Jump to content

User:Ceulmad

From Wikipedia, the free encyclopedia

Roman Lukyanenko is an information systems scientist known for the concepts of use-agnostic data quality in citizen science[1][2] and crowdsourcing[3] and instance-based approach to conceptual modeling [4].

Dr. Lukyanenko is an associate professor at the McIntire School of Commerce, University of Virginia.[5] He conducts research on data management, information quality, conceptual modeling, and research methods (design validity and artificial intelligence in literature reviews).

Roman obtained PhD in information and operations management from Memorial University of Newfoundland. His doctoral dissertation titled "An Information Modeling Approach to Improve Quality of User-Generated Content"[6] received AIS Dissertation Award (best doctoral dissertation of 2014 in the field of information systems according to the Association for Information Systems).[7]

Roman’s research appeared in over 140 scientific journals and conferences[8], including Nature, MIS Quarterly, Information Systems Research, ACM Computing Surveys. His 2022 "viral"[9] article on using artificial intelligence in literature reviews become the most read article of the Journal of Information Technology[10] and the winner of the best paper award of the journal won best paper award.[11] The 2019 paper on quality of crowdsourced data received the Best Paper Award at MIS Quarterly.[12] Roman Lukyanenko received major awards, such as INFORMS Design Science Award, Governor General of Canada Gold Medal, Hebert A. Simon Design Science Award at DESRIST 2020.

MAGIC of Data Management

[edit]

Roman Lukyanenko developed MAGIC of Data Management[13] Framework as a way to simplify the understanding of the value and activities of data management. The MAGIC framework reduced complex activities of data management into five tasks: Modeling, Acquisition, Governance, Infrastructuring, and Consumption support. Modeling involves representing data and its relationships to ensure effective system design. Acquisition focuses on collecting and integrating data from various sources while maintaining quality. Governance establishes policies and controls to ensure security, compliance, and ethical use. Infrastructuring involves building the physical and digital infrastructure needed to store and manage data efficiently. Consumption support ensures that data is accessible, usable, and optimized for decision-making and analysis, and underscores that the essence of data management is in supporting decision making and actions with data.

Select Publications

[edit]

Larsen, K., Lukyanenko, R., Muller R., Storey V., Parsons, J., Vandermeer D., Hovorka, D. (Accepted, Dec 2024). VALIDITY IN DESIGN SCIENCE, Management Information Systems Quarterly (MISQ).[14]

Storey V., Zhao L., Wei Thoo Y., Lukyanenko R., (2025), Generative Artificial Intelligence: Evolving Technology, Growing Societal Impact, and Opportunities for Information Systems Research, Information Systems Frontiers.[15]

Dissanayake, I., Nerur, S. P., Lukyanenko, R., & Modaresnezhad, M. (2025). The State-of-the-Art of Crowdsourcing Systems: A Computational Literature Review and Future Research Agenda Using a Text Analytics Approach. Information & Management, 104098.[16]

Lukyanenko R., Samuel B.M., Parsons J., Storey V., Pastor O., and Jabbari A. (2024). Universal Conceptual Modeling: Principles, Benefits, and an Agenda for Conceptual Modeling Research. In Software and Systems Modeling (23). pp. 1077–1100.[17]

Hevner, A., Parsons, J., Brendel, A. B., Lukyanenko, R., Tiefenbeck, V., Tremblay, M. C., & vom Brocke, J. (2024). Transparency in Design Science Research. Decision Support Systems (DSS). 182(1):114236.[18]

Wiersma Y., Clenche T., Erbland M., Wachinger G., Lukyanenko R., Parsons J. (2024) “Advantages and Drawbacks of Instance-Based, Use-Agnostic Citizen Science Data Collection: A Case Study" Citizen Science: Theory and Practice. 9 (1), 1-13pp.[19]

Hvalshagen M., Lukyanenko R., and Samuel B. (2023) “Empowering Users with Narratives: Examining the Efficacy of Narratives for Understanding Data-Oriented Conceptual Modeling”. Information Systems Research (ISR). 34(3), pp. 890–909.[20]

Storey V. C., Lukyanenko R., and Castellanos A. (2023), “Conceptual Modeling: Topics, Themes, and Technology Trends.” ACM Computing Surveys. 55 (14), pp. 1-38.[21]

Wagner G., Lukyanenko R., and Paré G. (2022). Artificial intelligence and the conduct of literature reviews, Journal of Information Technology (JIT), 37(2), 209–226.[22]

Recker, J., Lukyanenko, R., Jabbari, M. A., Samuel, B. M., and Castellanos, A. (2021). “From Representation to Mediation: A New Agenda for Conceptual Modeling Research in A Digital World,” Management Information Systems Quarterly (MISQ). 45 (1), pp. 269-300.[23]

Lukyanenko, R., Parsons, J., Wiersma, Y., and Maddah, M. (2019). Expecting the Unexpected: Effects of Data Collection Design Choices on the Quality of Crowdsourced User-generated Content. Management Information Systems Quarterly (MISQ). 43(2), pp. 623-647.[3]

Lukyanenko, R., Parsons J. and Samuel B. (2019). Representing Instances: The Case for Reengineering Conceptual Modeling Grammars. European Journal of Information Systems (EJIS). 28 (1), pp. 68-90.[4]

Lukyanenko, R., Parsons, J., and Wiersma, Y. (2016). Emerging problems of quality in citizen science. Conservation Biology. 30 (3), pp. 447–449.[24]

Lukyanenko, R., Parsons, J., and Wiersma, Y. (2014). The IQ of the Crowd: Understanding and Improving Information Quality in Structured User-generated Content. Information Systems Research (ISR). 25 (4) pp. 669-689.[2]

Parsons, J., Lukyanenko, R., and Wiersma, Y. (2011). Easier citizen science is better. Nature, 471 (7336), pp. 37-37.[25]

References

[edit]
  1. ^ Parsons, Jeffrey; Lukyanenko, Roman; Wiersma, Yolanda (2011-03). "Easier citizen science is better". Nature. 471 (7336): 37–37. doi:10.1038/471037a. ISSN 1476-4687. {{cite journal}}: Check date values in: |date= (help)
  2. ^ a b Lukyanenko, Roman; Parsons, Jeffrey; Wiersma, Yolanda F. (2014-12). "The IQ of the Crowd: Understanding and Improving Information Quality in Structured User-Generated Content". Information Systems Research. 25 (4): 669–689. doi:10.1287/isre.2014.0537. ISSN 1047-7047. {{cite journal}}: Check date values in: |date= (help)
  3. ^ a b Lukyanenko, Roman; Parsons, Jeffrey; Wiersma, Yolanda F.; Maddah, Mahed (2019-06-01). "Expecting the unexpected: effects of data collection design choices on the quality of crowdsourced user-generated content". MIS Q. 43 (2): 623–648. doi:10.25300/MISQ/2019/14439. ISSN 0276-7783.
  4. ^ a b Lukyanenko, Roman; Parsons, Jeffrey; Samuel, Binny M. (2019-01-02). "Representing instances: the case for reengineering conceptual modelling grammars". European Journal of Information Systems. 28 (1): 68–90. doi:10.1080/0960085X.2018.1488567. ISSN 0960-085X.
  5. ^ "University of Virginia McIntire — Roman Lukyanenko". University of Virginia McIntire School of Commerce. Retrieved 2025-02-18.
  6. ^ Lukyanenko, Roman (August 2014). An information modeling approach to improve quality of user-generated content (doctoral thesis). Memorial University of Newfoundland.
  7. ^ "Dissertation Competition". archives.aisconferences.org. Retrieved 2025-02-18.
  8. ^ "Roman Lukyanenko". scholar.google.com. Retrieved 2025-02-19.
  9. ^ "Can AI Write Scientific Review Articles? - IEEE Spectrum". spectrum.ieee.org. Retrieved 2025-02-19.
  10. ^ "Journal of Information Technology". Sage Journals. 2025-01-28. Retrieved 2025-02-19.
  11. ^ "Sage Journals: Discover world-class research". Sage Journals. Retrieved 2025-02-19.
  12. ^ "AIS Best Information Systems Publications Awards – History of AIS". Retrieved 2025-02-18.
  13. ^ Lukyanenko, Roman (2024-08-01), The MAGIC of Data Management: Understanding the Value and Activities of Data Management, arXiv, doi:10.48550/arXiv.2408.07607, arXiv:2408.07607, retrieved 2025-02-18
  14. ^ Lukyanenko, Roman; Larsen, Kai; Parsons, Jeff (2025-02-09). "Validity in Design Science". doi:10.18130/74GZ-DG46. {{cite journal}}: Cite journal requires |journal= (help)
  15. ^ Lukyanenko, Roman (2025-02-18). "Generative Artificial Intelligence: Evolving Technology, Growing Societal Impact, and Opportunities for Information Systems Research". {{cite journal}}: Cite journal requires |journal= (help)
  16. ^ Dissanayake, Indika; Nerur, Sridhar P.; Lukyanenko, Roman; Modaresnezhad, Minoo (2025-03-01). "The state-of-the-art of crowdsourcing systems: A computational literature review and future research agenda using a text analytics approach". Information & Management. 62 (2): 104098. doi:10.1016/j.im.2025.104098. ISSN 0378-7206.
  17. ^ Lukyanenko, Roman; Samuel, Binny M.; Parsons, Jeffrey; Storey, Veda C.; Pastor, Oscar; Jabbari, Araz (2024-10-01). "Universal conceptual modeling: principles, benefits, and an agenda for conceptual modeling research". Software and Systems Modeling. 23 (5): 1077–1100. doi:10.1007/s10270-024-01207-8. ISSN 1619-1374.
  18. ^ Hevner, Alan R.; Parsons, Jeffrey; Brendel, Alfred Benedikt; Lukyanenko, Roman; Tiefenbeck, Verena; Tremblay, Monica Chiarini; vom Brocke, Jan (2024-07-01). "Transparency in design science research". Decision Support Systems. 182: 114236. doi:10.1016/j.dss.2024.114236. ISSN 0167-9236.
  19. ^ Wiersma, Yolanda F.; Clenche, Tom; Erbland, Mardon; Wachinger, Gisela; Lukyanenko, Roman; Parsons, Jeffrey (2024-02-22). "Advantages and Drawbacks of Open-Ended, Use-Agnostic Citizen Science Data Collection: A Case Study". Citizen Science: Theory and Practice. 9 (1). doi:10.5334/cstp.676. ISSN 2057-4991.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  20. ^ Hvalshagen, Merete; Lukyanenko, Roman; Samuel, Binny M. (September 2023). "Empowering Users with Narratives: Examining the Efficacy of Narratives for Understanding Data-Oriented Conceptual Models". Information Systems Research. 34 (3): 890–909. doi:10.1287/isre.2022.1141. ISSN 1047-7047.
  21. ^ Storey, Veda C.; Lukyanenko, Roman; Castellanos, Arturo (2023-07-17). "Conceptual Modeling: Topics, Themes, and Technology Trends". ACM Comput. Surv. 55 (14s): 317:1–317:38. doi:10.1145/3589338. ISSN 0360-0300.
  22. ^ Wagner, Gerit; Lukyanenko, Roman; Paré, Guy (2022-06-01). "Artificial intelligence and the conduct of literature reviews". Journal of Information Technology. 37 (2): 209–226. doi:10.1177/02683962211048201. ISSN 0268-3962.
  23. ^ Recker, Jan; Lukyanenko, Roman; Sabegh, Mohammad Ali Jabbari; Samuel, Binny; Castellanos, Arturo (2021-03-01). "From Representation to Mediation: A New Agenda for Conceptual Modeling Research in a Digital World". Management Information Systems Quarterly. 45 (1): 269–300. ISSN 0276-7783.
  24. ^ Lukyanenko, Roman; Parsons, Jeffrey; Wiersma, Yolanda F. (2016). "Emerging problems of data quality in citizen science". Conservation Biology. 30 (3): 447–449. doi:10.1111/cobi.12706. ISSN 1523-1739.
  25. ^ Parsons, Jeffrey; Lukyanenko, Roman; Wiersma, Yolanda (March 2011). "Easier citizen science is better". Nature. 471 (7336): 37–37. doi:10.1038/471037a. ISSN 1476-4687.