Arterial stiffness
Arterial stiffness | |
---|---|
Biological system | arteries |
Arterial stiffness occurs as a consequence of biological aging, arteriosclerosis and genetic disorders, such as Marfan, Williams, and Ehlers-Danlos syndromes.[1] Inflammation plays a major role in arteriosclerosis and arterial stiffness.[2] Increased arterial stiffness is associated with an increased risk of cardiovascular events such as myocardial infarction, hypertension, heart failure, and stroke.[3][4][5] The World Health Organization identified cardiovascular disease as the leading cause of death globally in 2019.[6]
Degenerative changes that occur with age in the walls of large elastic arteries are thought to contribute to increased stiffening over time, including the disruption of lamellar elastin structures within the wall, possibly due to repeated cycles of mechanical stress; inflammation;[7] changes in arterial collagen proteins, partially as a compensatory mechanism against the loss of arterial elastin and partially due to fibrosis; and crosslinking of adjacent collagen fibers by advanced glycation endproducts (AGEs).[8]
Definition
[edit]Arterial stiffness is commonly measured as carotid–femoral pulse wave velocity (cfPWV) or brachial–ankle PWV (baPWV).[9] cfPWV is the standard for measuring large artery stiffness in Europe.[9] For baPWV, general cutoff values for cardiovascular risk assessment are <1400 cm/s for low risk, 1400–1800 cm/s for intermediate risk, and >1800 cm/s for high risk.[9] Increased cfPWV and baPWV values predict an increased risk of new-onset hypertension in apparently healthy people.[9]
Background
[edit]When the heart contracts it generates a pulse or energy wave that travels through the circulatory system. The speed of travel of this pulse wave (pulse wave velocity[10] (PWV)) is related to the stiffness of the arteries. Other terms that are used to describe the mechanical properties of arteries include elastance, or the reciprocal (inverse) of elastance, compliance. The relationship between arterial stiffness and pulse wave velocity was first predicted by Thomas Young in his Croonian Lecture of 1808 [11] but is generally described by the Moens–Korteweg equation[12] or the Bramwell–Hill equation.[13] Typical values of PWV in the aorta range from approximately 5 m/s to >15 m/s.[14]
Measurement of aortic PWV provides some of the strongest evidence concerning the prognostic significance of large artery stiffening. Increased aortic PWV has been shown to predict cardiovascular, and in some cases all-cause, mortality in individuals with end stage kidney disease,[15] hypertension,[16] diabetes mellitus[17] and in the general population.[18][19] However, at present, the role of measurement of PWV as a general clinical tool remains to be established. Devices are on the market that measure arterial stiffness parameters (augmentation index, pulse wave velocity). These include Complior, CVProfilor, PeriScope, Hanbyul Meditech, Mobil-O-Graph NG, BP Plus (Pulsecor), PulsePen, BPLab Vasotens, Arteriograph, Vascular Explorer, and SphygmoCor.[20]
Pathophysiological consequences
[edit]The primary sites of end-target organ damage following an increase in arterial stiffness are the heart, the brain (stroke, white matter hyperintensities (WMHs)), the placenta, and the kidneys (age-related loss of kidney function).[21]
Firstly, stiffened arteries compromise the Windkessel effect of the arteries.[22] The Windkessel effect buffers the pulsatile ejection of blood from the heart converting it into a more steady, even outflow. This function depends on the elasticity of the arteries and stiffened arteries require a greater amount of force to permit them to accommodate the volume of blood ejected from the heart (stroke volume). This increased force requirement equates to an increase in pulse pressure.[22] The increase in pulse pressure may result in increased damage to blood vessels in target organs such as the brain or kidneys.[23][24] This effect may be exaggerated if the increase in arterial stiffness results in reduced wave reflection and more propagation of the pulsatile pressure into the microcirculation.[23]
An increase in arterial stiffness also increases the load on the heart, since it has to perform more work to maintain the stroke volume. Over time, this increased workload may cause left ventricular hypertrophy and left ventricular remodelling, which can lead to heart failure.[25] The increased workload may also be associated with a higher heart rate, a proportionately longer duration of systole and a comparative reduction of duration of diastole.[26] This decreases the amount of time available for perfusion of cardiac tissue, which largely occurs in diastole.[22]
Arterial stiffness may also affect the time at which pulse wave reflections return to the heart. As the pulse wave travels through the circulation it undergoes reflection at sites where the transmission properties of the arterial tree change (i.e. sites of impedance mismatch). These reflected waves propagate backward towards the heart. The speed of propagation (i.e. PWV[10]) is increased in stiffer arteries and consequently reflected waves will arrive at the heart earlier in systole. This increases the load on the heart in systole.[27] Elevated PWV could represent an important parameter for identifying children with CKD and high cardiovascular risk.[28]
See also
[edit]Notes
[edit]- ^ Laurent, Stéphane; Boutouyrie, Pierre; Lacolley, Patrick (June 2005). "Structural and Genetic Bases of Arterial Stiffness". Hypertension. 45 (6): 1050–1055. doi:10.1161/01.HYP.0000164580.39991.3d.
- ^ Mozos I, Malainer C, Horbańczuk J, Gug C, Stoian D, Luca CT, Atanasov AG. Inflammatory Markers for Arterial Stiffness in Cardiovascular Diseases. Front Immunol. 2017 Aug 31;8:1058. doi: 10.3389/fimmu.2017.01058.
- ^ Laurent S, Boutouyrie P, Asmar R, Gautier I, Laloux B, Guize L, et al. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension 2001; 37:1236–1241.
- ^ Demir S, Akpınar O, Akkus O, Nas K, Unal I, Molnar F, et al. The prognostic value of arterial stiffness in systolic heart failure. Cardiol J 2013; 20:665–671.
- ^ Edgell H., Stickland M.K., Maclean J.E. A simplified measurement of pulse wave velocity is not inferior to standard measurement in young adults and children. Blood Press. Monit.. 2016;21(3):192-195. doi:10.1097/MBP.0000000000000183
- ^ "Cardiovascular diseases (CVDs)". www.who.int. Retrieved 2024-12-30.
- ^ Halsey, Gregory; Sinha, Dipasha; Dhital, Saphala; Wang, Xiaoying; Vyavahare, Naren (2023-06-01). "Role of elastic fiber degradation in disease pathogenesis". Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 1869 (5): 166706. doi:10.1016/j.bbadis.2023.166706. ISSN 0925-4439. PMC 11659964. PMID 37001705.
- ^ Dietz, J (2007). "Arterial stiffness and extracellular matrix". Atherosclerosis, Large Arteries and Cardiovascular Risk. Advances in Cardiology. Vol. 44. pp. 76–95. doi:10.1159/000096722. ISBN 978-3-8055-8176-9. PMID 17075200.
{{cite book}}
:|journal=
ignored (help) - ^ a b c d Mancia, Giuseppe; Kreutz, Reinhold; Brunström, Mattias; Burnier, Michel; Grassi, Guido; Januszewicz, Andrzej; Muiesan, Maria Lorenza; Tsioufis, Konstantinos; Agabiti-Rosei, Enrico; Algharably, Engi Abd Elhady; Azizi, Michel; Benetos, Athanase; Borghi, Claudio; Hitij, Jana Brguljan; Cifkova, Renata (December 2023). "2023 ESH Guidelines for the management of arterial hypertension The Task Force for the management of arterial hypertension of the European Society of Hypertension: Endorsed by the International Society of Hypertension (ISH) and the European Renal Association (ERA)". Journal of Hypertension. 41 (12): 1874. doi:10.1097/HJH.0000000000003480. hdl:11379/603005. ISSN 0263-6352.
- ^ a b Nabeel, P. M.; Kiran, V. Raj; Joseph, Jayaraj; Abhidev, V. V.; Sivaprakasam, Mohanasankar (2020). "Local Pulse Wave Velocity: Theory, Methods, Advancements, and Clinical Applications". IEEE Reviews in Biomedical Engineering. 13: 74–112. doi:10.1109/RBME.2019.2931587. ISSN 1937-3333. PMID 31369386. S2CID 199381680.
- ^ Young (1809). "On the function of the heart and arteries: The Croonian lecture". Philos Trans R Soc. 99: 1–31. doi:10.1098/rstl.1809.0001. JSTOR 109672. S2CID 110648919.
- ^ Nichols WW, O'Rourke MF. Vascular impedance. In: McDonald's Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles. 4th ed. London, UK: Edward Arnold; 1998:54–97, 243–283, 347–395.
- ^ Bramwell JC, Hill AV (1922). "The velocity of the pulse wave in man". Proceedings of the Royal Society of London B. 93 (652): 298–306. Bibcode:1922RSPSB..93..298C. doi:10.1098/rspb.1922.0022. JSTOR 81045. S2CID 120673490.
- ^ The Reference Values for Arterial Stiffness' Collaboration (2010-10-01). "Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: 'establishing normal and reference values'". European Heart Journal. 31 (19): 2338–2350. doi:10.1093/eurheartj/ehq165. ISSN 1522-9645. PMC 2948201. PMID 20530030.
- ^ Blacher J, Guerin AP, Pannier B, Marchais SJ, Safar ME, London GM (May 1999). "Impact of aortic stiffness on survival in end-stage renal disease". Circulation. 99 (18): 2434–9. doi:10.1161/01.cir.99.18.2434. PMID 10318666.
- ^ Laurent S, Boutouyrie P, Asmar R, Gautier I, Laloux B, Guize L, Ducimetiere P, Benetos A (May 2001). "Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients". Hypertension. 37 (5): 1236–41. CiteSeerX 10.1.1.583.3137. doi:10.1161/01.hyp.37.5.1236. PMID 11358934. S2CID 8417352.
- ^ Cruickshank K, Riste L, Anderson SG, Wright JS, Dunn G, Gosling RG (October 2002). "Aortic pulse-wave velocity and its relationship to mortality in diabetes and glucose intolerance: an integrated index of vascular function?". Circulation. 106 (16): 2085–90. doi:10.1161/01.cir.0000033824.02722.f7. PMID 12379578.
- ^ Mattace-Raso FU, van der Cammen TJ, Hofman A, van Popele NM, Bos ML, Schalekamp MA, Asmar R, Reneman RS, Hoeks AP, Breteler MM, Witteman JC (February 2006). "Arterial stiffness and risk of coronary heart disease and stroke: the Rotterdam Study". Circulation. 113 (5): 657–63. doi:10.1161/CIRCULATIONAHA.105.555235. PMID 16461838.
- ^ Willum-Hansen T, Staessen JA, Torp-Pedersen C, Rasmussen S, Thijs L, Ibsen H, Jeppesen J (February 2006). "Prognostic value of aortic pulse wave velocity as index of arterial stiffness in the general population". Circulation. 113 (5): 664–70. doi:10.1161/CIRCULATIONAHA.105.579342. PMID 16461839.
- ^ Avolio A, Butlin M, Walsh A (2009). "Arterial blood pressure measurement and pulse wave analysis - their role in enhancing cardiovascular assessment". Physiological Measurement. 31 (1): R1 – R47. doi:10.1088/0967-3334/31/1/r01. PMID 19940350. S2CID 20651222. Also noted are newer pulse wave velocity measurement tools like the iHeart Internal Age device, a fingertip device that measures aortic pulse wave velocity and arterial stiffness through the pulse in the finger.
- ^ Chirinos, Julio A.; Segers, Patrick; Hughes, Timothy; Townsend, Raymond (2019-09-03). "Large-Artery Stiffness in Health and Disease: JACC State-of-the-Art Review". Journal of the American College of Cardiology. 74 (9): 1237–1263. doi:10.1016/j.jacc.2019.07.012. ISSN 0735-1097. PMC 6719727. PMID 31466622.
- ^ a b c Nicolaas Westerhof; Nikolaos Stergiopulos; Mark I.M. Noble (2 September 2010). Snapshots of Hemodynamics: An Aid for Clinical Research and Graduate Education. Springer Science & Business Media. pp. 181–. ISBN 978-1-4419-6363-5.
- ^ a b Mitchell, Gary F. (2015). "Arterial stiffness". Current Opinion in Nephrology and Hypertension. 24 (1): 1–7. doi:10.1097/MNH.0000000000000092. ISSN 1062-4821. PMID 25470012. S2CID 23321317.
- ^ Fernandez-Fresnedo, G.; Rodrigo, E.; de Francisco, A. L. M.; de Castro, S. S.; Castaneda, O.; Arias, M. (2006). "Role of Pulse Pressure on Cardiovascular Risk in Chronic Kidney Disease Patients". Journal of the American Society of Nephrology. 17 (12_suppl_3): S246 – S249. doi:10.1681/ASN.2006080921. ISSN 1046-6673. PMID 17130269.
- ^ Cheng, S.; Vasan, R. S. (2011). "Advances in the Epidemiology of Heart Failure and Left Ventricular Remodeling". Circulation. 124 (20): e516 – e519. doi:10.1161/CIRCULATIONAHA.111.070235. ISSN 0009-7322. PMC 3621875. PMID 22083151.
- ^ Whelton, S. P.; Blankstein, R.; Al-Mallah, M. H.; Lima, J. A. C.; Bluemke, D. A.; Hundley, W. G.; Polak, J. F.; Blumenthal, R. S.; Nasir, K.; Blaha, M. J. (2013). "Association of Resting Heart Rate With Carotid and Aortic Arterial Stiffness: Multi-Ethnic Study of Atherosclerosis". Hypertension. 62 (3): 477–484. doi:10.1161/HYPERTENSIONAHA.113.01605. ISSN 0194-911X. PMC 3838105. PMID 23836802.
- ^ Pavelescu, Carmen (2021). "www.mdpi.com". Diagnostics (Basel, Switzerland). 12 (1). doi:10.3390/diagnostics12010071. PMC 8774385. PMID 35054238.
- ^ Wilmer W. Nichols; Michael F. O'Rourke (25 February 2005). McDonald's Blood Flow in Arteries 5Ed: Theoretical, experimental and clinical principles. Taylor & Francis. ISBN 978-0-340-80941-9.