albaredo (Rovereto, Trento)" (PDF). Acta Geol. 81 (6): 23–28. Retrieved 3 January 2022.
  33. ^ a b Posenato, R.; Bassi, D.; Avanzini, M. (2013). "Bivalve pavements from shallow-water black-shales in the Early Jurassic of northern Italy: A record of salinity-and oxygen-depleted environmental dynamics". Palaeogeography, Palaeoclimatology, Palaeoecology. 369 (2): 262–271. Bibcode:2013PPP...369..262P. doi:10.1016/j.palaeo.2012.10.032. Retrieved 3 January 2022.
  34. ^ a b c Negri, A. (1891). "Sopra alcuni fossili: raccolti nei Calcari grigi dei sette comuni". Boll. Soc. Geol. Ital. 10 (6): 309–331.
  35. ^ Posenato, R.; Crippa, G. (2023). "An insight into the systematics of Plicatostylidae (Bivalvia), with a description of Pachygervillia anguillaensis n. gen. n. sp. from the Lithiotis Facies (Lower Jurassic) of Italy". Riv. It. Paleontol. Strat. 129 (3): 551–572. Retrieved 13 November 2023.
  36. ^ a b c Mietto, P. (1985). "Ammoniti nella Piattaforma liassica Veneta". Rivista Italiana di Paleontologia e Stratigrafia. 91 (1): 3–14. Retrieved 3 January 2022.
  37. ^ Haas, O. (1913). "Die Fauna des mittleren Lias von Ballino im Sudtirol". Beitr. Paldont. Geol. Osterr. 26 (1): 1–161. Retrieved 3 January 2022.
  38. ^ Sarti, C.; Ferrari, G. (1999). "The first record of an in situ ammonite from the upper part of the Calcari Grigi di Noriglio Formation of the Monte Baldo (Trentino, Northern Italy)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 213 (3): 313–334. doi:10.1127/njgpa/213/1999/313. Retrieved 3 January 2022.
  39. ^ a b c d e f g h i j k l Gatto, R.; Monari, S. (2010). "Pliensbachian gastropods from Venetian Southern Alps (Italy) and their palaeobiogeographical significance". Palaeontology. 53 (4): 771–802. Bibcode:2010Palgy..53..771G. doi:10.1111/j.1475-4983.2010.00961.x. S2CID 140623279. Retrieved 3 January 2022.
  40. ^ a b c Vorlicek, Lucia (2022). "Analisi paleontologica di alcuni gasteropodi del Giurassico inferiore del Veneto". Dipartimento di Geoscienze-Universita Padova. 34 (1): 1–22. Retrieved 13 November 2023.
  41. ^ a b Borghi, E.; Bottazzi, A. (2020). "First record of the genus Polydiadema Lambert, 1888 (Echinoidea) in the Jurassic of Italy" (PDF). Studi Trentini di Scienze Naturali. 99 (4): 15–19. Retrieved 3 January 2022.
  42. ^ a b c d e f g h i j k Boomer, I.; Whatley, R.; Bassi, D.; Fugagnoli, A.; Loriga, C. (2001). "An Early Jurassic oligohaline ostracod assemblage within the marine carbonate platform sequence of the Venetian Prealps, NE Italy". Palaeogeography, Palaeoclimatology, Palaeoecology. 166 (3–4): 331–344. Bibcode:2001PPP...166..331B. doi:10.1016/S0031-0182(00)00216-9. Retrieved 3 January 2022.
  43. ^ a b c d e f g h Garassino, A.; Monaco, M. (2000). "Burrows and body fossil of decapod custaceans i the Calcari Grigi, Lower Jurassic, Treno Platform (Italy)". Geobios. 34 (3): 291–301.
  44. ^ a b c d e f Monaco, P. (2000). "Decapod burrows (Thalassinoides, Ophiomorpha) and crustacean remains in the Calcari Grigi, lower Jurassic, Trento platform (Italy)". 1st Workshop on Mesozoic and Tertiary decapod crustaceans, Studi e Ricerche, Associazione Amici del Museo Civico "G.Zannato" Montecchio Maggiore (Vicenza), October 6–8, 2000. 1 (1): 55–57. Retrieved 3 January 2022.
  45. ^ Van Erve, A. W. (1981). "Lower Jurassic scolecodonts from the vicentinian Alps (northeastern Italy), representing the family Dorvilleidae Chamberlin, 1919". Review of Palaeobotany and Palynology. 34 (2): 225–235. Bibcode:1981RPaPa..34..225V. doi:10.1016/0034-6667(81)90040-3. Retrieved 17 April 2023.
  46. ^ a b c d e f g h i j k l m n o p Monaco, P.; Giannetti, A. (2002). "Three-dimensional burrow systems and taphofacies in shallowing-upward parasequences, lower Jurassic carbonate platform (Calcari Grigi, Southern Alps, Italy)". Facies. 47 (1): 57–82. Bibcode:2002Faci...47...57M. doi:10.1007/BF02667706. S2CID 129735856. Retrieved 3 January 2022.
  47. ^ a b c Bernardi, M.; Ferreti, P.; Petti, F.M.; Avanzini, M. (2009). "Asteriacites isp. from the Coste dell'Anglone dinosaur ichnosite (Valle del Sarca, Trentino, NW Italy)". Giornate di Paleontologia. 43 (1): 28–31.
  48. ^ a b c d e f Monaco, P.; Garassino, A. (2001). "Burrowing and carapace remains of crustacean decapods in the Calcari Grigi, Early Jurassic, Trento platform". Geobios. 34 (3): 291–301. doi:10.1016/S0016-6995(01)80077-2. Retrieved 3 January 2022.
  49. ^ a b c d Franceschi, F.; Bernardi, M. (2021). "The higher ecological tiers of the Rotzo Formation: first clues on a forgotten vertebrate fauna". _PaleoDays 2021 - XXI Convegno della Società Paleontologica Italiana. 2 (1): 6–7. Retrieved 3 January 2022.
  50. ^ a b c d Franceschi, Fabio; Bernardi, Massimo (2020). "Vertebrate remains from the Rotzo Formation (Lower Jurassic, Trento Platform, Italy): preliminary note" (PDF). Fossilia - Reports in Palaeontology. 78 (6): 25–27. Retrieved 3 January 2022.
  51. ^ a b c d e f g h Petti, F. M.; Bernardi, M.; Todesco, R.; Avanzini, M. (2011). "Dinosaur footprints as ultimate evidence for a terrestrial environment in the late Sinemurian trento carbonate platform". PALAIOS. 26 (10): 601–606. Bibcode:2011Palai..26..601P. doi:10.2110/palo.2011.p11-003r. S2CID 128845481. Retrieved 3 January 2022.
  52. ^ a b c d Avanzini, M. (1998). "Resti di vertebrati dal Giurassico inferiore della piattafor-ma di Trento (Italia settentrionale) Nota prelimiare". Studi Trentini diScienze Naturali. Acta Geologica. 73 (7): 75–80.
  53. ^ Avanzini, M. (1998). "Resti di rettili continentali dal Giurassico inferiore della piattaforma di Trento (Italia settentrionale)". Studi Trentini di Scienze Naturali - Acta Geologica. 73 (4): 75–80.
  54. ^ a b c d e f g Guidorroghi, R. (2006). "Lower Jurassic (Hettangian-Sinemurian) dinosaur track megasites, southern Alps, Northern Italy". The Triassic-Jurassic Terrestrial Transition. 37 (8): 207.
  55. ^ a b c d Petti, F.M.; Avanzini, M.; Antonelli, M; Bernardi, M.; Leonardi, G.; Manni, R.; Mietto, P.; Pignatti, J.; Piubelli, D.; Sacco, E.; Wagensommer, A. (2020). "Jurassic tetrapod tracks from Italy: a training ground for generations of researchers". Tetrapod Ichnology in Italy: The State of the Art. Journal of Mediterranean Earth Sciences. 12 (3): 137–165. Retrieved 3 January 2022.
  56. ^ a b Avanzini, M.; Petti, F. M. (2008). "Updating the dinosaur tracksites from the Lower Jurassic Calcari Grigi Group (Southern Alps, northern Italy)". Studi Trentini di Scienze Naturali, Acta Geologica. 83 (8): 289–301. Retrieved 3 January 2022.
  57. ^ a b c d Avanzini, M.; Leonardi, G.; Tomasoni, R.; Campolongo, M. (2001). "Enigmatic dinosaur trackways from the Lower Jurassic (Pliensbachian) of the Sarca Valley, northeast Italy". Ichnos. 8 (3–4): 235–242. Bibcode:2001Ichno...8..235A. doi:10.1080/10420940109380190. S2CID 128584482. Retrieved 3 January 2022.
  58. ^ Franceschi, M.; Martinelli, M.; Gislimberti, L.; Rizzi, A.; Massironi, M. (2015). "Integration of 3D modeling, aerial LiDAR and photogrammetry to study a synsedimentary structure in the Early Jurassic Calcari Grigi (Southern Alps, Italy)". European Journal of Remote Sensing. 48 (1): 527–539. Bibcode:2015EuJRS..48..527F. doi:10.5721/EuJRS20154830. S2CID 134429593.
  59. ^ a b c d e Neri, M.; Papazzoni, C.A.; Kustatscher, E.; Roghi, G. (2015). "Paleoenvironmental data from the amber-bearing levels of the Rotzo formation (Pliensbachian, Lower Jurassic), Monti Lessini (Verona, Italy)". In XV Edizione delle "Giornate di Paleontologia", PaleoDays. 15 (2): 78–79. Retrieved 3 January 2022.
  60. ^ a b c Neri, M.; Kustatscher, E.; Roghi, G.; Papazzoni, C.A. (2016). "Paleobotanical assemblage from the Lower Jurassic amber bearing levels from the Rotzo Formation, Monti Lessini (Venetian Prealps, Northern Italy)". In the Micropaleontological Society, 5th Silicofossil and Palynology Joint Meeting. 16 (2): 33.
  61. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj Neri, M.; Roghi, G.; Ragazzi, E.; Papazzoni, C. A. (2017). "First record of Pliensbachian (Lower Jurassic) amber and associated palynoflora from the Monti Lessini (northern Italy)". Geobios. 50 (1): 49–63. Bibcode:2017Geobi..50...49N. doi:10.1016/j.geobios.2016.10.001. Retrieved 3 January 2022.
  62. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa Van Erve, A.W. (1977). "Palynological investigation in the Lower Jurassic of the Vicentinian Alps (Northeastern Italy)". Review of Palaeobotany and Palynology. 23 (6): 1–117. Bibcode:1977RPaPa..23....1V. doi:10.1016/0034-6667(77)90004-5. Retrieved 3 January 2022.
  63. ^ a b c d e f g h i j k l m n o p q r s Neri, M.; Kustatscher, E.; Roghi, G. (2018). "Megaspores from the Lower Jurassic (Pliensbachian) Rotzo Formation (Monti Lessini, northern Italy) and their paleoenvironmental implications". Palaeobiodiversity and Palaeoenvironments. 98 (1): 102–118. Bibcode:2018PdPe...98...97N. doi:10.1007/s12549-017-0314-z. S2CID 133666705. Retrieved 3 January 2022.
  64. ^ Guy-Ohlson, D. (1988), "The use of dispersed palynomorphs referable to the form genus Chasmatosporites (Nilsson) Pocock and Jansonius, in Jurassic biostratigraphy" (PDF), Congreso Argentino de Paleontologia y Bioestratigrafia, 3 (1–2): 5–13, retrieved 9 April 2021
  65. ^ Romano, Roberta; Barattolo, Filippo (2009). "Note on Sestrosphaera liasina (Pia, 1920) from the Lowermost Jurassic of Malga Mandrielle (type-locality, Southern Alps, Italy)". Geobios. 42 (1): 101–115. Bibcode:2009Geobi..42..101R. doi:10.1016/j.geobios.2008.07.005. ISSN 0016-6995.
  66. ^ a b c d e f g h i j k l m n o p q r s t De Zigno, A. (1856–1868). "Flora fossilis formationis Oolithicae". Tipografia del Seminario di Padova. 1 (1): 1–426. Retrieved 3 January 2022.
  67. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa Wesley, A. (1958). "Contributions to the knowledge of the flora of the Grey Limestones of Veneto, Part 2". Mem. Ist. Geol. Min. Univ. Padova. 21 (1): 1–57.
  68. ^ Scanu, G. G.; Kustatscher, E.; Pittau, P. (2012). "The Jurassic plant fossils of the Lovisato Collection: preliminary notes". Bollettino della Società Paleontologica Italiana. 51 (2): 71–84.
  69. ^ a b c d e f g h i j k l De Zigno, A. (1885). "Flora fossilis formationis oolithicae Volume 2". Padova, Tip. Del Seminario. 3 (2): 1–356. Retrieved 3 January 2022.
  70. ^ a b c d e f g h Bartiromo, A.; Barone Lumaga, M.R. (2009). "Taxonomical revision of the Collection of Jurassic plants from Roverè di Velo (Veneto, northern Italy) stored in the Palaeontological Museum of the University of Naples "Federico II"". Bollettino della Società Paleontologica Italiana. 48 (3): 1–13. Retrieved 3 January 2022.
  71. ^ THÉVENARD, FRÉDÉRIC; BARALE, GEORGES; GUIGNARD, GAËTAN; DAVIERO-GOMEZ, VÉRONIQUE; GOMEZ, BERNARD; PHILIPPE, MARC; LABERT, NICOLAS (2005). "Reappraisal of the ill-defined Liassic pteridosperm Dichopteris using an ultrastructural approach". Botanical Journal of the Linnean Society. 149 (3): 313–332. doi:10.1111/j.1095-8339.2005.00439.x. ISSN 1095-8339.
  72. ^ a b c d Dalla Vecchia, F. M. (2000). "Macrovegetali terrestri nel Mesozoico italiano: un'ulteriore evidenza di frequenti emersioni". Natura Nascosta. 20: 18–35. Retrieved 7 July 2023.
  73. ^ Kustatscher, E.; Roghi, G.; Giusberti, L. (2014). "La flora del Giurassico dell'italia settentrionale The Jurassic flora of northern Italy". La Storia delle Piante Fossili in Italia. Palaeobotany of Italy (Pp. 154-165). Museo di Scienze Naturali dell'Alto Adige.
  74. ^ a b c d e f Wesley, A. (1956). "Contributions to the knowledge of the flora of the Grey Limestones of Veneto, Part 1". Mem. Ist. Geol. Min. Univ. Padova. 19 (3): 1–69.
  75. ^ Krassilov, V. A. (1978). "Araucariaceae as indicators of climate and paleolatitudes". Review of Palaeobotany and Palynology. 26 (1–4): 113–124. Bibcode:1978RPaPa..26..113K. doi:10.1016/0034-6667(78)90008-8.
  76. ^ van Konijnenburg-van Cittert, J.H.A.; Schmeißner, S.; D., G.; Kustatscher, E.; Pott, C. (2024-03-13). "Plant macrofossils from the Rhaetian of Einberg near Coburg (Bavaria, Germany). Part 3. Conifers, incertae sedis and general discussion". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 310 (3): 251–282. doi:10.1127/njgpa/2023/1182. ISSN 0077-7749.