Name |
Symbol |
Formula [nb 1] |
Fourier Series
|
Sine |
 |
 |
|
cas (mathematics) |
 |
 |
|
Cosine |
 |
 |
|
cis (mathematics) |
 |
cos(x) + i sin(x) |
|
Tangent |
 |
 |
[1]
|
Cotangent |
 |
 |
[citation needed]
|
Secant |
 |
 |
-
|
Cosecant |
 |
 |
-
|
Exsecant |
 |
 |
-
|
Excosecant |
 |
 |
-
|
Versine |
 |
 |
|
Vercosine |
 |
 |
|
Coversine |
 |
 |
|
Covercosine |
 |
 |
|
Haversine |
 |
 |
|
Havercosine |
 |
 |
|
Hacoversine |
 |
 |
|
Hacovercosine |
 |
 |
|
Jacobi elliptic function sn |
 |
 |
|
Jacobi elliptic function cn |
 |
 |
|
Jacobi elliptic function dn |
 |
 |
|
Jacobi elliptic function zn |
 |
![{\displaystyle \int _{0}^{x}\left[\operatorname {dn} (t,m)^{2}-{\frac {E(m)}{K(m)}}\right]dt}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6ff124791c83004c265bbcd4ad18def2a14567f8) |
|
Weierstrass elliptic function |
 |
![{\displaystyle {\frac {1}{x^{2}}}+\sum _{\lambda \in \Lambda -\{0\}}\left[{\frac {1}{(x-\lambda )^{2}}}-{\frac {1}{\lambda ^{2}}}\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8f90c6465f2e595b42ee5c9d68856da944b7d37e) |
|
Clausen function
|
|
|
|