Jump to content

Draft:Advancing Nanoparticle Generation and Excitation by Lasers in Liquids

From Wikipedia, the free encyclopedia

The Advancing Nanoparticle Generation and Excitation by Lasers in Liquids (ANGEL) initiative is an international scientific effort focused on laser-based nanoparticle generation and laser synthesis of colloids.[1] Established in 2010 in Switzerland, the initiative is best known for organizing the biennial ANGEL Conference, which gathers researchers to discuss advancements in pulsed laser-based nanoparticle synthesis and processing.

Research Areas

[edit]

The conference and associated research focus on various topics related to laser-material interactions in liquids, including[2]:

  • Fundamentals of Laser-Materials Interaction[3] – Investigating the physics and chemistry of laser-induced processes in liquids.
  • Experimental Techniques & Simulations[4] – Developing methods for studying laser-material interactions, including computational modeling.
  • Defect Engineering & Metastable Phases[5] – Understanding defect formation and phase stability in laser-generated nanomaterials.
  • Laser Synthesis of Colloidal Nanoparticles[6] – Innovations in the production of nanoparticles using laser techniques.
  • Laser Ablation & Fragmentation in Liquids[7] – Studying material removal and modification mechanisms.
  • Chemical Transformations via Laser Processing[8] – Exploring laser-induced reactive and reductive synthesis methods.

Applications of Laser-Generated Nanoparticles

[edit]

Nanoparticles synthesized through laser methods have applications in various fields, including:

Awards

[edit]

The ANGEL Conference recognizes contributions in the field through two awards:

  • Fojtik-Henglein Award – Given for high achievements in laser-based nanoparticle generation.
  • Shafeev Award – Awarded to young researchers for innovative work in laser-induced nanoparticle processes.

References

[edit]
  1. ^ Barcikowski, Stephan; Compagnini, Giuseppe (2013). "Advanced nanoparticle generation and excitation by lasers in liquids". Phys. Chem. Chem. Phys. 15 (9): 3022–3026. Bibcode:2013PCCP...15.3022B. doi:10.1039/C2CP90132C. ISSN 1463-9076. PMID 23138867.
  2. ^ Barcikowski, Stephan; Mafuné, Fumitaka (2011-03-31). "Trends and Current Topics in the Field of Laser Ablation and Nanoparticle Generation in Liquids". The Journal of Physical Chemistry C. 115 (12): 4985. doi:10.1021/jp111036a. ISSN 1932-7447.
  3. ^ Karim, Eaman T.; Wu, Chengping; Zhigilei, Leonid V. (2014), Veiko, Vadim P.; Konov, Vitaly I. (eds.), "Molecular Dynamics Simulations of Laser-Materials Interactions: General and Material-Specific Mechanisms of Material Removal and Generation of Crystal Defects", Fundamentals of Laser-Assisted Micro- and Nanotechnologies, vol. 195, Cham: Springer International Publishing, pp. 27–49, Bibcode:2014flmn.book...27K, doi:10.1007/978-3-319-05987-7_2, ISBN 978-3-319-05986-0, retrieved 2025-02-24
  4. ^ Galbács, G.; Kéri, A.; Kohut, A.; Veres, M.; Geretovszky, Zs. (2021). "Nanoparticles in analytical laser and plasma spectroscopy – a review of recent developments in methodology and applications". Journal of Analytical Atomic Spectrometry. 36 (9): 1826–1872. doi:10.1039/D1JA00149C. ISSN 0267-9477.
  5. ^ Ikeda, Kenji; Maruyama, Mihoko; Takahashi, Yoshinori; Mori, Yoichiro; Yoshikawa, Hiroshi Y.; Okada, Shino; Adachi, Hiroaki; Sugiyama, Shigeru; Takano, Kazufumi; Murakami, Satoshi; Matsumura, Hiroyoshi; Inoue, Tsuyoshi; Yoshimura, Masashi; Mori, Yusuke (2015-04-01). "Selective crystallization of the metastable phase of indomethacin at the interface of liquid/air bubble induced by femtosecond laser irradiation". Applied Physics Express. 8 (4): 045501. Bibcode:2015APExp...8d5501I. doi:10.7567/APEX.8.045501. ISSN 1882-0778.
  6. ^ Zhang, Dongshi; Gökce, Bilal; Barcikowski, Stephan (2017-03-08). "Laser Synthesis and Processing of Colloids: Fundamentals and Applications". Chemical Reviews. 117 (5): 3990–4103. doi:10.1021/acs.chemrev.6b00468. ISSN 0009-2665. PMID 28191931.
  7. ^ Fazio, Enza; Gökce, Bilal; De Giacomo, Alessandro; Meneghetti, Moreno; Compagnini, Giuseppe; Tommasini, Matteo; Waag, Friedrich; Lucotti, Andrea; Zanchi, Chiara Giuseppina; Ossi, Paolo Maria; Dell'Aglio, Marcella; D'Urso, Luisa; Condorelli, Marcello; Scardaci, Vittorio; Biscaglia, Francesca (2020-11-23). "Nanoparticles Engineering by Pulsed Laser Ablation in Liquids: Concepts and Applications". Nanomaterials. 10 (11): 2317. doi:10.3390/nano10112317. ISSN 2079-4991. PMC 7700616. PMID 33238455.
  8. ^ Bäuerle, Dieter (2002). "Laser processing and chemistry: recent developments". Applied Surface Science. 186 (1–4): 1–6. Bibcode:2002ApSS..186....1B. doi:10.1016/S0169-4332(01)00655-9.
  9. ^ Wagener, Philipp; Schwenke, Andreas; Barcikowski, Stephan (2012-03-29). "How Citrate Ligands Affect Nanoparticle Adsorption to Microparticle Supports". Langmuir. 28 (14): 6132–6140. doi:10.1021/la204839m. ISSN 0743-7463. PMID 22417054.
  10. ^ Ikeda, Miyuki; Kusumoto, Yoshihumi; Yang, Hailong; Somekawa, Shouichi; Uenjyo, Hayato; Abdulla-Al-Mamun, Md.; Horie, Yuji (2008). "Photocatalytic hydrogen production enhanced by laser ablation in water–methanol mixture containing titanium(IV) oxide and graphite silica". Catalysis Communications. 9 (6): 1329–1333. doi:10.1016/j.catcom.2007.11.026. ISSN 1566-7367.
  11. ^ Johny, Jacob; Li, Yao; Kamp, Marius; Prymak, Oleg; Liang, Shun-Xing; Krekeler, Tobias; Ritter, Martin; Kienle, Lorenz; Rehbock, Christoph; Barcikowski, Stephan; Reichenberger, Sven (2022). "Laser-generated high entropy metallic glass nanoparticles as bifunctional electrocatalysts". Nano Research. 15 (6): 4807–4819. Bibcode:2022NaRes..15.4807J. doi:10.1007/s12274-021-3804-2. ISSN 1998-0124.
  12. ^ Soleimani, Maryam; Nankali, Mohammad; Duley, Walter W.; Zhou, Y. Norman; Peng, Peng (2024-12-12). "Additive manufacturing processing with ultra-short-pulse lasers". Journal of Manufacturing Processes. 131: 2133–2163. doi:10.1016/j.jmapro.2024.10.006. ISSN 1526-6125.
  13. ^ Du, Zheren; Chen, Lianwei; Kao, Tsung-Sheng; Wu, Mengxue; Hong, Minghui (2015-05-22). "Improved optical limiting performance of laser-ablation-generated metal nanoparticles due to silica-microsphere-induced local field enhancement". Beilstein Journal of Nanotechnology. 6: 1199–1204. doi:10.3762/bjnano.6.122. ISSN 2190-4286. PMC 4464471. PMID 26171296.
  14. ^ Kalus, Mark-Robert; Rehbock, Christoph; Bärsch, Niko; Barcikowski, Stephan (2017-01-01). "Colloids created by light: Laser-generated nanoparticles for applications in biology and medicine". Materials Today: Proceedings. 7th NRW Nano-Conference. 4: S93 – S100. doi:10.1016/j.matpr.2017.09.173. ISSN 2214-7853.
[edit]