Jump to content

Draft:Microphysiology

From Wikipedia, the free encyclopedia

Microphysiology is the study of interaction of cells, tissues and organs and related biological processes. This involves understanding how laboratory scale physiological systems such as organ-on-a-chip or human-on-a-chip works and how they respond to various stimulus such as drugs, chemicals, bioagents and environmental factors.

Microphysiology involves principles of biology, physiology, engineering and material sciences to investigate how lab made micro physiological systems behaves in laboratory environment. This involves the use of organ-on-a-chip technology which allows the researchers to replicate the functioning of human organs or tissues on a small scale. Microphysiology is used to study disease mechanism, testing efficacy and toxicity of drugs and enable personalized medicine by simulating real life biological environments.

In summary, microphysiology is a multidisciplinary area focused on understanding physiological processes in a controlled, often miniature environment to advance scientific knowledge and medical applications.


References

[edit]

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

  1. ^ Aleman, Julio; K, Ravikumar; Wiegand, Connor; Schurdak, Mark E.; Vernetti, Lawrence; Gavlock, Dillon; Reese, Celeste; Debiasio, Richard; Larocca, Greg; Angarita, Yulder Daniel; Gough, Albert; Soto-Gutierrez, Alejandro; Behari, Jaideep; Yechoor, Vijay K.; Miedel, Mark T.; Stern, Andrew M.; Banerjee, Ipsita; Taylor, D. Lansing (2024). "A metabolic dysfunction-associated steatotic liver acinus biomimetic induces pancreatic islet dysfunction in a coupled microphysiology system". Communications Biology. 7. doi:10.1038/s42003-024-07006-7. PMID 39397070.
  2. ^ Vernetti, Lawrence; Gough, Albert; Baetz, Nicholas; Blutt, Sarah; Broughman, James R.; Brown, Jacquelyn A.; Foulke-Abel, Jennifer; Hasan, Nesrin; In, Julie; Kelly, Edward; Kovbasnjuk, Olga; Repper, Jonathan; Senutovitch, Nina; Stabb, Janet; Yeung, Catherine; Zachos, Nick C.; Donowitz, Mark; Estes, Mary; Himmelfarb, Jonathan; Truskey, George; Wikswo, John P.; Taylor, D. Lansing (2017). "Correction: Corrigendum: Functional Coupling of Human Microphysiology Systems: Intestine, Liver, Kidney Proximal Tubule, Blood-Brain Barrier and Skeletal Muscle". Scientific Reports. 7. doi:10.1038/srep44517.
  3. ^ Gough, Albert; Soto-Gutierrez, Alejandro; Vernetti, Lawrence; Ebrahimkhani, Mo R.; Stern, Andrew M.; Taylor, D. Lansing (2021). "Human biomimetic liver microphysiology systems in drug development and precision medicine". Nature Reviews Gastroenterology & Hepatology. 18 (4): 252–268. doi:10.1038/s41575-020-00386-1. PMC 9106093.
  4. ^ Vernetti, Lawrence; Gough, Albert; Baetz, Nicholas; Blutt, Sarah; Broughman, James R.; Brown, Jacquelyn A.; Foulke-Abel, Jennifer; Hasan, Nesrin; In, Julie; Kelly, Edward; Kovbasnjuk, Olga; Repper, Jonathan; Senutovitch, Nina; Stabb, Janet; Yeung, Catherine; Zachos, Nick C.; Donowitz, Mark; Estes, Mary; Himmelfarb, Jonathan; Truskey, George; Wikswo, John P.; Taylor, D. Lansing (2017). "Functional Coupling of Human Microphysiology Systems: Intestine, Liver, Kidney Proximal Tubule, Blood-Brain Barrier and Skeletal Muscle". Scientific Reports. 7. doi:10.1038/srep42296. PMID 28176881.
  5. ^ Qi, Lin; Groeger, Marko; Sharma, Aditi; Goswami, Ishan; Chen, Erzhen; Zhong, Fenmiao; Ram, Apsara; Healy, Kevin; Hsiao, Edward C.; Willenbring, Holger; Stahl, Andreas (2024). "Adipocyte inflammation is the primary driver of hepatic insulin resistance in a human iPSC-based microphysiological system". Nature Communications. 15. doi:10.1038/s41467-024-52258-w.
  6. ^ Imaoka, Tomoki; Onuki-Nagasaki, Reiko; Kimura, Hiroshi; Tai, Kempei; Ishii, Mitsuharu; Nozue, Ayaka; Kaisaki, Ikuko; Hoshi, Misa; Watanabe, Kengo; Maeda, Kazuya; Kamizono, Takashi; Yoshioka, Takahiro; Fujimoto, Takashi; Satoh, Taku; Nakamura, Hiroko; Ando, Osamu; Kusuhara, Hiroyuki; Ito, Yuzuru (2024). "Development of a novel gut microphysiological system that facilitates assessment of drug absorption kinetics in gut". Scientific Reports. 14 (1): 29921. doi:10.1038/s41598-024-80946-6. PMC 11612460. PMID 39622870.
  7. ^ Ayuso, Jose M.; Farooqui, Mehtab; Virumbrales-Muñoz, María; Denecke, Katheryn; Rehman, Shujah; Schmitz, Rebecca; Guerrero, Jorge F.; Sanchez-De-Diego, Cristina; Campo, Sara Abizanda; Maly, Elizabeth M.; Forsberg, Matthew H.; Kerr, Sheena C.; Striker, Robert; Sherer, Nathan M.; Harari, Paul M.; Capitini, Christian M.; Skala, Melissa C.; Beebe, David J. (2023). "Author Correction: Microphysiological model reveals the promise of memory-like natural killer cell immunotherapy for HIV± cancer". Nature Communications. 14. doi:10.1038/s41467-023-43057-w.
  8. ^ Harada, Kosuke; Wenlong, Wang; Shinozawa, Tadahiro (2024). "Physiological platelet aggregation assay to mitigate drug-induced thrombocytopenia using a microphysiological system". Scientific Reports. 14. doi:10.1038/s41598-024-64063-y.
  9. ^ Way, Ryan; Templeton, Hayley; Ball, Daniel; Cheng, Ming-Hao; Tobet, Stuart A.; Chen, Thomas (2024). "A microphysiological system for studying barrier health of live tissues in real time". Communications Engineering. 3 (1): 142. doi:10.1038/s44172-024-00285-2. PMC 11470921. PMID 39396075.
  10. ^ Mora-Boza, Ana; Mulero-Russe, Adriana; Di Caprio, Nikolas; Burdick, Jason A.; o'Neill, Eric; Singh, Ankur; García, Andrés J. (2024). "Facile photopatterning of perfusable microchannels in hydrogels for microphysiological systems". Nature Protocols. 20 (1): 272–292. doi:10.1038/s41596-024-01041-8.
  11. ^ Ayuso, Jose M.; Farooqui, Mehtab; Virumbrales-Muñoz, María; Denecke, Katheryn; Rehman, Shujah; Schmitz, Rebecca; Guerrero, Jorge F.; Sanchez-De-Diego, Cristina; Campo, Sara Abizanda; Maly, Elizabeth M.; Forsberg, Matthew H.; Kerr, Sheena C.; Striker, Robert; Sherer, Nathan M.; Harari, Paul M.; Capitini, Christian M.; Skala, Melissa C.; Beebe, David J. (2023). "Microphysiological model reveals the promise of memory-like natural killer cell immunotherapy for HIV± cancer". Nature Communications. 14. doi:10.1038/s41467-023-41625-8.
  12. ^ Wang, Peng; Jin, Lin; Zhang, Min; Wu, Yunsong; Duan, Zilei; Guo, Yaqiong; Wang, Chaoming; Guo, Yingqi; Chen, Wenwen; Liao, Zhiyi; Wang, Yaqing; Lai, Ren; Lee, Luke P.; Qin, Jianhua (2023). "Blood–brain barrier injury and neuroinflammation induced by SARS-CoV-2 in a lung–brain microphysiological system". Nature Biomedical Engineering. 8 (8): 1053–1068. doi:10.1038/s41551-023-01054-w.