Jump to content

User:Mgkrupa/Bibliography

From Wikipedia, the free encyclopedia

Citation templates, tools

[edit]
Wikipedia citation templates and Tools like Citer and Google Books citation tool and DOI article citation and wikilibrary
{{springer}}

Ex: {{springer|Banach–Steinhaus theorem|first=A.I.|last=Shtern|year=2001|id=b/b015200}}

{{Citation needed span}}

Ex: {{citation needed span|some questionable statement.|reason=|date=}}

{{springer}}

Ex: {{springer|Banach–Steinhaus theorem|first=A.I.|last=Shtern|year=2001|id=b/b015200}}

{{cite web}}

WITH author

Most commonly used parameters in horizontal format
<ref name=>{{cite web|url=|title=|author=|last=|first=|website=|publisher=|date=|access-date=|quote=}}</ref>

withOUT author

Most commonly used parameters in horizontal format
<ref name=>{{cite web|url=|title=|author=<!--Not stated--> |website=|publisher=|date=|access-date=|quote=}}</ref>



{{cite arXiv}}


Most commonly used parameters in horizontal format
<ref name=>{{cite arXiv|last=|first=|author=|author-link=|eprint=|title=|class=|date=|access-date=|quote=}}</ref>


Ex:

{{cite arXiv|last=Leinster|first=Tom|date=2007|title=The Euler characteristic of a category as the sum of a divergent series|eprint=0707.0835|class=math.CT}}

  • Leinster, Tom (2007). "The Euler characteristic of a category as the sum of a divergent series". arXiv:0707.0835 [math.CT].



{{cite journal}}


To cite a professional or scientific journal
Most commonly used parameters in horizontal format
<ref name=>{{cite journal|last1=|first1=|last2=|first2=|date=|title=|url=|journal=|volume=|issue=|pages=|doi=|access-date=}}</ref>
To cite a journal article with no credited author
Most commonly used parameters in horizontal format
<ref name=>{{cite journal|author=<!--Staff writer(s); no by-line.--> |date=|title=|url=|journal=|volume=|issue=|pages=|doi=|access-date=}}</ref>
To cite an online article that has been archived
Most commonly used parameters in horizontal format
<ref name=>{{cite journal|last=|first=|date=|title=|url=|url-status=|journal=|volume=|issue=|pages=|doi=|archive-url=|archive-date=|access-date=}}</ref>



{{cite encyclopedia}}


Most commonly used parameters in horizontal format
<ref name=>{{cite encyclopedia|title=|id=|encyclopedia=|date=|year=|publisher=|location=|website=|access-date=|url=|quote=}}</ref>



{{cite thesis}}


Most commonly used parameters in horizontal format
<ref name=>{{cite thesis |last=|first=|date=|title=|type=|chapter=|publisher=|docket=|oclc=|url=|access-date=}}</ref>

Ex:


{{cite thesis|type=PhD|last=Ducklover|first=Arnold A.|date=1901|title=On some aspects of Ducks|publisher=Duck University}}

  • Ducklover, Arnold A. (1901). On some aspects of Ducks (PhD). Duck University.
Citation Related Templates
Sources/References
{{Citation needed}}[citation needed] {{Irrelevant citation}}[irrelevant citation]
{{Better source}}[better source needed] {{Nonspecific}}[not specific enough to verify]
{{Verify source}}[verification needed] {{Failed verification span}}
Unclear/Undefined/Ambiguous
{{Clarify}}[clarification needed] {{Clarify span}}
{{Vague}}[vague]
{{Definition needed}}[definition needed] {{Definition}}[when defined as?]
{{Expand acronym}}[expand acronym]
Maybe create these templates?: {{Under what assumptions}}     or     {{Under what conditions}}
More info desired
{{Example needed}}[example needed]
{{Explain}}[further explanation needed] {{How}}[how?] {{Why}}[why?]
{{Quantify}}[quantify] {{Specify}}[specify] {{How often}}[how often?] {{Vague}}[vague]
Factual Problems with Article's content
{{Disputed inline}}
Example: {{Disputed inline|for=reason-goes-here|date=January 2021|talk=Talk:ArticleName#Talk page section}} [disputed (for: reason-goes-here)  – discuss]
{{Not verified in body}}[not verified in body]
{{Failed verification span}}
{{Fact or opinion}}[fact or opinion?]
{{Dubious}}[dubiousdiscuss]
  • Example: The moon is made of Parmesan cheese.{{Dubious|1=talk-page-section-title|reason=Clearly, the moon is made Mozzarella.|date=January 2021}}
  • "Add [dubiousdiscuss] after a specific statement or alleged fact that is sourced but that nevertheless seems dubious or unlikely"
POV pushing
{{POV statement}}[neutrality is disputed]
{{Undue weight inline}}

References

[edit]
All references

* {{Adams Franzosa Introduction to Topology Pure and Applied}} <!--{{sfn|Adams|Franzosa|2009|p=}}-->
* {{Adams Fournier Sobolev Spaces|edition=2}} <!--{{sfn|Adams|Fournier|2003|p=}}-->
* {{Adasch Topological Vector Spaces|edition=2}} <!--{{sfn|Adasch|Ernst|Keim|1978|p=}}-->
* {{Aliprantis Border Infinite Dimensional Analysis A Hitchhiker's Guide Third Edition}} <!--{{sfn|Aliprantis|Border|2006|p=}}-->
* {{Arkhangel'skii Ponomarev Fundamentals of General Topology Problems and Exercises|edition=2}} <!--{{sfn|Arkhangelʹskiĭ|Ponomarev|1984|p=}}-->
* {{Arnold Mathematical Methods of Classical Mechanics 1989}} <!--{{sfn|Arnold|1989|p=}}-->
* {{Bachman Narici Functional Analysis 2nd Edition}} <!--{{sfn|Bachman|Narici|2000|p=}}-->
* {{Bahouri Chemin Danchin Fourier Analysis and Nonlinear Partial Differential Equations 2011}} <!--{{sfn|Bahouri|Chemin|Danchin|2011|p=}}-->
* {{Banach Théorie des Opérations Linéaires}} <!--{{sfn|Banach|1932|p=}}-->
* {{Bauschke Combettes Convex Analysis and Monotone Operator Theory in Hilbert Spaces 2nd ed 2017}} <!--{{sfn|Bauschke|Combettes|2017|pp=}}-->
* {{Berberian Lectures in Functional Analysis and Operator Theory}} <!--{{sfn|Berberian|1974|p=}}-->
* {{Bessaga Pełczyński Selected Topics in Infinite-Dimensional Topology}} <!--{{sfn|Bessaga|Pełczyński|1975|p=}}-->
* {{Bierstedt An Introduction to Locally Convex Inductive Limits}} <!--{{sfn|Bierstedt|1988|p=}}-->
* {{Bogachev Smolyanov Topological Vector Spaces and Their Applications}} <!--{{sfn|Bogachev|Smolyanov|2017|p=}}-->
* {{Bourbaki Algebra I Chapters 1-3 Springer}} <!--{{sfn|Bourbaki|1989|p=}}-->
* {{Bourbaki Algebra II Chapters 4-7 Springer}} <!--{{sfn|Bourbaki|2003|p=}}-->
* {{Bourbaki Functions of a Real Variable Elementary Theory Springer}} <!--{{sfn|Bourbaki|2013|p=}}-->
* {{Bourbaki General Topology Part I Chapters 1-4}} <!--{{sfn|Bourbaki|1989|p=}}-->
* {{Bourbaki General Topology Part II Chapters 5-10}} <!--{{sfn|Bourbaki|1989|p=}}-->
* {{Bourbaki Topological Vector Spaces Part 1 Chapters 1–5}} <!--{{sfn|Bourbaki|1987|p=}}-->
* {{Boyd Vandenberghe Convex Optimization 2004}} <!--{{sfn|Boyd|Vandenberghe|2004|pp=}}-->
* {{Colombeau Differential Calculus and Holomorphy}} <!--{{sfn|Colombeau|1982|p=}}-->
* {{Comfort Negrepontis The Theory of Ultrafilters 1974}} <!--{{sfn|Comfort|Negrepontis|1974|p=}}-->
* {{Conway A Course in Functional Analysis|edition=2}} <!--{{sfn|Conway|1990|p=}}-->
* {{Császár General Topology}} <!--{{sfn|Császár|1978|p=}}-->
* {{Diestel The Metric Theory of Tensor Products Grothendieck's Résumé Revisited}} <!--{{sfn|Diestel|2008|p=}}-->
* {{Dineen Complex Analysis in Locally Convex Spaces}} <!--{{sfn|Dineen|1981|p=}}-->
* {{Dixmier General Topology}} <!--{{sfn|Dixmier|1984|p=}}-->
* {{Dolecki Mynard Convergence Foundations Of Topology}} <!--{{sfn|Dolecki|Mynard|2016|p=}}-->
* {{cite journal|last=Dolecki|first=Szymon|date=2009|title=An initiation into convergence theory|url=http://dolecki.perso.math.cnrs.fr/init_IX07.pdf|journal=Beyond Topology|editor1-last=Mynard|editor1-first=Frédéric|editor2-last=Pearl|editor2-first=Elliott|series=Contemporary Mathematics Series A.M.S.|volume=486|issue=|pages=115-162|doi=|access-date=14 January 2021}}

<ref name="Dolecki 2009 Init Conv 1-51">{{harvnb|Dolecki|2009|pages=1-51}}</ref>

* {{cite journal|last1=Dolecki|first1=Szymon|last2=Mynard|first2=Frédéric|date=2014|title=A unified theory of function spaces and hyperspaces: local properties|url=http://dolecki.perso.math.cnrs.fr/18dolecki.pdf|journal=Houston J. Math.|volume=40|issue=1|pages=285-318|doi=|access-date=14 January 2021}}

<ref name="Dolecki Szymon 2014 Unified 1-25">{{harvnb|Dolecki|Mynard|2014|pages=1-25}}</ref>

* {{Dubinsky The Structure of Nuclear Fréchet Spaces}} <!--{{sfn|Dubinsky|1979|p=}}-->
* {{Dugundji Topology}} <!--{{sfn|Dugundji|1966|p=}}-->
* {{Dunford Schwartz Linear Operators Part 1 General Theory}} <!--{{sfn|Dunford|1988|p=}}-->
* {{Durrett Probability Theory and Examples 5th Edition}} <!--{{sfn|Durrett|2019|p=}}-->
* {{Edwards Functional Analysis Theory and Applications}} <!--{{sfn|Edwards|1995|p=}}-->
* {{Grothendieck Produits Tensoriels Topologiques et Espaces Nucléaires}} <!--{{sfn|Grothendieck|1955|p=}}-->
* {{Grothendieck Sur les espaces (F) et (DF)}} <!--{{sfn|Grothendieck|1954|p=}}-->
* {{Grothendieck Topological Vector Spaces}} <!--{{sfn|Grothendieck|1973|p=}}-->
* {{cite book|last1=Gowers|first1=Timothy|last2=Barrow-Green|first2=June|last3=Leader|first3=Imre|title=The Princeton Companion to Mathematics|publisher=Princeton University Press|publication-place=Princeton|year=2008|isbn=978-1-4008-3039-8|oclc=659590835}} <!--{{sfn|Gowers|Barrow-Green|Leader|2008|p=}}-->
* {{Halmos A Hilbert Space Problem Book 1982}} <!--{{sfn|Halmos|1982|pp=}}-->
* {{Halmos Introduction to Hilbert Space and the Theory of Spectral Multiplicity 2017}} <!--{{sfn|Halmos|2017|pp=}}-->
* {{Hastie Tibshirani Friedman The Elements of Statistical Learning 2009}} <!--{{sfn|Hastie|Tibshirani|Friedman|2009|pp=}}-->
* {{Hogbe-Nlend Bornologies and Functional Analysis}} <!--{{sfn|Hogbe-Nlend|1977|p=}}-->
* {{Hogbe-Nlend Moscatelli Nuclear and Conuclear Spaces}} <!--{{sfn|Hogbe-Nlend|Moscatelli|1981|p=}}-->
* {{Horváth Topological Vector Spaces and Distributions Volume 1 1966}} <!--{{sfn|Horváth|1966|p=}}-->
* {{Howes Modern Analysis and Topology 1995}} <!--{{sfn|Howes|1995|p=}}-->
* {{Husain Khaleelulla Barrelledness in Topological and Ordered Vector Spaces}} <!--{{sfn|Husain|Khaleelulla|1978|p=}}-->
* {{Ingram An Introduction to Inverse Limits with Set-valued Functions 2012}} <!--{{sfn|Ingram|2012|p=}}-->
* {{Ingram Inverse Limits From Continua to Chaos 2012}} <!--{{sfn|Ingram|Mahavier|2012|p=}}-->
* {{Jarchow Locally Convex Spaces}} <!--{{sfn|Jarchow|1981|p=}}-->
* {{Joshi Introduction to General Topology}} <!--{{sfn|Joshi|1983|p=}}-->
* {{Keller Differential Calculus in Locally Convex Spaces}} <!--{{sfn|Keller|1974|p=}}-->
* {{Kelley General Topology}} <!--{{sfn|Kelley|1975|p=}}-->
* {{Kelley Namioka Linear Topological Spaces 1963}} <!--{{sfn|Kelley|Namioka|1963|p=}}-->
* {{Khaleelulla Counterexamples in Topological Vector Spaces}} <!--{{sfn|Khaleelulla|1982|p=}}-->
* {{Kolmogorov Fomin Elements of the Theory of Functions and Functional Analysis}} <!--{{sfn|Kolmogorov|Fomin|1957|p=}}-->
* {{Kosinski Differential Manifolds 2007}} <!--{{sfn|Kosinski|2007|p=}}-->
* {{Köthe Topological Vector Spaces I}} <!--{{sfn|Köthe|1969|p=}}-->
* {{Köthe Topological Vector Spaces II}} <!--{{sfn|Köthe|1979|p=}}-->
* {{Kriegl Michor The Convenient Setting of Global Analysis}} <!--{{sfn|Kriegl|Michor|1997|p=}}-->
* {{Kubrusly The Elements of Operator Theory 2nd Edition 2011}} <!--{{sfn|Kubrusly|2011|p=}}-->
* {{Lax Functional Analysis}} <!--{{sfn|Lax|2002|p=}}-->
* {{Lang Fundamentals of Differential Geometry}} <!--{{sfn|Lang|1999|p=}}-->
* {{Lang Real and Functional Analysis 1993}} <!--{{sfn|Lang|1993|p=}}-->
* {{Lee Introduction to Smooth Manifolds|edition=2}} <!--{{sfn|Lee|2012|p=}}-->
* {{Lee Riemannian Manifolds An Introduction to Curvature|edition=1}} <!--{{sfn|Lee|1997|p=}}-->
* {{Malkowsky Rakočević Advanced Functional Analysis|edition=1}} <!--{{sfn|Malkowsky|Rakočević|2020|p=}}-->
* {{cite book|last=Marker|first=David|title=Model Theory: An Introduction|publisher=Springer|series=[[Graduate Texts in Mathematics]]|volume=217|year=2002|isbn=978-0-387-98760-6|oclc=49326991}} <!--{{sfn|Marker|2002|p=}}-->
* {{McKennon Robertson Locally Convex Spaces}} <!--{{sfn|McKennon|Robertson|1976|p=}}-->
* {{Munkres Topology|edition=2}} <!--{{sfn|Munkres|2000|p=}}-->
* {{Narici Beckenstein Topological Vector Spaces|edition=2}} <!--{{sfn|Narici|Beckenstein|2011|p=}}-->
* {{Nestruev Smooth Manifolds and Observables 2020}} <!--{{sfn|Nestruev|2020|p=}}-->
* {{Osborne Locally Convex Spaces}} <!--{{sfn|Osborne|2013|p=}}-->
* {{Pietsch Nuclear Locally Convex Spaces|edition=2}} <!--{{sfn|Pietsch|1979|p=}}-->
* {{cite book|last=Pincus|first=David|author-link=David Pincus|editor-last1=Hurd|editor-first1=A.|editor-last2=Loeb|editor-first2=P.|year=1974|title=Victoria Symposium on Nonstandard Analysis|chapter=The strength of the Hahn-Banach theorem|series=Lecture Notes in Mathematics|pages=203–248|volume=369|publisher=Springer|publication-place=Berlin, Heidelberg|isbn=978-3-540-06656-9|issn=0075-8434|doi=10.1007/bfb0066014}} <!--{{sfn|Pincus|1974|p=}}-->
* {{Riesz Szőkefalvi-Nagy Functional Analysis Dover 1990}} <!--{{sfn|Riesz|Sz.-Nagy|1990|p=}}-->
* {{Robertson Topological Vector Spaces}} <!--{{sfn|Robertson|Robertson|1980|p=}}-->
* {{Rockafellar Wets Variational Analysis 2009 Springer}} <!--{{sfn|Rockafellar|Wets|2009|p=}}-->
* {{Royden Fitzpatrick Real Analysis 4th 2010}} <!--{{sfn|Royden|Fitzpatrick|2010|p=}}-->
* {{Rudin Walter Functional Analysis|edition=2}} <!--{{sfn|Rudin|1991|p=}}-->
* {{Ryan Introduction to Tensor Products of Banach Spaces|edition=1}} <!--{{sfn|Ryan|2002|p=}}-->
* {{Saunders The Geometry of Jet Bundles}} <!--{{sfn|Saunders|1989|p=}}-->
* {{Schaefer Wolff Topological Vector Spaces|edition=2}} <!--{{sfn|Schaefer|Wolff|1999|p=}}-->
* {{Schechter Handbook of Analysis and Its Foundations}} <!--{{sfn|Schechter|1996|p=}}-->
* {{Schubert Topology}} <!--{{sfn|Schubert|1968|p=}}-->
* {{Sharpe Differential Geometry: Cartan's Generalization of Klein's Erlangen Program}} <!--{{sfn|Sharpe|1997|p=}}-->
* {{Steenrod The Topology of Fibre Bundles 1999}} <!--{{sfn|Steenrod|1999|p=}}-->
* {{Swartz An Introduction to Functional Analysis}} <!--{{sfn|Swartz|1992|p=}}-->
* {{Takhtajan Quantum Mechanics for Mathematicians 2008}} <!--{{sfn|Takhtajan|2008|p=}}-->
* {{Trèves François Topological vector spaces, distributions and kernels}} <!--{{sfn|Trèves|2006|p=}}-->
* {{Valdivia Topics in Locally Convex Spaces|edition=1}} <!--{{sfn|Valdivia|1982|p=}}-->
* {{Voigt A Course on Topological Vector Spaces|edition=1}} <!--{{sfn|Voigt|2020|p=}}-->
* {{Wilansky Modern Methods in Topological Vector Spaces|edition=1}} <!--{{sfn|Wilansky|2013|p=}}-->
* {{Wilansky Topology for Analysis 2008}} <!--{{sfn|Wilansky|2008|p=}}-->
* {{Willard General Topology}} <!--{{sfn|Willard|2004|p=}}-->
* {{Willard General Topology|year=2012}} <!--{{sfn|Willard|2012|p=}}-->
* {{Wong Schwartz Spaces, Nuclear Spaces, and Tensor Products}} <!--{{sfn|Wong|1979|p=}}-->
* {{Zălinescu Convex Analysis in General Vector Spaces 2002}} <!--{{sfn|Zălinescu|2002|pp=}}-->


How Citation Templates appear

By subject

[edit]

TVSs/Analysis

[edit]
Topological Vector Space refs

* {{Adasch Topological Vector Spaces|edition=2}} <!--{{sfn|Adasch|Ernst|Keim|1978|p=}}-->
* {{Bauschke Combettes Convex Analysis and Monotone Operator Theory in Hilbert Spaces 2nd ed 2017}} <!--{{sfn|Bauschke|Combettes|2017|pp=}}-->
* {{Berberian Lectures in Functional Analysis and Operator Theory}} <!--{{sfn|Berberian|1974|p=}}-->
* {{Bessaga Pełczyński Selected Topics in Infinite-Dimensional Topology}} <!--{{sfn|Bessaga|Pełczyński|1975|p=}}-->
* {{Bierstedt An Introduction to Locally Convex Inductive Limits}} <!--{{sfn|Bierstedt|1988|p=}}-->
* {{Bogachev Smolyanov Topological Vector Spaces and Their Applications}} <!--{{sfn|Bogachev|Smolyanov|2017|p=}}-->
* {{Bourbaki Topological Vector Spaces Part 1 Chapters 1–5}} <!--{{sfn|Bourbaki|1987|p=}}-->
* {{Colombeau Differential Calculus and Holomorphy}} <!--{{sfn|Colombeau|1982|p=}}-->
* {{Conway A Course in Functional Analysis|edition=2}} <!--{{sfn|Conway|1990|p=}}-->
* {{Diestel The Metric Theory of Tensor Products Grothendieck's Résumé Revisited}} <!--{{sfn|Diestel|2008|p=}}-->
* {{Dineen Complex Analysis in Locally Convex Spaces}} <!--{{sfn|Dineen|1981|p=}}-->
* {{Dubinsky The Structure of Nuclear Fréchet Spaces}} <!--{{sfn|Dubinsky|1979|p=}}-->
* {{Dunford Schwartz Linear Operators Part 1 General Theory}} <!--{{sfn|Dunford|1988|p=}}-->
* {{Edwards Functional Analysis Theory and Applications}} <!--{{sfn|Edwards|1995|p=}}-->
* {{Grothendieck Produits Tensoriels Topologiques et Espaces Nucléaires}} <!--{{sfn|Grothendieck|1955|p=}}-->
* {{Grothendieck Topological Vector Spaces}} <!--{{sfn|Grothendieck|1973|p=}}-->
* {{Hogbe-Nlend Bornologies and Functional Analysis}} <!--{{sfn|Hogbe-Nlend|1977|p=}}-->
* {{Hogbe-Nlend Moscatelli Nuclear and Conuclear Spaces}} <!--{{sfn|Hogbe-Nlend|Moscatelli|1981|p=}}-->
* {{Horváth Topological Vector Spaces and Distributions Volume 1 1966}} <!--{{sfn|Horváth|1966|p=}}-->
* {{Howes Modern Analysis and Topology 1995}} <!--{{sfn|Howes|1995|p=}}-->
* {{Husain Khaleelulla Barrelledness in Topological and Ordered Vector Spaces}} <!--{{sfn|Husain|Khaleelulla|1978|p=}}-->
* {{Jarchow Locally Convex Spaces}} <!--{{sfn|Jarchow|1981|p=}}-->
* {{Keller Differential Calculus in Locally Convex Spaces}} <!--{{sfn|Keller|1974|p=}}-->
* {{Kelley Namioka Linear Topological Spaces 1963}} <!--{{sfn|Kelley|Namioka|1963|p=}}-->
* {{Khaleelulla Counterexamples in Topological Vector Spaces}} <!--{{sfn|Khaleelulla|1982|p=}}-->
* {{Kolmogorov Fomin Elements of the Theory of Functions and Functional Analysis}} <!--{{sfn|Kolmogorov|Fomin|1957|p=}}-->
* {{Köthe Topological Vector Spaces I}} <!--{{sfn|Köthe|1969|p=}}-->
* {{Köthe Topological Vector Spaces II}} <!--{{sfn|Köthe|1979|p=}}-->
* {{Kriegl Michor The Convenient Setting of Global Analysis}} <!--{{sfn|Kriegl|Michor|1997|p=}}-->
* {{Lax Functional Analysis}} <!--{{sfn|Lax|2002|p=}}-->
* {{Malkowsky Rakočević Advanced Functional Analysis|edition=1}} <!--{{sfn|Malkowsky|Rakočević|2020|p=}}-->
* {{McKennon Robertson Locally Convex Spaces}} <!--{{sfn|McKennon|Robertson|1976|p=}}-->
* {{Osborne Locally Convex Spaces}} <!--{{sfn|Osborne|2013|p=}}-->
* {{Pietsch Nuclear Locally Convex Spaces|edition=2}} <!--{{sfn|Pietsch|1979|p=}}-->
* {{Narici Beckenstein Topological Vector Spaces|edition=2}} <!--{{sfn|Narici|Beckenstein|2011|p=}}-->
* {{Robertson Topological Vector Spaces}} <!--{{sfn|Robertson|Robertson|1980|p=}}-->
* {{Rudin Walter Functional Analysis|edition=2}} <!--{{sfn|Rudin|1991|p=}}-->
* {{Ryan Introduction to Tensor Products of Banach Spaces|edition=1}} <!--{{sfn|Ryan|2002|p=}}-->
* {{Schaefer Wolff Topological Vector Spaces|edition=2}} <!--{{sfn|Schaefer|Wolff|1999|p=}}-->
* {{Schechter Handbook of Analysis and Its Foundations}} <!--{{sfn|Schechter|1996|p=}}-->
* {{Swartz An Introduction to Functional Analysis}} <!--{{sfn|Swartz|1992|p=}}-->
* {{Trèves François Topological vector spaces, distributions and kernels}} <!--{{sfn|Trèves|2006|p=}}-->
* {{Valdivia Topics in Locally Convex Spaces|edition=1}} <!--{{sfn|Valdivia|1982|p=}}-->
* {{Voigt A Course on Topological Vector Spaces|edition=1}} <!--{{sfn|Voigt|2020|p=}}-->
* {{Wilansky Modern Methods in Topological Vector Spaces|edition=1}} <!--{{sfn|Wilansky|2013|p=}}-->
* {{Wong Schwartz Spaces, Nuclear Spaces, and Tensor Products}} <!--{{sfn|Wong|1979|p=}}-->
* {{Zălinescu Convex Analysis in General Vector Spaces 2002}} <!--{{sfn|Zălinescu|2002|pp=}}-->


Banach/Hilbert spaces, Analysis, Spectral theorey, etc.

* {{Aliprantis Border Infinite Dimensional Analysis A Hitchhiker's Guide Third Edition}} <!--{{sfn|Aliprantis|Border|2006|p=}}-->
* {{Bachman Narici Functional Analysis 2nd Edition}} <!--{{sfn|Bachman|Narici|2000|p=}}-->
* {{Bahouri Chemin Danchin Fourier Analysis and Nonlinear Partial Differential Equations 2011}} <!--{{sfn|Bahouri|Chemin|Danchin|2011|p=}}-->
* {{Banach Théorie des Opérations Linéaires}} <!--{{sfn|Banach|1932|p=}}-->
* {{Conway A Course in Functional Analysis|edition=2}} <!--{{sfn|Conway|1990|p=}}-->
* {{Halmos A Hilbert Space Problem Book 1982}} <!--{{sfn|Halmos|1982|pp=}}-->
* {{Hastie Tibshirani Friedman The Elements of Statistical Learning 2009}} <!--{{sfn|Halmos|2017|pp=}}-->
* {{Kolmogorov Fomin Elements of the Theory of Functions and Functional Analysis}} <!--{{sfn|Kolmogorov|Fomin|1957|p=}}-->
* {{Kubrusly The Elements of Operator Theory 2nd Edition 2011}} <!--{{sfn|Kubrusly|2011|p=}}-->
* {{Lang Real and Functional Analysis 1993}} <!--{{sfn|Lang|1993|p=}}-->
* {{Lax Functional Analysis}} <!--{{sfn|Lax|2002|p=}}-->
* {{Riesz Szőkefalvi-Nagy Functional Analysis Dover 1990}} <!--{{sfn|Riesz|Sz.-Nagy|1990|p=}}-->
* {{Ryan Introduction to Tensor Products of Banach Spaces|edition=1}} <!--{{sfn|Ryan|2002|p=}}-->

Topology/Geometry

[edit]
General Topology refs

* {{Adams Franzosa Introduction to Topology Pure and Applied}} <!--{{sfn|Adams|Franzosa|2009|p=}}-->
* {{Arkhangel'skii Ponomarev Fundamentals of General Topology Problems and Exercises|edition=2}} <!--{{sfn|Arkhangelʹskiĭ|Ponomarev|1984|p=}}-->
* {{Bourbaki General Topology Part I Chapters 1-4}} <!--{{sfn|Bourbaki|1989|p=}}-->
* {{Bourbaki General Topology Part II Chapters 5-10}} <!--{{sfn|Bourbaki|1989|p=}}-->
* {{Comfort Negrepontis The Theory of Ultrafilters 1974}} <!--{{sfn|Comfort|Negrepontis|1974|p=}}-->
* {{Dixmier General Topology}} <!--{{sfn|Dixmier|1984|p=}}-->
* {{Császár General Topology}} <!--{{sfn|Császár|1978|p=}}-->
* {{Dolecki Mynard Convergence Foundations Of Topology}} <!--{{sfn|Dolecki|Mynard|2016|p=}}-->
* {{Dugundji Topology}} <!--{{sfn|Dugundji|1966|p=}}-->
* {{Howes Modern Analysis and Topology 1995}} <!--{{sfn|Howes|1995|p=}}-->
* {{Joshi Introduction to General Topology}} <!--{{sfn|Joshi|1983|p=}}-->
* {{Kelley General Topology}} <!--{{sfn|Kelley|1975|p=}}-->
* {{Munkres Topology|edition=2}} <!--{{sfn|Munkres|2000|p=}}-->
* {{Schechter Handbook of Analysis and Its Foundations}} <!--{{sfn|Schechter|1996|p=}}-->
* {{Schubert Topology}} <!--{{sfn|Schubert|1968|p=}}-->
* {{Wilansky Topology for Analysis 2008}} <!--{{sfn|Wilansky|2008|p=}}-->
* {{Willard General Topology}} <!--{{sfn|Willard|2004|p=}}-->
* {{Willard General Topology|year=2012}} <!--{{sfn|Willard|2012|p=}}-->


Sequence related Papers/articles/books


Differential Geometry refs

* {{Kosinski Differential Manifolds 2007}} <!--{{sfn|Kosinski|2007|p=}}-->
* {{Lang Fundamentals of Differential Geometry}} <!--{{sfn|Lang|1999|p=}}-->
* {{Lee Introduction to Smooth Manifolds|edition=2}} <!--{{sfn|Lee|2012|p=}}-->
* {{Lee Riemannian Manifolds An Introduction to Curvature|edition=1}} <!--{{sfn|Lee|1997|p=}}-->
* {{Nestruev Smooth Manifolds and Observables 2020}} <!--{{sfn|Nestruev|2020|p=}}-->
* {{Saunders The Geometry of Jet Bundles}} <!--{{sfn|Saunders|1989|p=}}-->
* {{Sharpe Differential Geometry: Cartan's Generalization of Klein's Erlangen Program}} <!--{{sfn|Sharpe|1997|p=}}-->
* {{Steenrod The Topology of Fibre Bundles 1999}} <!--{{sfn|Steenrod|1999|p=}}-->

Stats/Probability

[edit]
Statistical Learning/Probability refs

* {{Durrett Probability Theory and Examples 5th Edition}} <!--{{sfn|Durrett|2019|p=}}-->
* {{Hastie Tibshirani Friedman The Elements of Statistical Learning 2009}} <!--{{sfn|Hastie|Tibshirani|Friedman|2009|pp=}}-->

Applied

[edit]
Physics refs

* {{Arnold Mathematical Methods of Classical Mechanics 1989}} <!--{{sfn|Arnold|1989|p=}}-->
* {{Takhtajan Quantum Mechanics for Mathematicians 2008}} <!--{{sfn|Takhtajan|2008|p=}}-->

Citations for Grothendieck, Schaefer, etc.

[edit]
Grothendieck - Topological Vector Spaces citations
Citation Chapter Section Name
{{sfn|Grothendieck|1973|pp=1-13}} 0 Topological introduction
{{sfn|Grothendieck|1973|pp=1-2}} 1 Least upper bound of a family of topologies
{{sfn|Grothendieck|1973|pp=2-3}} 2 Least upper bound of a family of uniform structures
{{sfn|Grothendieck|1973|pp=4-4}} 3 Precompact spaces
{{sfn|Grothendieck|1973|pp=4-7}} 4 𝒢-Convergence
{{sfn|Grothendieck|1973|pp=8-8}} 5 𝒢-Convergence in the spaces of continuous mappings
{{sfn|Grothendieck|1973|pp=8-12}} 6 Equicontinuous and uniformly equicontinuous sets
{{sfn|Grothendieck|1973|pp=12-13}} 7 Relatively compact and precompact sets of continuous functions
{{sfn|Grothendieck|1973|pp=14-45}} 1 General properties
{{sfn|Grothendieck|1973|pp=14-15}} 1 General definition of a topological vector
{{sfn|Grothendieck|1973|pp=15-16}} 2 Products, subspaces, quotients
{{sfn|Grothendieck|1973|pp=16-17}} 3 Continuous linear mappings, homomorphisms
{{sfn|Grothendieck|1973|pp=17-18}} 4 Uniform structure of a TVS
{{sfn|Grothendieck|1973|pp=18-22}} 5 Topology defined by a semi-norm
{{sfn|Grothendieck|1973|pp=22-23}} 6 Generalities concerning spaces defined by families of semi-norms
{{sfn|Grothendieck|1973|pp=23-25}} 7 Bounded sets: general
{{sfn|Grothendieck|1973|pp=25-27}} 8 Bounded sets: their use for 𝒢-convergences
{{sfn|Grothendieck|1973|pp=27-31}} 9 Examples of TVS: spaces of continuous functions
{{sfn|Grothendieck|1973|pp=31-33}} 10 Other examples: the spaces ℰ(m) and ℰ of L. Schwartz
{{sfn|Grothendieck|1973|pp=34-36}} 11 Topological direct sums
{{sfn|Grothendieck|1973|pp=37-38}} 12 Vector subspaces of finite dimension or codimension
{{sfn|Grothendieck|1973|pp=38-39}} 13 Locally precompact TVS
{{sfn|Grothendieck|1973|pp=39-42}} 14 Theorem of homomorphisms, closed graph
{{sfn|Grothendieck|1973|pp=42-45}} 15 The Banach-Steinhaus theorem
{{sfn|Grothendieck|1973|pp=46-98}} 2 The general duality theorems on locally convex spaces
{{sfn|Grothendieck|1973|p=46}} 1 Introduction
{{sfn|Grothendieck|1973|pp=47-49}} 2 Convex sets, disked sets
{{sfn|Grothendieck|1973|pp=49-50}} 3 Convex cones and ordered vector spaces
{{sfn|Grothendieck|1973|pp=50-51}} 4 Correspondence between semi-norms and absorbing disks. Characterization of locally convex spaces
{{sfn|Grothendieck|1973|pp=52-53}} 5 Convex sets in TVS
{{sfn|Grothendieck|1973|pp=53-56}} 6 The Hahn-Banach theorem
{{sfn|Grothendieck|1973|pp=56-58}} 7 Separation of convex sets. Characterization of the closure of a convex set
{{sfn|Grothendieck|1973|pp=58-61}} 8 Dual system, weak topology
{{sfn|Grothendieck|1973|pp=61-64}} 9 Polarity
{{sfn|Grothendieck|1973|pp=64-66}} 10 The 𝒢-topologies on a dual
{{sfn|Grothendieck|1973|pp=66-68}} 11 The LCTVS as duals having 𝒢-topologies
{{sfn|Grothendieck|1973|pp=68-70}} 12 Mackey's theorem: general formulation. Bidual of an LCTVS
{{sfn|Grothendieck|1973|pp=70-73}} 13 Topologies compatible with a duality, The Mackey topology
{{sfn|Grothendieck|1973|pp=73-75}} 14 The completion of an LCTVS
{{sfn|Grothendieck|1973|pp=76-80}} 15 Duality for subspaces, quotients, products, projective limits
{{sfn|Grothendieck|1973|pp=80-86}} 16 The transpose of a linear mapping; characterization of

homomorphisms

{{sfn|Grothendieck|1973|pp=86-89}} 17 Summary and complementary results for normed

spaces

{{sfn|Grothendieck|1973|pp=89-98}} 18 Elementary properties of compactness and weak

compactness

{{sfn|Grothendieck|1973|pp=99-136}} 3 Spaces of linear mappings
{{sfn|Grothendieck|1973|pp=99-101}} 1 Generalities on the spaces of linear mappings
{{sfn|Grothendieck|1973|pp=102-106}} 2 Bounded sets in the spaces of linear
{{sfn|Grothendieck|1973|pp=106-110}} 3 Relationship between bounded sets and equicontinuous

sets. Barrelled spaces

{{sfn|Grothendieck|1973|pp=110-114}} 4 Bornological spaces
{{sfn|Grothendieck|1973|pp=114-122}} 5 Bilinear functions: Types of continuity. Continuity and separate

continuity

{{sfn|Grothendieck|1973|pp=122-126}} 6 Spaces of bilinear mappings. Definitions and notations
{{sfn|Grothendieck|1973|pp=126-131}} 7 Linear mappings from an LCTVS into certain function spaces. Mappings

into a space of continuous functions

{{sfn|Grothendieck|1973|pp=131-135}} 8 Differentiable vectorial functions
{{sfn|Grothendieck|1973|pp=136-185}} 4 Study of some special classes of spaces
{{sfn|Grothendieck|1973|pp=136-154}} 1 Part 1 Inductive limits, (LF) spaces
{{sfn|Grothendieck|1973|pp=136-138}} 1.1 Generalities
{{sfn|Grothendieck|1973|pp=139-140}} 1.2 Examples
{{sfn|Grothendieck|1973|pp=140-142}} 1.3 Strict inductive limits
{{sfn|Grothendieck|1973|pp=142-146}} 1.4 Direct sums
{{sfn|Grothendieck|1973|pp=146-150}} 1.5 (LF) spaces
{{sfn|Grothendieck|1973|pp=150-154}} 1.6 Products and direct sums of lines
{{sfn|Grothendieck|1973|pp=154-164}} 2 Part 2 Metrisable LCTVS
{{sfn|Grothendieck|1973|pp=154-156}} 2.1 Preliminaries
{{sfn|Grothendieck|1973|pp=156-158}} 2.2 Bounded subbsets of metrisable LCTVS
{{sfn|Grothendieck|1973|pp=158-164}} 2.3 Tc Topology on the Dual
{{sfn|Grothendieck|1973|pp=164-176}} 3 Part 3 (DF) spaces
{{sfn|Grothendieck|1973|pp=164-167}} 3.1 Generalities
{{sfn|Grothendieck|1973|pp=167-169}} 3.2 Bilinear mappings on the product of two (DF) spaces
{{sfn|Grothendieck|1973|pp=170-173}} 3.3 Stability properties
{{sfn|Grothendieck|1973|pp=173-176}} 3.4 Complementary results
{{sfn|Grothendieck|1973|pp=176-185}} 4 Part 4 Quasi-normable spaces and Schwartz spaces
{{sfn|Grothendieck|1973|pp=176-178}} 4.1 Definition of quasi-normable spaces
{{sfn|Grothendieck|1973|pp=178-179}} 4.2 Listing of strongly convergent sequences of linear forms on a subspace
{{sfn|Grothendieck|1973|pp=179-182}} 4.3 Quasi-normability and compactness
{{sfn|Grothendieck|1973|pp=182-185}} 4.4 Schwartz spaces
{{sfn|Grothendieck|1973|pp=186-245}} 5 Compactness in locally convex LCTVSs
{{sfn|Grothendieck|1973|pp=186-192}} 1 Part 1 The Krein-Milman theorem
{{sfn|Grothendieck|1973|pp=186-188}} 1.1 Extreme points
{{sfn|Grothendieck|1973|pp=188-192}} 1.2 Extreme generators
{{sfn|Grothendieck|1973|pp=193-205}} 2 Part 2 Theory of compact operators
{{sfn|Grothendieck|1973|pp=193-193}} 2.1 Generalities
{{sfn|Grothendieck|1973|pp=193-196}} 2.2 General theorems for finite dimension
{{sfn|Grothendieck|1973|pp=196-201}} 2.3 Generalities of the spectrum of an operator
{{sfn|Grothendieck|1973|pp=201-205}} 2.4 The Riesz theory of compact operators
{{sfn|Grothendieck|1973|pp=206-216}} 3 Part 3 General criteria compactness
{{sfn|Grothendieck|1973|pp=206-207}} 3.1 Smulian's theorem
{{sfn|Grothendieck|1973|pp=207-211}} 3.2 Eberlein's theorem
{{sfn|Grothendieck|1973|pp=211-213}} 3.3 Krein's theorem
{{sfn|Grothendieck|1973|pp=213-216}} 3.4 Supplementary exercises
{{sfn|Grothendieck|1973|pp=216-245}} 4 Part 4 Weak compactness in <1
{{sfn|Grothendieck|1973|pp=216-231}} 4.1 The Dunford-Pettis criterion and its first consequences
{{sfn|Grothendieck|1973|pp=231-240}} 4.2 Applications of the Dunford-Pettis criterion
{{sfn|Grothendieck|1973|pp=240-245}} 4.3 Supplementary exercises

References, Citations, Notes

[edit]
Markup Renders as
The Sun<ref group=note name=SunNote/> 
and Moon<ref group=note name=MoonNote/><ref name=Foot01/> 
are big.<ref group=note name=BigNote/><ref name=Foot02/><ref group=proof name=ProofThat/> 

==Notes==

{{reflist|group=note|refs=
<ref name=SunNote>Sun > Moon.</ref>
<ref name=MoonNote>Moon < Earth.</ref>
<ref name=BigNote>See {{cite book|author=Peterson|title=Astronomy|year=2005}}</ref>
}}

'''Proofs'''

{{reflist|group=proof|refs=
<ref name=ProofThat> as desired. <math>\blacksquare</math></ref>
}}

==Citations==

{{reflist|refs=
<ref name=Foot01>{{harvnb|Miller|2005|page=23}}</ref>
<ref name=Foot02>{{harvnb|Brown|2001|p=46}}</ref>
}}

==References==
{{refbegin}}
* {{cite book|author=Brown|title=The Moon|year=2001|publisher=Penguin}}
* {{cite book|author=Miller|title=The Sun|publisher=Oxford|year=2005}}
{{refend}}

The Sun[note 1] and Moon[note 2][1] are big.[note 3][2][proof 1]

Notes
  1. ^ Sun > Moon.
  2. ^ Moon < Earth.
  3. ^ See Peterson (2005). Astronomy.

Proofs

  1. ^ as desired.
Citations
  1. ^ Miller 2005, p. 23 harvnb error: multiple targets (2×): CITEREFMiller2005 (help)
  2. ^ Brown 2001, p. 46 harvnb error: multiple targets (3×): CITEREFBrown2001 (help)
References
  • Brown (2001). The Moon. Penguin.
  • Miller (2005). The Sun. Oxford.
  • NOTE: Do not use a section called "Bibliography"      - Use the section name: "References" instead.

Columns and indentation {{refbegin|26em|indent=yes}} and |author-mask=3 for ___

[edit]
Indentation and columns: {{refbegin|26em|indent=yes}}
Markup Renders as
==References with indentation==
{{refbegin|26em|indent=yes}}
* {{cite book|last=Brown|first=Adam|title=The Moon|year=2001|publisher=Penguin|location=Berlin|isbn=978-3-540-08662-8}}
* {{cite book|last=Brown|first=Adam|author-mask=3|title=Luna|year=2001|publisher=Penguin|location=Berlin|isbn=978-3-540-08662-8}}
* {{cite book|last=Miller|first=Bob|title=The Sun|year=2005|publisher=Oxford|location=Berlin|isbn=978-3-540-08662-8}}
* {{cite book|last=Patterson|first=Conner|title=The Earth|year=2006|publisher=Oxford|location=Berlin|isbn=978-3-540-08662-8}}
* {{cite book|last=Samuel|first=David|title=Mercury|year=2006|publisher=The Mercurian Times|location=Berlin|isbn=978-3-540-08662-8}}
* {{cite book|last=Samuel|first=David|author-mask=3|title=The Morning Star|year=2006|publisher=The Mercurian Times|location=Berlin|isbn=978-3-540-08662-8}}
* {{cite book|last=Teller|first=Emily|title=Venus|year=2006|publisher=The Venusian Times|location=Berlin|isbn=978-3-540-08662-8}}
* {{cite book|last=Turning|first=Francis|title=Mars|year=2006|publisher=The Martian Times|location=Mars|isbn=978-3-540-08662-8}}
* {{cite book|last=Turning|first=Francis|author-mask=3|title=Jupiter|year=2006|publisher=The Jovian Times|location=Jupiter|isbn=978-3-540-08662-8}}
* {{cite book|last=Turning|first=Francis|author-mask=3|title=Saturn|year=2006|publisher=The Saturnian Times|location=Saturn|isbn=978-3-540-08662-8}}
{{refend}}
References with indentation
Related pages