Draft talk:Lichen
Appearance
This draft does not require a rating on Wikipedia's content assessment scale. It is of interest to the following WikiProjects: | |||||||||||
|
Etymology
[edit]- various acceptable pronunciations, first use of word
Taxonomy
[edit]- review (2020): "Three challenges to contemporaneous taxonomy from a licheno-mycological perspective"[1]
- A. Explanation of composite organism
- review (2020): "Lichens redefined as complex ecosystems"
- suggested redefinition of lichen: a self-sufficient ecosystem formed by the interaction of a thallus-forming fungus, an extracellular arrangement of one or more photosynthetic partners, and a variable number of other microorganisms.[2]
- proposal of modified definition of lichen, "integrating aspects put forward by Ainsworth et al. (1971), Hawksworth (1988), Honegger (1991, 2012), Goward (1994), Kirk et al. (2008), and Hawksworth and Grube (2020)."[3]
- "A lichen is a stable, self-supporting association of a fungus or fungal-like organism, the primary mycobiont, and a morphologically undifferentiated, unicellular to filamentous alga and/or a cyanobacterium, the primary (and secondary) photobiont, along with obligately associated elements of the fungal and bacterial microbiome contained therein. The phenotype of the mycobiont in the lichenized state (the exhabitant) typically functions as a greenhouse around the photobiont (the inhabitant), the mechanical, physiological and evolutionary properties of the symbiosis thereby exhibiting analogies with agriculture."[3]
- B. Where lichens fit in the "tree of life"
- C. Why they're named for fungal partner
- some background info here (in section "What are lichens and how should they be named?")[3]
- D. How often lichen lifestyle has evolved
- note duplication of this with "Lichen evolution" later. I think here, mention of lichenization should be brief and to the point, with more information in later section.
- E. Percentage of fungal species that have this lifestyle
- review (2018): "Fungal diversity in lichens: from extremotolerance to interactions with algae"
- F. Number of classes, orders, genera and species included
- lichen #'s as of 2017: "the number of lichenized species is now tabulated at 19,409 and the number of fungal genera, families, and orders including lichens at 1,002, 119, and 40, respectively"[4][5]
- largest genera are Xanthoparmelia (820 species), Lecanora (550 species), Arthonia, Cladonia, and Pertusaria (several hundreds of species each)[6]
- the largest families, in terms of number of species and genera, are the Parmeliaceae (2765, 77 genera), Graphidaceae (2161, 79 genera), Verrucariaceae (943 spp., 43 genera), Ramalinaceae (916 spp., 43 genera), and the Lecanoraceae (791 species, 25 genera)[7]
- average number of species per genus is 19.5, and 256 genera contain a single species[7]
- section: "Species concepts and their application in lichenized fungi")[3]
- Review (2011): "Goodbye morphology? A paradigm shift in the delimitation of species in lichenized fungi"[8]
Range and habitat
[edit]- A. Where they're found on the planet
- The highest reported elevation for a lichen is 7,400 m (24,300 ft), in Makalu (Nepal); these are the rock- and soil-dwelling crustose lichens Carbonea vorticosa, Pertusaria bryontha, and Lecanora polytropa. For comparison, the highest recorded elevation for a plant is 6,400 m (21,000 ft).[9]
- B. Percentage of earth's surface covered
- C. Various substrates used (including endolithic, within plant parts, etc.)
- Corticolous
- Terricolous
- Saxicolous
- Foliicolous
- Misc. substrates
- D. Extremes tolerated
- E. Restricted vs widespread
- F. Bipolar
- review (2017): "Past, present, and future research in bipolar lichen-forming fungi and their photobionts"[14]
- G. Marine / freshwater
- source (2020): "Coastal Lichens"[15]
- A. Where they're found on the planet
Composition
[edit]- A. Explanation of component parts
- 1. Mycobiont
- 2. Photobiont
- (2019) "...the known photobionts are only about 156 species from 56 genera"[16]
- i. Algal - including most common genera, % of lichens containing algal partners
- review (2021): "Lichen algae: the photosynthetic partners in lichen symbioses"[17]
- ii. Cyanobacterial - including most common genera, % of lichens containing cyanobacterial partners
- 3. Yeast - briefly when and how they discovered this was an integral partner for some species
- 4. UNPOs: Unicellular, Non-Photosynthesizing Organisms (not traditionally recognized as lichen symbionts), part of of 3-D biofilms some lichens make[22]
- B. Bipartite vs tripartite lichens - % of each, with explanation of advantages conferred
- A. Explanation of component parts
Morphology
[edit]- A. External appearance (i.e. lichen growth forms) - explanation of macrolichen vs microlichen
- 1. Crustose (including leprose)
- 2. Foliose
- 3. Fruticose (including byssoid)
- 4. Squamulose
- B. External non-reproductive structures
- 1. Thallus
- 2. Cortex
- 3. Cephalodia
- 4. Rhizines
- 5. Cilia
- C. External reproductive structures
- 1. Ascus
- 2. Pycnidia
- 3. Isidia
- 4. Podetia
- D. Colours
- E. Size and growth rate (here? or in section about lichenometry? or both?)
Anatomy and physiology
[edit]- A. Internal organisation
- B. Symbiosis
- review (2018): "Relative symbiont input and the lichen symbiotic outcome"[25]
- review (2022): "Evolutionary biology of lichen symbioses"[26]
- (2022): "A call to reconceptualize lichen symbioses"[27]
- review (2023): "Chronicle of Research into Lichen-Associated Bacteria"[28]
- review (2023): "How to build a lichen: from metabolite release to symbiotic interplay"[29]
- review (2021): "Towards a Systems Biology Approach to Understanding the Lichen Symbiosis: Opportunities and Challenges of Implementing Network Modelling"[30]
- review (2020): "The Lichens’ Microbiota, Still a Mystery?"[31]
- review (2023): "Is lichen symbiont mutualism a myth?"[32]
- C. Nitrogen fixation
- review (2010): "Ammonium and nitrate tolerance in lichens"[33]
Reproduction and dispersal
[edit]Chemistry
[edit]- A. Biosynthetic pathways to lichen products
- review (2017): "Secondary metabolism in the lichen symbiosis"[34]
- B. Categories of lichen products
- C. Detection of lichen products
- 1. Spot tests
- 2. Microcrystallization
- 3. Analytical chemistry techniques
- review (2011): "Advanced methods for the study of the chemistry and the metabolism of lichens"[35]
- A. Biosynthetic pathways to lichen products
Ecology
[edit]- A. ecological significance of lichens in ecosystems
- review (2023): This review highlights the growing understanding of lichen ecophysiology and its importance in predicting responses to climate change, emphasizing the role of water content, vapour pressure differential, and symbiont dynamics.[36]
- review (2023): "Functional Traits in Lichen Ecology", discussing how "functional traits" (see functional ecology) influence lichen community structure and function, and the development of life-history strategies[37]
- B. Role in nutrient cycles
- review (2007); how lichens contribute to biogeochemical cycling (i.e., biogeochemistry)[38]
- review (2000): "Weathering of rocks induced by lichen colonization"[39]
- review (2017): "How lichens impact on terrestrial community and ecosystem properties"[40]
- C. Interactions with other (non-human) organisms
- source (1994): "Lichens as nesting material for northern flying squirrels in the northern Rocky Mountains" [41]
- review (2017): "Microbial communities of lichens"[20]
- source (1999): "A Review of the Behavior and Ecology of the Northern Parula (Parula americana) With Notes From Oklahoma and Texas"[42]
- Coenogonium linkii, a common filamentous lichen of Neotropical lowland rainforests, is inhabited by several species of terrestrial diatoms. They grow between the thallus filaments on extracellular material of the mycobiont. It's probably an example of commensalism.[43]
- source (2011): Endozoochory is significant for seed plant dispersal, but its role in dispersing lichen has been largely unexplored until a study demonstrated that lichen fragments can survive and regenerate after passing through the digestive systems of snails, suggesting that gastropods may be vital, previously overlooked vectors for lichen dispersal.[44]
- A. ecological significance of lichens in ecosystems
Evolution of lichens
[edit]- A. Fossil lichens
- B. Lichenization
Study of lichens
[edit]Uses (by humans)
[edit]-
- A. Biomonitoring
- review (2021): "A systematic review on biomonitoring using lichen as the biological indicator: A decade of practices, progress and challenges"[52]
- review (2022): lichens as a biomonitoring tool for environmental radioactivity[53]
- review (2023): as bioindicators for monitoring nitrogen pollution[54]
- review (2023): "Lobaria pulmonaria (L.) Hoffm.: The Multifaceted Suitability of the Lung Lichen to Monitor Forest Ecosystems"[55]
- review (2019): "Antarctic Studies Show Lichens to be Excellent Biomonitors of Climate Change"[56]
- B. Dyes
- source (2001): "Lichen Dyes: The New Source Book"[57]
- C. Medicines
- review (2022): ethnopharmacological uses and potential as sources of drug leads[58]
- review (2023): "Lichen Depsides and Tridepsides: Progress in Pharmacological Approaches" [59]
- review (2021): "Ethnolichenology—The Use of Lichens in the Himalayas and Southwestern Parts of China"[60]
- review (2019, book chapter): "Lichens Used in Traditional Medicine"[61]
- 52 different genera of lichens are used in traditional medicines, Usnea is the most common[62]
- D. Food
- (2020) "A Review on Trends and Opportunity in Edible Lichens"[63]
- E. Perfumes
- F. Crafts
- G. Lichenometry
- Lichenometry is a geochronological method that estimates the age of exposed rock surfaces by measuring lichen growth rates, predominantly applied in high latitude and mountainous environments. This dating technique, though innovative in its approach, encounters several limitations and challenges. One of the primary issues is the variability in growth rates of lichens, which can be influenced by environmental factors such as climate, altitude, and substrate type. This variability often leads to inaccuracies in age estimation, making lichenometry less reliable compared to other dating methods. While age estimates obtained by lichenometry should be interpreted with caution, it can provide valuable information when combined with other dating techniques, contributing to a more comprehensive understanding of geological and historical timelines.[66]
- H. Misc.
- review (2015): lichens as biosorbents for bioremediation[67]
- H. Misc.
Conservation
[edit]Threats
[edit]Citations
[edit]- ^ Lücking 2020.
- ^ Hawksworth & Grube 2020, pp. 1281–1283.
- ^ a b c d Lücking, Leavitt & Hawksworth 2021.
- ^ Lücking, Hodkinson & Leavitt 2017.
- ^ Lücking, Hodkinson & Leavitt 2017b.
- ^ Lücking, Hodkinson & Leavitt 2017, p. 371.
- ^ a b Lücking, Hodkinson & Leavitt 2017, p. 370.
- ^ Lumbsch & Leavitt 2011, pp. 59–72.
- ^ Scheidigger 2021, p. 163.
- ^ Miranda-González & McCune 2020, pp. 1298–1308.
- ^ Kranner et al. 2008, pp. 576–593.
- ^ Gasulla et al. 2021.
- ^ Armstrong 2017.
- ^ Sonina & Androsova 2020, pp. 1–22.
- ^ Saini, Nayaka & Bast 2019, abstract.
- ^ Sanders & Masumoto 2021, pp. 347–393.
- ^ Rikkinen 2015, pp. 973–993.
- ^ Rikkinen 2017, pp. 147–167.
- ^ a b Pankratov et al. 2017, pp. 293–309.
- ^ Cometto et al. 2022, pp. 587–608.
- ^ Spribille et al. 2020.
- ^ Armstrong & Bradwell 2010, pp. 3–17.
- ^ Armstrong & Bradwell 2011, pp. 1–16.
- ^ Spribille 2018, pp. 57–63.
- ^ Spribille et al. 2022.
- ^ Allen & Lendemer 2022.
- ^ He & Naganuma 2022.
- ^ Pichler et al. 2023.
- ^ Nazem-Bokaee et al. 2021.
- ^ Grimm et al. 2021.
- ^ Sanders 2023, pp. 623–634.
- ^ Hauck 2010, pp. 1127–1133.
- ^ Calcott et al. 2018, pp. 1730–1760.
- ^ Eisenreich, Knispel & Beck 2011, pp. 445–456.
- ^ Stanton et al. 2023.
- ^ Ellis et al. 2021.
- ^ Cornelissen et al. 2007, pp. 987–1001.
- ^ Chen, Blume & Beyer 2000, pp. 121–146.
- ^ Asplund & Wardle 2017, pp. 1720–1738.
- ^ Hayward & Rosentreter 1994, pp. 663–673.
- ^ Bay 1999, p. 36.
- ^ Lakatos, Lange-Bertalot & Büdel 2004, p. 70–73.
- ^ Boch et al. 2011.
- ^ Lücking & Nelsen 2018, pp. 551–590.
- ^ Hill 2009, pp. 326–338.
- ^ Yuan, Xiao & Taylor 2005, pp. 1017–1020.
- ^ Grube & Wedin 2016.
- ^ Nelsen et al. 2020, pp. 21495–21503.
- ^ Upreti, Divakar & Nayaka 2005, pp. 269–273.
- ^ Devkota et al. 2017.
- ^ Abas 2021.
- ^ Anderson et al. 2022.
- ^ Delves et al. 2023.
- ^ Ravera et al. 2023.
- ^ Sancho, Pintado & Green 2019.
- ^ Casselman 2001.
- ^ Adenubi et al. 2022.
- ^ Ureña-Vacas et al. 2023.
- ^ Yang et al. 2021.
- ^ Crawford 2019, pp. 31–97.
- ^ Elkhateeb et al. 2021, p. 278.
- ^ Yusuf 2020, pp. 189–201.
- ^ Joulain & Tabacchi 2009, pp. 49–61.
- ^ Joulain & Tabacchi 2009b, pp. 105–116.
- ^ Winchester 2023.
- ^ Cansaran-Duman & Aras 2015, pp. 233–241.
- ^ Scheidegger & Werth 2009, pp. 55–66.
- ^ Allen et al. 2019, pp. 3103–3138.
- ^ Ellis 2019.
- ^ Mallen-Cooper et al. 2023, pp. 406–417.
- ^ Zarabska-Bożejewicz 2020, p. 1852.
- ^ Holzschuh 2016, pp. 153–162.
- ^ Webber et al. 2022, pp. 197–207.
Sources
[edit]- Abas, Azlan (2021). "A systematic review on biomonitoring using lichen as the biological indicator: A decade of practices, progress and challenges". Ecological Indicators. 121: e107197. doi:10.1016/j.ecolind.2020.107197.
- Adenubi, Olubukola Tolulope; Famuyide, Ibukun Michael; McGaw, Lyndy Joy; Eloff, Jacobus Nicolaas (2022). "Lichens: An update on their ethnopharmacological uses and potential as sources of drug leads". Journal of Ethnopharmacology. 298: 115657. doi:10.1016/j.jep.2022.115657. PMID 36007717.
- Allen, Jessica L.; McMullin, R. Troy; Tripp, Erin A.; Lendemer, James C. (2019). "Lichen conservation in North America: a review of current practices and research in Canada and the United States". Biodiversity and Conservation. 28 (12): 3103–3138. Bibcode:2019BiCon..28.3103A. doi:10.1007/s10531-019-01827-3.
- Allen, Jessica L.; Lendemer, James C. (2022). "A call to reconceptualize lichen symbioses". Trends in Ecology & Evolution. 37 (7): 582–589. doi:10.1016/j.tree.2022.03.004. PMID 35397954.
- Anderson, J.; Lévesque, N.; Caron, F.; Beckett, P.; Spiers, G.A. (2022). "A review on the use of lichens as a biomonitoring tool for environmental radioactivity". Journal of Environmental Radioactivity. 243: 106797. doi:10.1016/j.jenvrad.2021.106797. PMID 34968948.
- Armstrong, Richard; Bradwell, Tom (2010). "Growth of crustose lichens: a review". Geografiska Annaler: Series A, Physical Geography. 92 (1): 3–17. Bibcode:2010GeAnA..92....3A. doi:10.1111/j.1468-0459.2010.00374.x.
- Armstrong, Richard A.; Bradwell, Tom (2011). "Growth of foliose lichens: a review" (PDF). Symbiosis. 53 (1): 1–16. Bibcode:2011Symbi..53....1A. doi:10.1007/s13199-011-0108-4.
- Armstrong, Richard A. (2017). "Adaptation of Lichens to Extreme Conditions". In Shukla, Vertika; Kumar, Sanjeev; Kumar, Narendra (eds.). Plant Adaptation Strategies in Changing Environment. Singapore: Springer Nature. ISBN 978-981-10-6743-3.
- Asplund, Johan; Wardle, David A. (2017). "How lichens impact on terrestrial community and ecosystem properties". Biological Reviews. 92 (3): 1720–1738. doi:10.1111/brv.12305. hdl:11250/2578209. PMID 27730713.
- Bay, Michael D. (1999). "A Review of the Behavior and Ecology of the Northern Parula (Parula americana) With Notes From Oklahoma and Texas" (PDF). Proc. Okla. Acad. Sci. 79: 33–40.
- Boch, Steffen; Prati, Daniel; Werth, Silke; Rüetschi, Jörg; Fischer, Markus (2011). "Lichen endozoochory by snails". PLOS One. 6 (4): e18770. doi:10.1371/journal.pone.0018770.
- Calcott, Mark J.; Ackerley, David F.; Knight, Allison; Keyzers, Robert A.; Owen, Jeremy G. (2018). "Secondary metabolism in the lichen symbiosis". Chemical Society Reviews. 47 (5): 1730–1760. doi:10.1039/C7CS00431A. PMID 29094129.
- Cansaran-Duman, Demet; Aras, Sümer (2015). "Lichens as an Alternative Biosorbent: A Review". Phytoremediation. Cham: Springer International Publishing. doi:10.1007/978-3-319-10969-5_20. ISBN 978-3-319-10968-8.
- Casselman, Karen Diadick (2001). Lichen Dyes. The New Source Book (2nd ed.). Mineola, New York: Dover Books. ISBN 978-0-486-41231-3.
- Chen, Jie; Blume, Hans-Peter; Beyer, Lothar (2000). "Weathering of rocks induced by lichen colonization — a review". CATENA. 39 (2): 121–146. Bibcode:2000Caten..39..121C. doi:10.1016/S0341-8162(99)00085-5.
- Cometto, Agnese; Leavitt, Steven D.; Millanes, Ana M.; Wedin, Mats; Grube, Martin; Muggia, Lucia (2022). "The yeast lichenosphere: high diversity of basidiomycetes from the lichens Tephromela atra and Rhizoplaca melanophthalma". Fungal Biology. 126 (9): 587–608. doi:10.1016/j.funbio.2022.07.004. PMID 36008051. S2CID 251240771.
- Cornelissen, J.H.C.; Lang, S.I.; Soudzilovskaia, N.A.; During, H.J. (2007). "Comparative cryptogam ecology: a review of bryophyte and lichen traits that drive biogeochemistry". Annals of Botany. 99 (5): 987–1001. doi:10.1093/aob/mcm030. PMC 2802918. PMID 17353205.
- Crawford, Stuart D. (2019). "Lichens Used in Traditional Medicine". Lichen Secondary Metabolites. Cham: Springer International Publishing. pp. 31–97. doi:10.1007/978-3-030-16814-8_2. ISBN 978-3-030-16813-1.
- Delves, Jay; Lewis, Jason E.J.; Ali, Niaz; Asad, Saeed A.; Chatterjee, Sudipto; Crittenden, Peter D.; Jones, Matthew; Kiran, Aysha; Prasad Pandey, Bishnu; Reay, David; Sharma, Subodh; Tshering, Dendup; Weerakoon, Gothamie; van Dijk, Netty; Sutton, Mark A.; Wolseley, Patricia A.; Ellis, Christopher J. (2023). "Lichens as spatially transferable bioindicators for monitoring nitrogen pollution". Environmental Pollution. 328: e121575. doi:10.1016/j.envpol.2023.121575. PMID 37028790.
- Devkota, Shiva; Chaudhary, Ram Prasad; Werth, Silke; Scheidegger, Christoph (2017). "Indigenous knowledge and use of lichens by the lichenophilic communities of the Nepal Himalaya". Journal of Ethnobiology and Ethnomedicine. 13 (1): 15. doi:10.1186/s13002-017-0142-2. PMC 5320728. PMID 28222809.
- Eisenreich, Wolfgang; Knispel, Nihat; Beck, Andreas (2011). "Advanced methods for the study of the chemistry and the metabolism of lichens". Phytochemistry Reviews. 10 (3): 445–456. Bibcode:2011PChRv..10..445E. doi:10.1007/s11101-011-9215-3.
- Elkhateeb, Waill A.; Daba, Ghoson M.; Sheir, Donia; Nguyen, The-Duy; Hapuarachchi, Kalani K.; Thomas, Paul W. (2021). "Mysterious world of lichens: highlights on their history, applications, and pharmaceutical potentials". The Natural Products Journal. 11 (3): 275–287. doi:10.2174/2210315510666200128123237.
- Ellis, Christopher J. (2019). "Climate change, bioclimatic models and the risk to lichen diversity". Diversity. 11 (4): e54. doi:10.3390/d11040054.
- Ellis, Christopher J.; Asplund, Johan; Benesperi, Renato; Branquinho, Cristina; Di Nuzzo, Luca; Hurtado, Pilar; Martínez, Isabel; Matos, Paula; Nascimbene, Juri; Pinho, Pedro; Prieto, María; Rocha, Bernardo; Rodríguez-Arribas, Clara; Thüs, Holger; Giordani, Paolo (2021). "Functional traits in lichen ecology: a review of challenge and opportunity". Microorganisms. 9 (4): e766. doi:10.3390/microorganisms9040766. PMC 8067525. PMID 33917569.
- Garrido-Benavent, Isaac; Pérez‐Ortega, Sergio (2017). "Past, present, and future research in bipolar lichen-forming fungi and their photobionts". American Journal of Botany. 104 (11): 1660–1674. doi:10.3732/ajb.1700182.
- Gasulla, Francisco; del Campo, Eva M; Casano, Leonardo M.; Guéra, Alfredo (2021). "Advances in understanding of desiccation tolerance of lichens and lichen-forming algae". Plants. 10 (4): e807. doi:10.3390/plants10040807. PMC 8073698. PMID 33923980.
- Grimm, Maria; Grube, Martin; Schiefelbein, Ulf; Zühlke, Daniela; Bernhardt, Jörg; Riedel, Katharina (2021). "The lichens' microbiota, still a mystery?". Frontiers in Microbiology. 12. doi:10.3389/fmicb.2021.623839. PMC 8042158. PMID 33859626.
- Grube, Martin; Wedin, Mats (2016). "Lichenized fungi and the evolution of symbiotic organization". Microbiology Spectrum. 4 (6). doi:10.1128/microbiolspec.FUNK-0011-2016. PMID 28087947.
- Hauck, Markus (2010). "Ammonium and nitrate tolerance in lichens". Environmental Pollution. 158 (5): 1127–1133. doi:10.1016/j.envpol.2009.12.036. PMID 20096494.
- Hawksworth, David L.; Grube, Martin (2020). "Lichens redefined as complex ecosystems". New Phytologist. 227 (5): 1281–1283. doi:10.1111/nph.16630. PMC 7497170. PMID 32484275.
- Hayward, G.D.; Rosentreter, R. (1994). "Lichens as nesting material for northern flying squirrels in the northern Rocky Mountains". Journal of Mammalogy. 75 (3): 663–673. doi:10.2307/1382514. JSTOR 1382514.
- He, Zichen; Naganuma, Takeshi (2022). "Chronicle of research into lichen-associated bacteria". Microorganisms. 10 (11): e2111. doi:10.3390/microorganisms10112111. PMC 9698887. PMID 36363703.
- Hill, David J. (2009). "Asymmetric co-evolution in the lichen symbiosis caused by a limited capacity for adaptation in the photobiont". The Botanical Review. 75 (3): 326–338. Bibcode:2009BotRv..75..326H. doi:10.1007/s12229-009-9028-x.
- Holzschuh, Andrea (2016). "Does rock climbing threaten cliff biodiversity? - A critical review". Biological Conservation. 204: 153–162. Bibcode:2016BCons.204..153H. doi:10.1016/j.biocon.2016.10.010.
- Joulain, Daniel; Tabacchi, Raphaël (2009). "Lichen extracts as raw materials in perfumery. Part 1: oakmoss". Flavour and Fragrance Journal. 24 (2): 49–61. doi:10.1002/ffj.1916.
- Joulain, Daniel; Tabacchi, Raphaël (2009b). "Lichen extracts as raw materials in perfumery. Part 2: treemoss". Flavour and Fragrance Journal. 24 (3): 105–116. doi:10.1002/ffj.1923.
- Kranner, Ilse; Beckett, Richard; Hochman, Ayala; Nash, Thomas H. (2008). "Desiccation-tolerance in lichens: a review". The Bryologist. 111 (4): 576–593. doi:10.1639/0007-2745-111.4.576.
- Lakatos, Michael; Lange-Bertalot, Horst; Büdel, Burkhard (2004). "Diatoms living inside the thallus of the green algal lichen Coenogonium linkii in neotropical lowland rain forests". Journal of Phycology. 40 (1): 70–73. Bibcode:2004JPcgy..40...70L. doi:10.1111/j.0022-3646.2004.02-205.x.
- Lücking, Robert; Hodkinson, Brendan P.; Leavitt, Steven D. (2017). "The 2016 classification of lichenized fungi in the Ascomycota and Basidiomycota–Approaching one thousand genera". The Bryologist. 119 (4): 361–416. doi:10.1639/0007-2745-119.4.361. JSTOR 44250015.
- Lücking, Robert; Hodkinson, Brendan P.; Leavitt, Steven D. (2017b). "Corrections and amendments to the 2016 classification of lichenized fungi in the Ascomycota and Basidiomycota". The Bryologist. 120 (1): 58–69. doi:10.1639/0007-2745-120.1.058.
- Lücking, Robert; Nelsen, Matthew P. (2018). "Ediacarans, Protolichens, and Lichen-Derived Penicillium". Transformative Paleobotany. Elsevier. pp. 551–590. doi:10.1016/b978-0-12-813012-4.00023-1. ISBN 978-0-12-813012-4.
- Lücking, Robert; Leavitt, Steven D.; Hawksworth, David L. (2021). "Species in lichen-forming fungi: balancing between conceptual and practical considerations, and between phenotype and phylogenomics". Fungal Diversity. 109 (1): 99–154. doi:10.1007/s13225-021-00477-7.
- Lücking, Robert (2020). "Three challenges to contemporaneous taxonomy from a licheno-mycological perspective". Megataxa. 1 (1): 78–103. doi:10.11646/megataxa.1.1.16.
- Lumbsch, H. Thorsten; Leavitt, Steven D. (2011). "Goodbye morphology? A paradigm shift in the delimitation of species in lichenized fungi". Fungal Diversity. 50 (1): 59–72. doi:10.1007/s13225-011-0123-z.
- Mallen-Cooper, Max; Rodríguez-Caballero, Emilio; Eldridge, David J.; Weber, Bettina; Büdel, Burkhard; Höhne, Hermann; Cornwell, Will K. (2023). "Towards an understanding of future range shifts in lichens and mosses under climate change". Journal of Biogeography. 50 (2): 406–417. Bibcode:2023JBiog..50..406M. doi:10.1111/jbi.14542.
- Miranda-González, Ricardo; McCune, Bruce (2020). "The weight of the crust: Biomass of crustose lichens in tropical dry forest represents more than half of foliar biomass". Biotropica. 52 (6): 1298–1308. Bibcode:2020Biotr..52.1298M. doi:10.1111/btp.12837.
- Muggia, Lucia; Grube, Martin (2018). "Fungal diversity in lichens: from extremotolerance to interactions with algae". Life. 8 (2): e15. Bibcode:2018Life....8...15M. doi:10.3390/life8020015. PMC 6027233. PMID 29789469.
- Nazem-Bokaee, Hadi; Hom, Erik F.Y.; Warden, Andrew C.; Mathews, Sarah; Gueidan, Cécile (2021). "Towards a systems biology approach to understanding the lichen symbiosis: opportunities and challenges of implementing network modelling". Frontiers in Microbiology. 12. doi:10.3389/fmicb.2021.667864. PMC 8126723. PMID 34012428.
- Nelsen, Matthew P.; Lücking, Robert; Boyce, C. Kevin; Lumbsch, H. Thorsten; Ree, Richard H. (2020). "The macroevolutionary dynamics of symbiotic and phenotypic diversification in lichens". Proceedings of the National Academy of Sciences. 117 (35): 21495–21503. Bibcode:2020PNAS..11721495N. doi:10.1073/pnas.2001913117. PMC 7474681. PMID 32796103.
- Pankratov, T.A.; Kachalkin, A. V.; Korchikov, E.S.; Dobrovol’skaya, T.G. (2017). "Microbial communities of lichens". Microbiology. 86 (3): 293–309. doi:10.1134/S0026261717030134.
- Pichler, Gregor; Muggia, Lucia; Carniel, Fabio Candotto; Grube, Martin; Kranner, Ilse (2023). "How to build a lichen: from metabolite release to symbiotic interplay". New Phytologist. 238 (4): 1362–1378. doi:10.1111/nph.18780. PMID 36710517.
- Ravera, Sonia; Benesperi, Renato; Bianchi, Elisabetta; Brunialti, Giorgio; Di Nuzzo, Luca; Frati, Luisa; Giordani, Paolo; Isocrono, Deborah; Nascimbene, Juri; Vallese, Chiara; Paoli, Luca (2023). "Lobaria pulmonaria (L.) Hoffm.: The multifaceted suitability of the lung lichen to monitor forest ecosystems". Forests. 14 (10): e2113. doi:10.3390/f14102113.
- Rikkinen, Jouko (2015). "Cyanolichens". Biodiversity and Conservation. 24 (4): 973–993. Bibcode:2015BiCon..24..973R. doi:10.1007/s10531-015-0906-8.
- Rikkinen, Jouko (2017). "Symbiotic Cyanobacteria in Lichens". Algal and Cyanobacteria Symbioses. World Scientific (Europe). pp. 147–167. doi:10.1142/9781786340580_0005. ISBN 978-1-78634-057-3.
- Saini, Khem Chand; Nayaka, Sanjeeva; Bast, Felix (2019). "Diversity of Lichen Photobionts: Their Coevolution and Bioprospecting Potential". Microbial Diversity in Ecosystem Sustainability and Biotechnological Applications. Singapore: Springer Singapore. pp. 307–323. doi:10.1007/978-981-13-8487-5_13. ISBN 978-981-13-8486-8.
- Sancho, Leopoldo; Pintado, Ana; Green, T. (2019). "Antarctic studies show lichens to be excellent biomonitors of climate change". Diversity. 11 (3): e42. doi:10.3390/d11030042.
- Sanders, William B.; Masumoto, Hiroshi (2021). "Lichen algae: the photosynthetic partners in lichen symbioses". The Lichenologist. 53 (5): 347–393. doi:10.1017/S0024282921000335.
- Sanders, William B (2023). "Is lichen symbiont mutualism a myth?". BioScience. 73 (9): 623–634. doi:10.1093/biosci/biad073.</ref>
- Scharnagl, Klara; Tagirdzhanova, Gulnara; Talbot, Nicholas J. (2023). "The coming golden age for lichen biology". Current Biology. 33 (11): R512–R518. doi:10.1016/j.cub.2023.03.054. PMID 37279685.
- Scheidegger, Christoph; Werth, Silke (2009). "Conservation strategies for lichens: insights from population biology". Fungal Biology Reviews. 23 (3): 55–66. doi:10.1016/j.fbr.2009.10.003.
- Scheidigger, Christoph (2021). "2.4. High alpine lichens". In Büdel, Burkhard; Friedl, Thomas (eds.). Life at Rock Surfaces: Challenged by Extreme Light, Temperature and Hydration Fluctuations. Life in Extreme Environments. Vol. 6. Berlin: Walter de Gruyter GmbH & Co KG. pp. 161–174. doi:10.1515/9783110646467-006. ISBN 978-3-11-064646-7.
- Sonina, Angella V.; Androsova, Vera I. (2020). "Coastal Lichens: Distribution Patterns and Adaptive Strategies". Handbook of Halophytes. Cham: Springer International Publishing. doi:10.1007/978-3-030-17854-3_34-1. ISBN 978-3-030-17854-3.
- Spribille, Toby (2018). "Relative symbiont input and the lichen symbiotic outcome". Current Opinion in Plant Biology. 44: 57–63. doi:10.1016/j.pbi.2018.02.007. PMID 29529531.
- Spribille, Toby; Tagirdzhanova, Gulnara; Goyette, Spencer; Tuovinen, Veera; Case, Rebecca; Zandberg, Wesley F. (2020). "3D biofilms: in search of the polysaccharides holding together lichen symbioses". FEMS Microbiology Letters. 367 (5). doi:10.1093/femsle/fnaa023. PMC 7164778. PMID 32037451.
- Spribille, Toby; Resl, Philipp; Stanton, Daniel E.; Tagirdzhanova, Gulnara (2022). "Evolutionary biology of lichen symbioses". New Phytologist. 234 (5): 1566–1582. doi:10.1111/nph.18048.
- Stanton, Daniel E.; Ormond, Amaris; Koch, Natalia M.; Colesie, Claudia (2023). "Lichen ecophysiology in a changing climate". American Journal of Botany. 110 (2). doi:10.1002/ajb2.16131.
- Upreti, Dalip K.; Divakar, Pradeep K.; Nayaka, Sanjeeva (2005). "Commercial and Ethnic Use of Lichens in India". Economic Botany. 59 (3): 269–273. doi:10.1663/0013-0001(2005)059[0269:CAEUOL]2.0.CO;2.
- Ureña-Vacas, Isabel; González-Burgos, Elena; Divakar, Pradeep Kumar; Gómez-Serranillos, María Pilar (2023). "Lichen depsides and tridepsides: Progress in pharmacological approaches". Journal of Fungi. 9 (1): e116. doi:10.3390/jof9010116. PMC 9866793. PMID 36675938.
- Webber, Quinn M.R.; Ferraro, Kristy M.; Hendrix, Jack G.; Vander Wal, Eric (2022). "What do caribou eat? A review of the literature on caribou diet". Canadian Journal of Zoology. 100 (3): 197–207. doi:10.1139/cjz-2021-0162.
- Winchester, Vanessa (2023). "Lichenometric dating and its limitations and problems: a guide for practitioners". Land. 12 (3): e611. doi:10.3390/land12030611.
- Yang, Mei-Xia; Devkota, Shiva; Wang, Li-Song; Scheidegger, Christoph (2021). "Ethnolichenology—the use of lichens in the Himalayas and southwestern parts of China". Diversity. 13 (7): e330. doi:10.3390/d13070330.
- Yuan, Xunlai; Xiao, Shuhai; Taylor, T.N. (2005). "Lichen-like symbiosis 600 million years ago". Science. 308 (5724): 1017–1020. Bibcode:2005Sci...308.1017Y. doi:10.1126/science.1111347. PMID 15890881.
- Yusuf, Mohd (2020). "A Review on Trends and Opportunity in Edible Lichens". In Yusuf, Mohd (ed.). Lichen-Derived Products: Extraction and Applications. Wiley. pp. 189–201. doi:10.1002/9781119593249.ch8. ISBN 978-1-119-59171-9.
- Zarabska-Bożejewicz, Daria (2020). "The impact of nitrogen pollution in the agricultural landscape on lichens: a review of their responses at the community, species, biont and physiological levels". Agronomy. 10 (12): e1852. doi:10.3390/agronomy10121852.