Jump to content

Metallome

From Wikipedia, the free encyclopedia

In biochemistry, the metallome is the distribution of metal ions in a cellular compartment. The term was coined in analogy with proteome as[1] metallomics is the study of metallome: the "comprehensive analysis of the entirety of metal and metalloid species within a cell or tissue type".[2] Therefore, metallomics can be considered a branch of metabolomics,[citation needed] even though the metals are not typically considered as metabolites.

An alternative definition of "metallomes" as metalloproteins or any other metal-containing biomolecules, and "metallomics" as a study of such biomolecules.[3]

Metallointeractome

[edit]

In the study of metallomes the transcriptome, proteome and the metabolome constitutes the whole metallome. A study of the metallome is done to arrive at the metallointeractome.

Metallotranscriptome

[edit]

The metallotranscriptome[4] can be defined as the map of the entire transcriptome in the presence of biologically or environmentally relevant concentrations of an essential or toxic metal, respectively. The metallometabolome constitutes the complete pool of small metabolites in a cell at any given time. This gives rise to the whole metallointeractome and knowledge of this is important in comparative metallomics dealing with toxicity and drug discovery.[4]

See also

[edit]

References

[edit]

Sources

[edit]
  • Banci, Lucia; Bertini, Ivano (2013). "Chapter 1. Metallomics and the Cell: Some Definitions and General Comments". In Banci, Lucia (ed.). Metallomics and the Cell. Metal Ions in Life Sciences. Vol. 12. Springer. pp. 1–13. doi:10.1007/978-94-007-5561-1_1. ISBN 978-94-007-5560-4. PMID 23595668. electronic-book ISBN 978-94-007-5561-1 ISSN 1559-0836 electronic-ISSN 1868-0402
  • Haraguchi, H. (2004). "Metallomics as integrated biometal science". Journal of Analytical Atomic Spectrometry. 19: 5–14. doi:10.1039/b308213j.
  • Mounicou, S.; Szpunar, J.; Lobinski, R. (2009). "Metallomics: the concept and methodology". Chemical Society Reviews. 38 (4): 1119–1138. doi:10.1039/b713633c. PMID 19421584.
  • Shanker, A. K.; Djanaguiraman, M.; Venkateswarlu, B. (2009). "Chromium interactions in plants: current status and future strategiesw". Metallomics. 1 (5): 375–383. doi:10.1039/b904571f. PMID 21305140.
  • Szpunar, J. (2005). "Advances in analytical methodology for bioinorganic speciation analysis: metallomics, metalloproteomics and heteroatom-tagged proteomics and metabolomics". The Analyst. 130 (4): 442–465. Bibcode:2005Ana...130..442S. doi:10.1039/b418265k. PMID 15776152.
  • Wackett, L. P.; Dodge, A. G.; Ellis, L. B. M. (2004). "Microbial genomics and the periodic table". Applied and Environmental Microbiology. 70 (2): 647–655. doi:10.1128/AEM.70.2.647-655.2004. PMC 348800. PMID 14766537.
  • Williams, R.J.P. (2001). "Chemical selection of elements by cells". Coordination Chemistry Reviews. 216–217: 583–595. doi:10.1016/s0010-8545(00)00398-2.