Jump to content

User:Adam Harangozó (NIHR WiR)/sandbox/eczema

From Wikipedia, the free encyclopedia
Atopic dermatitis
Other namesAtopic eczema, infantile eczema, prurigo Besnier, allergic eczema, neurodermatitis[1]
Atopic dermatitis of the inside crease of the elbow
SpecialtyDermatology, Clinical Immunology and Allergy
SymptomsItchy, red, swollen, cracked skin[2]
ComplicationsSkin infections, hay fever, asthma[2]
Usual onsetChildhood[2][3]
CausesUnknown[2][3]
Risk factorsFamily history, living in a city, dry climate[2]
Diagnostic methodBased on symptoms after ruling out other possible causes[2][3]
Differential diagnosisContact dermatitis, psoriasis, seborrheic dermatitis[3]
TreatmentAvoiding things that worsen the condition, daily bathing followed by moisturising cream, steroid creams for flares[3] Humidifier
Frequency~20% at some time[2][4]

Atopic dermatitis (AD), also known as atopic eczema, is a long-term type of inflammation of the skin (dermatitis).[2] It results in itchy, red, swollen, and cracked skin.[2] Clear fluid may come from the affected areas, which can thicken over time.[2] AD is sometimes simply called as eczema, a term that also refers to a larger group of skin conditions.[2][5]

Atopic dermatitis affects about 20% of people at some point in their lives.[2][4] It is more common in younger children.[3] Females are slightly more affected than males.[6] Many people outgrow the condition.[3]

While the condition may occur at any age, it typically starts in childhood, with changing severity over the years.[2][3] In children under one year of age, the face and limbs and much of the body may be affected.[3] As children get older, the areas on the insides of the knees and folds of the elbows and around the neck are most commonly affected.[3] In adults, the hands and feet are commonly affected.[3] Scratching the affected areas worsens the eczema and increases the risk of skin infections.[2] Many people with atopic dermatitis develop hay fever or asthma.[2]

The cause is unknown but believed to involve genetics, immune system dysfunction, environmental exposures, and difficulties with the permeability of the skin.[2][3] If one identical twin is affected, the other has an 85% chance of having the condition.[7] Those who live in cities and dry climates are more commonly affected.[2] Exposure to certain chemicals or frequent hand washing makes symptoms worse.[2] While emotional stress may make the symptoms worse, it is not a cause.[2] The disorder is not contagious.[2] A diagnosis is typically based on the signs, symptoms and family history.[3]

Treatment involves avoiding things that make the condition worse, enhancing the skin barrier through skin care and treating the underlying skin inflammation. Moisturising creams are used to make the skin less dry and prevent AD flare-ups. Anti-inflammatory corticosteroid creams are used to control flares-ups.[3] Creams based on calcineurin inhibitors (tacrolimus or pimecrolimus) may also be used to control flares if other measures are not effective.[2][8] Certain antihistamine pills might help with itchiness.[3] Things that commonly make it worse include house dust mite, stress and seasonal factors.[9] Phototherapy may be useful in some people.[2] Antibiotics (either by mouth or topically) are usually not helpful unless there is secondary bacterial infection or the person is unwell.[10] Dietary exclusion does not benefit most people and it is only needed if food allergies are suspected.[11] More severe AD cases may need systemic medicines such as cyclosporin, methotrexate, dupilumab or baricitinib.

Other names of the condition include "infantile eczema", "flexural eczema", "prurigo Besnier", "allergic eczema", and "neurodermatitis".[1]

Signs and symptoms

[edit]
The pattern of atopic eczema varies with age.

Symptoms refer to the sensations that people with AD feel, whereas signs refers to a description of the visible changes that result from AD.

The main symptom of AD is itching which can be intense. Some people experience burning or soreness or pain.[2]

People with AD often have a generally dry skin that can look greyish in people with darker skin tones of colour. Areas of AD are not well defined, and they are typically inflamed (red in a light coloured skin or purple or dark brown in people with dark skin of colour).[12] Surface changes include:

  • scaling cracking (fissures)
  • swelling (oedema)
  • scratch marks (excoriation)
  • bumpiness (papulation)
  • oozing of clear fluid
  • thickening of the skin (lichenification) where the AD has been present for a long time.[2]

Eczema often starts on the cheeks and outer limbs and body in infants and frequently settles in the folds of the skin such as behind the knees, folds of the elbows, around the neck, wrists and under the buttock folds as the child grows.[13] Any part of the body can be affected by AD.[14]

AD commonly affects the eyelids, where an extra prominent crease can form under the eyelid due to skin swelling known as Dennie-Morgan infraorbital folds.[15] Cracks can form under the ears which can be painful (infra-auricular fissure).[16][17]

The inflammation from AD often leaves “footprints” known as postinflammatory pigmentation that can be lighter than the normal skin or darker. These marks are not scars and eventually go back to normal over a period of months providing the underlying AD is treated effectively.[18]

People with AD often have dry and scaly skin that spans the entire body, except perhaps the diaper area, and intensely itchy red, splotchy, raised lesions to form in the bends of the arms or legs, face, and neck.[19][20][21][22][23]

Causes

[edit]

The cause of AD is not known, although some evidence indicates genetic, environmental, and immunologic factors.[24]

Climate

[edit]

Low humidity, and low temperature increase the prevalence and risk of flares in patients with atopic dermatitis.[25]

Genetics

[edit]

Many people with AD have a family history or a personal history of atopy. Atopy is a term used to describe individuals who produce substantial amounts of IgE. Such individuals have an increased tendency to develop asthma, hay fever, eczema, urticaria and allergic rhinitis.[19][20] Up to 80% of people with atopic dermatitis have elevated total or allergen-specific IgE levels.[26]

About 30% of people with atopic dermatitis have mutations in the gene for the production of filaggrin (FLG), which increase the risk for early onset of atopic dermatitis and developing asthma.[27][28]

Hygiene hypothesis

[edit]

According to the hygiene hypothesis, early childhood exposure to certain microorganisms (such as gut flora and helminth parasites) protects against allergic diseases by contributing to the development of the immune system.[29] This exposure is limited in a modern "sanitary" environment, and the incorrectly developed immune system is prone to develop allergies to harmless substances.

Some support exists for this hypothesis with respect to AD.[30] Those exposed to dogs while growing up have a lower risk of atopic dermatitis.[31] Also, epidemiological studies support a protective role for helminths against AD.[32] Likewise, children with poor hygiene are at a lower risk for developing AD, as are children who drink unpasteurized milk.[32]

Allergens

[edit]

In a small percentage of cases, atopic dermatitis is caused by sensitization to foods[33] such as milk, but there is growing consensus that food allergy most likely arises as a result of skin barrier dysfunction resulting from AD, rather than food allergy causing the skin problems.[34] Atopic dermatitis sometimes appears associated with coeliac disease and non-coeliac gluten sensitivity. Because a gluten-free diet (GFD) improves symptoms in these cases, gluten seems to be the cause of AD in these cases.[35][36] A diet high in fruits seems to have a protective effect against AD, whereas the opposite seems true for fast foods.[32]

Also, exposure to allergens, either from food or the environment, can exacerbate existing atopic dermatitis.[37] Exposure to dust mites, for example, is believed to contribute to one's risk of developing AD.[38]

Role of Staphylococcus aureus

[edit]

Colonization of the skin by the bacterium S. aureus is extremely prevalent in those with atopic dermatitis.[39] Abnormalities in the skin barrier of persons with AD are exploited by S. aureus to trigger cytokine expression, thus aggravating the condition.[40] There is insufficient evidence for the effectiveness of anti-staphylococcal treatments for treating S. aureus in infected or uninfected eczema.[41]

Hard water

[edit]

The prevalence of atopic dermatitis in children may be linked to the level of calcium carbonate or "hardness" of household water, when used to drink.[42][43] Living in areas with hard water may also play a part in the development of AD in early life. However, when AD is already established, using water softeners at home does not reduce the severity of the symptoms.[43]

Pathophysiology

[edit]

Excessive type 2 inflammation underlies the pathophysiology of atopic dermatitis.[44][45]

Disruption of the epidermal barrier is thought to play an integral role in the pathogenesis of AD.[26] Disruptions of the epidermal barrier allows allergens to penetrate the epidermis to deeper layers of the skin. This leads to activation of epidermal inflammatory dendritic and innate lymphoid cells which subsequently attracts Th2 CD4+ helper T cells to the skin.[26] This dysregulated Th2 inflammatory response is thought to lead to the eczematous lesions.[26] The Th2 helper T cells become activated, leading to the release of inflammatory cytokines including IL-4, IL-13 and IL-31 which activate downstream Janus kinase (Jak) pathways. The active Jak pathways lead to inflammation and downstream activation of plasma cells and B lymphocytes which release antigen specific IgE contributing to further inflammation.[26] Other CD4+ helper T-cell pathways thought to be involved in atopic dermatitis inflammation include the Th1, Th17, and Th22 pathways.[26] Some specific CD4+ helper T-cell inflammatory pathways are more commonly activated in specific ethnic groups with AD (for example, the Th-2 and Th-17 pathways are commonly activated in Asian people) possibly explaining the differences in phenotypic presentation of atopic dermatitis in specific populations.[26]

Mutations in the filaggrin gene, FLG, also cause impairment in the skin barrier that contributes to the pathogenesis of AD.[26] Filaggrin is produced by epidermal skin cells (keratinocytes) in the horny layer of the epidermis. Filaggrin stimulates skin cells to release moisturizing factors and lipid matrix material, which cause adhesion of adjacent keratinocytes and contributes to the skin barrier.[26] A loss-of-function mutation of filaggrin causes loss of this lipid matrix and external moisturizing factors, subsequently leading to disruption of the skin barrier. The disrupted skin barrier leads to transdermal water loss (leading to the xerosis or dry skin commonly seen in AD) and antigen and allergen penetration of the epidermal layer.[26] Filaggrin mutations are also associated with a decrease in natural antimicrobial peptides found on the skin; subsequently leading to disruption of skin flora and bacterial overgrowth (commonly Staphylococcus aureus overgrowth or colonization).[26]

Atopic dermatitis is also associated with the release of pruritogens (molecules that stimulate pruritus or itching) in the skin.[26] Keratinocytes, mast cells, eosinophils and T-cells release pruritogens in the skin; leading to activation of Aδ fibers and Group C nerve fibers in the epidermis and dermis contributing to sensations of pruritus and pain.[26] The pruritogens include the Th2 cytokines IL-4, IL-13, IL-31, histamine, and various neuropeptides.[26] Mechanical stimulation from scratching lesions can also lead to the release of pruritogens contributing to the itch-scratch cycle whereby there is increased pruritus or itch after scratching a lesion.[26] Chronic scratching of lesions can cause thickening or lichenification of the skin or prurigo nodularis (generalized nodules that are severely itchy).[26]

Diagnosis

[edit]

AD is typically diagnosed clinically, meaning it is based on signs and symptoms alone, without special testing.[46] Several different criteria developed for research have also been validated to aid in diagnosis.[47] Of these, the UK Diagnostic Criteria, based on the work of Hanifin and Rajka, has been the most widely validated.[47][48]

UK diagnostic criteria[48]
People must have itchy skin, or evidence of rubbing or scratching, plus three or more of:
Skin creases are involved - flexural dermatitis of fronts of ankles, antecubital fossae, popliteal fossae, skin around eyes, or neck, (or cheeks for children under 10)
History of asthma or allergic rhinitis (or family history of these conditions if patient is a child ≤4 years old)
Symptoms began before age 2 (can only be applied to patients ≥4 years old)
History of dry skin (within the past year)
Dermatitis is visible on flexural surfaces (patients ≥age 4) or on the cheeks, forehead, and extensor surfaces (patients<age 4)

Other diseases that must be excluded before making a diagnosis include contact dermatitis, psoriasis, and seborrheic dermatitis.[3]

Treatments

[edit]

No cure for AD is known, although treatments may reduce the severity and frequency of flares.[19] The most commonly used topical treatments for AD are topical costicosteroids (to get control of flare-ups) and moisturisers (emollients) to help keep control.

Moisturisers

[edit]

Daily basic care is intended to stabilize the barrier function of the skin to mitigate its sensitivity to irritation and penetration of allergens. Affected persons often report that improvement of skin hydration parallels with improvement in AD symptoms. Moisturisers (or emollients) can improve skin comfort and may reduce disease flares.[49] They can be used as leave-on treatments, bath additives or soap substitutes. There are many different products but the majority of leave-on treatments (least to most greasy) are lotions, creams, gels or ointments. None of the different types of moisturisers are more effective than the others[50] so people need to choose one or more products that suit them, according to their age, body site effected, climate/season and personal preference.[51]

There is no evidence that the additional use of emollient bath additives is beneficial.[52]

Medication

[edit]

Topical

[edit]

Corticosteroids applied directly on skin (topical) have proven effective in managing atopic dermatitis.[19][20][53] Newer (second generation) corticosteroids, such as fluticasone propionate and mometasone furoate, are more effective and safer than older ones. Strong and moderate corticosteroids work better than weaker ones. They are also generally safe when used in intermittent bursts to treat AD flare-ups. Applying once daily is as effective as twice or more daily application.[53]

If topical corticosteroids and moisturisers fail, short-term treatment with topical calcineurin inhibitors such as tacrolimus or pimecrolimus may be tried. Both tacrolimus and pimecrolimus are effective and safe to use in AD.[54][55] Crisaborole, an inhibitor of PDE-4, is also effective and safe as a topical treatment for mild-to-moderate AD.[56][57]

Systemic

[edit]

Oral medications used for AD include systemic immunosuppressants such as ciclosporin, methotrexate, interferon gamma-1b, mycophenolate mofetil, and azathioprine.[19][58] Antidepressants and naltrexone may be used to control pruritus (itchiness).[59] Leukotriene inhibitors such as montelukast are of unclear benefit as of 2018.[60][61]

In 2017, the monoclonal antibody(mAb) dupilumab under the trade name Dupixent was approved to treat moderate-to-severe eczema.[62] In 2021, an additional monoclonal antibody, tralokinumab, was approved in the EU & UK with the trade name Adtralza then later in the US as Adbry for similarly severe cases.[63][64] As of 2023, another monoclonal antibody treatment, lebrikizumab, is awaiting approval in the US and Europe.[65][66]

Some JAK inhibitors such as abrocitinib, trade name Cibinquo,[67] and upadacitinib, trade name Rinvoq,[68] have been approved in the US for the treatment of moderate-to-severe eczema as of January 2022.

Allergen immunotherapy may be effective in relieving symptoms of AD but it also comes with an increased risk of adverse events.[69] This treatment consists of a series of injections or drops under the tongue of a solution containing the allergen.[70]

Antibiotics, either by mouth or applied topically, are commonly used to target overgrowth of S. aureus in the skin of people with AD, but there is insufficient evidence for the effectiveness of anti-staphylococcal treatments for treating S. aureus in infected or uninfected eczema.[41]

Diet

[edit]

The role of vitamin D on atopic dermatitis is not clear, but vitamin D supplementation may improve its symptoms.[71][72][73]

There is no clear benefit for pregnant mothers taking omega 3 long-chain polyunsaturated fatty acid (LCPUFA) in preventing the development of AD in their child.[74][75]

Several probiotics seem to have a positive effect, with a roughly 20% reduction in the rate of AD.[76][77][78] Probiotics containing multiple strains of bacteria seem to work the best.[79]

In people with celiac disease or nonceliac gluten sensitivity, a gluten-free diet improves their symptoms and prevents the occurrence of new outbreaks.[35][36]

Use of blood specific IgE or skin prick tests to guide dietary exclusions with the aim of improving disease severity or control is controversial. Clinicians vary in their use of these tests for this purpose and there are very limited evidence of any benefit.[80]

Lifestyle

[edit]

Health professionals often recommend that people with AD bathe regularly in lukewarm baths, especially in salt water, to moisten their skin.[20][81] Dilute bleach baths may be helpful for people with moderate and severe eczema.[82]

Avoiding woolen clothing or scratchy fibres is usually recommended for people with AD as they can trigger a flare.[83][84]

Self-management

[edit]

Treatment regimens can be confusing and written action plans may support people to know what treatments to use where and when.[85]

A website supporting self-management has been shown to improve AD symptoms for parents, children, adolescents and young adults.[86]

Light

[edit]

Phototherapic treatment involves exposure to broad- or narrow-band ultraviolet (UV) light. UV radiation exposure has been found to have a localized immunomodulatory effect on affected tissues and may be used to decrease the severity and frequency of flares.[87][88] Among the different types of phototherapies only narrowband (NB) ultraviolet B (UVB) exposure might help with the severity of AD and ease itching.[89] However, UV radiation has also been implicated in various types of skin cancer, and thus UV treatment is not without risk.[90] UV phototherapy is not indicated in young adults and children due to this risk of skin cancer with prolonged use or exposure.[26]

Alternative medicine

[edit]

While several Chinese herbal medicines are intended for treating atopic eczema, no conclusive evidence shows that these treatments, taken by mouth or applied topically, reduce the severity of eczema in children or adults.[91]

Epidemiology

[edit]

Since the beginning of the 20th century, many inflammatory skin disorders have become more common; AD is a classic example of such a disease. It now affects 15–30% of children and 2–10% of adults in developed countries, and in the United States has nearly tripled in the past 30–40 years.[20][92] Over 15 million American adults and children have AD.[93]

Society and culture

[edit]

Conspiracy theories

[edit]

A number of false and conspiratorial claims about AD have emerged on the internet and have been amplified by social media. These conspiracy theories include, among others, claims that AD is caused by 5G, formaldehyde in food, vaccines, and topical steroids. Various unproven theories also claim that vegan diets, apple cider vinegar, calendula, and witch hazel can cure AD and that air purifiers reduce the risk of developing AD.[94]

Research

[edit]

Evidence suggests that IL-4 is central in the pathogenesis of AD.[95] Therefore, a rationale exists for targeting IL-4 with IL-4 inhibitors.[96] People with atopic dermatitis are more likely to have Staphylococcus aureus living on them.[97] The role this plays in pathogenesis is yet to be determined.

See also

[edit]

References

[edit]
  1. ^ a b Williams HC (October 2000). "Epidemiology of atopic dermatitis". Clinical and Experimental Dermatology. 25 (7). Cambridge University Press: 522–529. doi:10.1046/j.1365-2230.2000.00698.x. ISBN 9780521570756. PMID 11122223. S2CID 31546363. Archived from the original on 2015-06-19.
  2. ^ a b c d e f g h i j k l m n o p q r s t u v w x "Handout on Health: Atopic Dermatitis (A type of eczema)". National Institute of Arthritis and Musculoskeletal and Skin Diseases. May 2013. Archived from the original on 30 May 2015. Retrieved 19 June 2015.
  3. ^ a b c d e f g h i j k l m n o p Tollefson MM, Bruckner AL (December 2014). "Atopic dermatitis: skin-directed management". Pediatrics. 134 (6): e1735–44. doi:10.1542/peds.2014-2812. PMID 25422009.
  4. ^ a b Thomsen SF (2014). "Atopic dermatitis: natural history, diagnosis, and treatment". ISRN Allergy. 2014: 354250. doi:10.1155/2014/354250. PMC 4004110. PMID 25006501.
  5. ^ Johansson, S.G.O; Bieber, Thomas; Dahl, Ronald; Friedmann, Peter S; Lanier, Bobby Q; Lockey, Richard F; Motala, Cassim; Ortega Martell, Jose A; Platts-Mills, Thomas A.E; Ring, Johannes (May 2004). "Revised nomenclature for allergy for global use: Report of the Nomenclature Review Committee of the World Allergy Organization, October 2003". Journal of Allergy and Clinical Immunology. 113 (5): 832–836. doi:10.1016/j.jaci.2003.12.591.
  6. ^ "Atopic Dermatitis". National Institute of Arthritis and Musculoskeletal and Skin Diseases. September 2019. Retrieved 29 August 2022.
  7. ^ Williams H (2009). Evidence-Based Dermatology. John Wiley & Sons. p. 128. ISBN 9781444300178. Archived from the original on 2017-09-08.
  8. ^ Carr WW (August 2013). "Topical calcineurin inhibitors for atopic dermatitis: review and treatment recommendations". Paediatric Drugs. 15 (4): 303–10. doi:10.1007/s40272-013-0013-9. PMC 3715696. PMID 23549982.
  9. ^ Langan, S.M.; Williams, H.C. (1 September 2006). "What causes worsening of eczema? A systematic review". British Journal of Dermatology. 155 (3): 504–514. doi:10.1111/j.1365-2133.2006.07381.x.
  10. ^ Ong, Peck Y.; Boguniewicz, Juri; Chu, Derek K. (2023-01-22). "Skin Antiseptics for Atopic Dermatitis: Dissecting Facts From Fiction". The Journal of Allergy and Clinical Immunology: In Practice. 0 (0). doi:10.1016/j.jaip.2023.01.012. ISSN 2213-2198. PMID 36702247.
  11. ^ Oykhman, Paul; Dookie, Jared; Al-Rammahy, Husam; Benedetto, Anna de; Asiniwasis, Rachel N.; LeBovidge, Jennifer; Wang, Julie; Ong, Peck Y.; Lio, Peter; Gutierrez, Alvin; Capozza, Korey; Martin, Stephen A.; Frazier, Winfred; Wheeler, Kathryn; Boguniewicz, Mark (2022-10-01). "Dietary Elimination for the Treatment of Atopic Dermatitis: A Systematic Review and Meta-Analysis". The Journal of Allergy and Clinical Immunology: In Practice. 10 (10): 2657–2666.e8. doi:10.1016/j.jaip.2022.06.044. ISSN 2213-2198. PMID 35987995.
  12. ^ Kaufman, Bridget P.; Guttman-Yassky, Emma; Alexis, Andrew F. (19 February 2018). "Atopic dermatitis in diverse racial and ethnic groups-Variations in epidemiology, genetics, clinical presentation and treatment". Experimental Dermatology. 27 (4): 340–357. doi:10.1111/exd.13514.
  13. ^ "Atopic dermatitis". Rook's Textbook of Dermatology. Arthur Rook, Tony, FRCP Burns (8th ed.). Chichester, UK: Wiley-Blackwell. 2010. ISBN 978-1-4443-1764-0. OCLC 605909001.{{cite book}}: CS1 maint: others (link)
  14. ^ Friedmann, P. S.; Holden, C. A. (2004-01-01), Burns, Tony; Breathnach, Stephen; Cox, Neil; Griffiths, Christopher (eds.), "Atopic Dermatitis", Rook's Textbook of Dermatology, Malden, Massachusetts, USA: Blackwell Publishing, Inc., pp. 755–786, doi:10.1002/9780470750520.ch18, ISBN 978-0-470-75052-0, retrieved 2023-04-06
  15. ^ Kwatra SG, Tey HL, Ali SM, Dabade T, Chan YH, Yosipovitch G (June 2012). "The infra-auricular fissure: a bedside marker of disease severity in patients with atopic dermatitis". Journal of the American Academy of Dermatology. 66 (6): 1009–10. doi:10.1016/j.jaad.2011.10.031. PMID 22583715. Retrieved 2016-03-20.
  16. ^ Langan, Sinéad M; Irvine, Alan D; Weidinger, Stephan (2020-08). "Atopic dermatitis". The Lancet. 396 (10247): 345–360. doi:10.1016/S0140-6736(20)31286-1. {{cite journal}}: Check date values in: |date= (help)
  17. ^ Kwatra, Shawn G.; Tey, Hong Liang; Ali, Saba M.; Dabade, Tushar; Chan, Yiong-Huak; Yosipovitch, Gil (2012-06). "The infra-auricular fissure: A bedside marker of disease severity in patients with atopic dermatitis". Journal of the American Academy of Dermatology. 66 (6): 1009–1010. doi:10.1016/j.jaad.2011.10.031. {{cite journal}}: Check date values in: |date= (help)
  18. ^ Lambert, Alice (2021-02-09). "Skin pigmentation and eczema". National Eczema Society. Retrieved 2023-04-06.
  19. ^ a b c d e Berke R, Singh A, Guralnick M (July 2012). "Atopic dermatitis: an overview" (PDF). American Family Physician. 86 (1): 35–42. PMID 22962911. Archived (PDF) from the original on 2015-09-06.
  20. ^ a b c d e Kim BS (21 January 2014). Fritsch P, Vinson RP, Perry V, Quirk CM, James WD (eds.). "Atopic Dermatitis". Medscape Reference. WebMD. Archived from the original on 10 February 2014. Retrieved 3 March 2014.
  21. ^ Brehler R (2009). "Atopic Dermatitis". In Lang, F (ed.). Encyclopedia of molecular mechanisms of diseases. Berlin: Springer. ISBN 978-3-540-67136-7.
  22. ^ Baron SE, Cohen SN, Archer CB (May 2012). "Guidance on the diagnosis and clinical management of atopic eczema". Clinical and Experimental Dermatology. 37 (Suppl 1): 7–12. doi:10.1111/j.1365-2230.2012.04336.x. PMID 22486763. S2CID 28538214.
  23. ^ Schmitt J, Langan S, Deckert S, Svensson A, von Kobyletzki L, Thomas K, Spuls P (December 2013). "Assessment of clinical signs of atopic dermatitis: a systematic review and recommendation". The Journal of Allergy and Clinical Immunology. 132 (6): 1337–47. doi:10.1016/j.jaci.2013.07.008. PMID 24035157.
  24. ^ Grey K, Maguiness S (August 2016). "Atopic Dermatitis: Update for Pediatricians". Pediatric Annals (Review). 45 (8): e280–6. doi:10.3928/19382359-20160720-05. PMID 27517355.
  25. ^ Engebretsen KA, Johansen JD, Kezic S, Linneberg A, Thyssen JP (February 2016). "The effect of environmental humidity and temperature on skin barrier function and dermatitis". Journal of the European Academy of Dermatology and Venereology. 30 (2): 223–249. doi:10.1111/jdv.13301. PMID 26449379. S2CID 12378072.
  26. ^ a b c d e f g h i j k l m n o p q Ständer S (March 2021). "Atopic Dermatitis". The New England Journal of Medicine. 384 (12): 1136–1143. doi:10.1056/NEJMra2023911. PMID 33761208. S2CID 232355341.
  27. ^ Park KD, Pak SC, Park KK (December 2016). "The Pathogenetic Effect of Natural and Bacterial Toxins on Atopic Dermatitis". Toxins (Review). 9 (1): 3. doi:10.3390/toxins9010003. PMC 5299398. PMID 28025545.
  28. ^ Irvine AD, McLean WH, Leung DY (October 2011). "Filaggrin mutations associated with skin and allergic diseases". The New England Journal of Medicine (Review). 365 (14): 1315–27. doi:10.1056/NEJMra1011040. PMID 21991953.
  29. ^ Scudellari M (2017). "News Feature: Cleaning up the hygiene hypothesis". Proceedings of the National Academy of Sciences. 114 (7): 1433–1436. Bibcode:2017PNAS..114.1433S. doi:10.1073/pnas.1700688114. PMC 5320962. PMID 28196925.
  30. ^ Bieber T (April 2008). "Atopic dermatitis". The New England Journal of Medicine. 358 (14): 1483–94. doi:10.1056/NEJMra074081. PMID 18385500.
  31. ^ Pelucchi C, Galeone C, Bach JF, La Vecchia C, Chatenoud L (September 2013). "Pet exposure and risk of atopic dermatitis at the pediatric age: a meta-analysis of birth cohort studies". The Journal of Allergy and Clinical Immunology. 132 (3): 616–622.e7. doi:10.1016/j.jaci.2013.04.009. hdl:2434/239729. PMID 23711545.
  32. ^ a b c Flohr C, Mann J (January 2014). "New insights into the epidemiology of childhood atopic dermatitis". Allergy. 69 (1): 3–16. doi:10.1111/all.12270. PMID 24417229. S2CID 32645590.
  33. ^ di Mauro G, Bernardini R, Barberi S, Capuano A, Correra A, De' Angelis GL, Iacono ID, de Martino M, Ghiglioni D, Di Mauro D, Giovannini M, Landi M, Marseglia GL, Martelli A, Miniello VL, Peroni D, Sullo LR, Terracciano L, Vascone C, Verduci E, Verga MC, Chiappini E (2016). "Prevention of food and airway allergy: consensus of the Italian Society of Preventive and Social Paediatrics, the Italian Society of Paediatric Allergy and Immunology, and Italian Society of Pediatrics". The World Allergy Organization Journal (Review). 9: 28. doi:10.1186/s40413-016-0111-6. PMC 4989298. PMID 27583103.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  34. ^ Brough, Helen A.; Nadeau, Kari C.; Sindher, Sayantani B.; Alkotob, Shifaa S.; Chan, Susan; Bahnson, Henry T.; Leung, Donald Y. M.; Lack, Gideon (6 April 2020). "Epicutaneous sensitization in the development of food allergy: What is the evidence and how can this be prevented?". Allergy. 75 (9): 2185–2205. doi:10.1111/all.14304. ISSN 0105-4538. PMC 7494573. PMID 32249942.{{cite journal}}: CS1 maint: PMC format (link)
  35. ^ a b Fasano A, Sapone A, Zevallos V, Schuppan D (May 2015). "Nonceliac gluten sensitivity". Gastroenterology (Review). 148 (6): 1195–204. doi:10.1053/j.gastro.2014.12.049. PMID 25583468. Many patients with celiac disease also have atopic disorders. About 30% of patients' allergies with gastrointestinal (GI) symptoms and mucosal lesions, but negative results from serologic (TG2 antibodies) or genetic tests (DQ2 or DQ8 genotype) for celiac disease, had reduced GI and atopic symptoms when they were placed on GFDs. These findings indicated that their symptoms were related to gluten ingestion.
  36. ^ a b Mansueto P, Seidita A, D'Alcamo A, Carroccio A (2014). "Non-celiac gluten sensitivity: literature review" (PDF). Journal of the American College of Nutrition (Review). 33 (1): 39–54. doi:10.1080/07315724.2014.869996. hdl:10447/90208. PMID 24533607. S2CID 22521576.
  37. ^ Williams H, Flohr C (July 2006). "How epidemiology has challenged 3 prevailing concepts about atopic dermatitis" (PDF). The Journal of Allergy and Clinical Immunology. 118 (1): 209–13. doi:10.1016/j.jaci.2006.04.043. PMID 16815157. Archived from the original (PDF) on 2018-07-19. Retrieved 2019-02-05.
  38. ^ Fuiano N, Incorvaia C (June 2012). "Dissecting the causes of atopic dermatitis in children: less foods, more mites". Allergology International. 61 (2): 231–43. doi:10.2332/allergolint.11-RA-0371. PMID 22361514.
  39. ^ Goh CL, Wong JS, Giam YC (September 1997). "Skin colonization of Staphylococcus aureus in atopic dermatitis patients seen at the National Skin Centre, Singapore". International Journal of Dermatology. 36 (9): 653–7. doi:10.1046/j.1365-4362.1997.00290.x. PMID 9352404. S2CID 3112669.
  40. ^ Nakatsuji T, Chen TH, Two AM, Chun KA, Narala S, Geha RS, Hata TR, Gallo RL (November 2016). "Staphylococcus aureus Exploits Epidermal Barrier Defects in Atopic Dermatitis to Trigger Cytokine Expression". The Journal of Investigative Dermatology. 136 (11): 2192–2200. doi:10.1016/j.jid.2016.05.127. PMC 5103312. PMID 27381887.
  41. ^ a b George, Susannah MC; Karanovic, Sanja; Harrison, David A; Rani, Anjna; Birnie, Andrew J; Bath-Hextall, Fiona J; Ravenscroft, Jane C; Williams, Hywel C (2019-10-29). Cochrane Skin Group (ed.). "Interventions to reduce Staphylococcus aureus in the management of eczema". Cochrane Database of Systematic Reviews. doi:10.1002/14651858.CD003871.pub3. PMC 6818407. PMID 31684694.{{cite journal}}: CS1 maint: PMC format (link)
  42. ^ Sengupta P (August 2013). "Potential health impacts of hard water". International Journal of Preventive Medicine (Review). 4 (8): 866–75. PMC 3775162. PMID 24049611.
  43. ^ a b Jabbar‐Lopez, Zarif K.; Ung, Chuin Ying; Alexander, Helen; Gurung, Nikeeta; Chalmers, Joanne; Danby, Simon; Cork, Michael J.; Peacock, Janet L.; Flohr, Carsten (13 December 2020). "The effect of water hardness on atopic eczema, skin barrier function: A systematic review, meta‐analysis". Clinical & Experimental Allergy. 51 (3): 430–451. doi:10.1111/cea.13797. ISSN 0954-7894.
  44. ^ Gandhi NA, Bennett BL, Graham NM, Pirozzi G, Stahl N, Yancopoulos GD (January 2016). "Targeting key proximal drivers of type 2 inflammation in disease". Nature Reviews. Drug Discovery. 15 (1): 35–50. doi:10.1038/nrd4624. PMID 26471366. S2CID 2421591.
  45. ^ Akdis CA, Arkwright PD, Brüggen MC, Busse W, Gadina M, Guttman-Yassky E, et al. (July 2020). "Type 2 immunity in the skin and lungs". Allergy. 75 (7): 1582–1605. doi:10.1111/all.14318. PMID 32319104.
  46. ^ Eichenfield LF, Tom WL, Chamlin SL, Feldman SR, Hanifin JM, Simpson EL, Berger TG, Bergman JN, Cohen DE, Cooper KD, Cordoro KM, Davis DM, Krol A, Margolis DJ, Paller AS, Schwarzenberger K, Silverman RA, Williams HC, Elmets CA, Block J, Harrod CG, Smith Begolka W, Sidbury R (February 2014). "Guidelines of care for the management of atopic dermatitis: section 1. Diagnosis and assessment of atopic dermatitis". Journal of the American Academy of Dermatology. 70 (2): 338–51. doi:10.1016/j.jaad.2013.10.010. PMC 4410183. PMID 24290431.
  47. ^ a b Brenninkmeijer EE, Schram ME, Leeflang MM, Bos JD, Spuls PI (April 2008). "Diagnostic criteria for atopic dermatitis: a systematic review". The British Journal of Dermatology. 158 (4): 754–65. doi:10.1111/j.1365-2133.2007.08412.x. PMID 18241277. S2CID 453564.
  48. ^ a b Williams HC, Burney PG, Pembroke AC, Hay RJ (September 1994). "The U.K. Working Party's Diagnostic Criteria for Atopic Dermatitis. III. Independent hospital validation". The British Journal of Dermatology. 131 (3): 406–16. doi:10.1111/j.1365-2133.1994.tb08532.x. PMID 7918017. S2CID 37406163.
  49. ^ Ridd, Matthew J; Roberts, Amanda; Grindlay, Douglas; Williams, Hywel C (2019-10-24). "Which emollients are effective and acceptable for eczema in children?". BMJ: l5882. doi:10.1136/bmj.l5882. ISSN 0959-8138.
  50. ^ Ridd, Matthew J; Santer, Miriam; MacNeill, Stephanie J; Sanderson, Emily; Wells, Sian; Webb, Douglas; Banks, Jonathan; Sutton, Eileen; Roberts, Amanda; Liddiard, Lyn; Wilkins, Zoe; Clayton, Julie; Garfield, Kirsty; Barrett, Tiffany J; Lane, J Athene (2022-08). "Effectiveness and safety of lotion, cream, gel, and ointment emollients for childhood eczema: a pragmatic, randomised, phase 4, superiority trial". The Lancet Child & Adolescent Health. 6 (8): 522–532. doi:10.1016/S2352-4642(22)00146-8. {{cite journal}}: Check date values in: |date= (help)
  51. ^ Ridd, Matthew J; Santer, Miriam; MacNeill, Stephanie J; Sanderson, Emily; Wells, Sian; Webb, Douglas; Banks, Jonathan; Sutton, Eileen; Roberts, Amanda; Liddiard, Lyn; Wilkins, Zoe; Clayton, Julie; Garfield, Kirsty; Barrett, Tiffany J; Lane, J Athene (23 May 2022). "Effectiveness and safety of lotion, cream, gel, and ointment emollients for childhood eczema: a pragmatic, randomised, phase 4, superiority trial". The Lancet Child & Adolescent Health. 6 (8): 522–532. doi:10.1016/S2352-4642(22)00146-8.
  52. ^ Santer, Miriam; Ridd, Matthew J; Francis, Nick A; Stuart, Beth; Rumsby, Kate; Chorozoglou, Maria; Becque, Taeko; Roberts, Amanda; Liddiard, Lyn; Nollett, Claire; Hooper, Julie; Prude, Martina; Wood, Wendy; Thomas, Kim S; Thomas-Jones, Emma (2018-05-03). "Emollient bath additives for the treatment of childhood eczema (BATHE): multicentre pragmatic parallel group randomised controlled trial of clinical and cost effectiveness". BMJ: k1332. doi:10.1136/bmj.k1332. ISSN 0959-8138. PMC 5930266. PMID 29724749.{{cite journal}}: CS1 maint: PMC format (link)
  53. ^ a b Lax, Stephanie J; Harvey, Jane; Axon, Emma; Howells, Laura; Santer, Miriam; Ridd, Matthew J; Lawton, Sandra; Langan, Sinéad; Roberts, Amanda; Ahmed, Amina; Muller, Ingrid; Ming, Long Chiau; Panda, Saumya; Chernyshov, Pavel; Carter, Ben (2022-03-11). Cochrane Skin Group (ed.). "Strategies for using topical corticosteroids in children and adults with eczema". Cochrane Database of Systematic Reviews. 2022 (3). doi:10.1002/14651858.CD013356.pub2. PMC 8916090. PMID 35275399.{{cite journal}}: CS1 maint: PMC format (link)
  54. ^ Cury Martins J, Martins C, Aoki V, Gois AF, Ishii HA, da Silva EM (July 2015). "Topical tacrolimus for atopic dermatitis". The Cochrane Database of Systematic Reviews. 2015 (7): CD009864. doi:10.1002/14651858.CD009864.pub2. PMC 6461158. PMID 26132597.
  55. ^ Devasenapathy, Niveditha; Chu, Alexandro; Wong, Melanie; Srivastava, Archita; Ceccacci, Renata; Lin, Clement; MacDonald, Margaret; Wen, Aaron; Steen, Jeremy; Levine, Mitchell; Pyne, Lonnie; Schneider, Lynda; Chu, Derek K; Asiniwasis, Rachel Netahe; Boguniewicz, Mark (9 November 2022). "Cancer risk with topical calcineurin inhibitors, pimecrolimus and tacrolimus, for atopic dermatitis: a systematic review and meta-analysis". The Lancet Child & Adolescent Health. 7 (1): 13–25. doi:10.1016/S2352-4642(22)00283-8.
  56. ^ McDowell, Lena; Olin, Bernie (22 April 2019). "Crisaborole: A Novel Nonsteroidal Topical Treatment for Atopic Dermatitis". Journal of Pharmacy Technology. 35 (4): 172–178. doi:10.1177/8755122519844507. ISSN 8755-1225. PMC 6600556. PMID 34861031.{{cite journal}}: CS1 maint: PMC format (link)
  57. ^ He, Yufei; Liu, Jia; Wang, Yulian; Kuai, Wenhao; Liu, Ran; Wu, Jianhua (2023-02-06). Pimpinelli, Nicola (ed.). "Topical Administration of Crisaborole in Mild to Moderate Atopic Dermatitis: A Systematic Review and Meta-Analysis". Dermatologic Therapy. 2023: 1–9. doi:10.1155/2023/1869934. ISSN 1529-8019.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  58. ^ Yarbrough KB, Neuhaus KJ, Simpson EL (March–April 2013). "The effects of treatment on itch in atopic dermatitis". Dermatologic Therapy. 26 (2): 110–9. doi:10.1111/dth.12032. PMC 4524501. PMID 23551368.
  59. ^ Kim K (November 2012). "Neuroimmunological mechanism of pruritus in atopic dermatitis focused on the role of serotonin". Biomolecules & Therapeutics. 20 (6): 506–12. doi:10.4062/biomolther.2012.20.6.506. PMC 3762292. PMID 24009842.
  60. ^ Chin, Weng Khong; Lee, Shaun Wen Huey (18 May 2018). "A systematic review on the off-label use of montelukast in atopic dermatitis treatment". International Journal of Clinical Pharmacy. 40 (5): 963–976. doi:10.1007/s11096-018-0655-3. ISSN 2210-7703.
  61. ^ Ferguson L, Futamura M, Vakirlis E, Kojima R, Sasaki H, Roberts A, Mori R (October 2018). "Leukotriene receptor antagonists for eczema". The Cochrane Database of Systematic Reviews. 2018 (10): CD011224. doi:10.1002/14651858.cd011224.pub2. PMC 6517006. PMID 30343498.
  62. ^ "FDA approves new eczema drug Dupixent". US Food & Drug Administration. 28 March 2017. Archived from the original on 28 March 2017. Retrieved 29 March 2017.
  63. ^ "Adtralza EPAR". European Medicines Agency (EMA). 20 April 2021. Retrieved 9 July 2021. Text was copied from this source which is © European Medicines Agency. Reproduction is authorized provided the source is acknowledged.
  64. ^ "Drug Approval Package: ADBRY". US Food & Drug Administration. December 27, 2021. Retrieved March 6, 2022.
  65. ^ "Almirall granted EMA approval for lebrikizumab in atopic dermatitis". PMLive. 2022-10-28. Retrieved 2023-03-05.
  66. ^ "Eli Lilly Submits BLA for Lebrikizumab AD Treatment". Dermatology Times. Retrieved 2023-03-05.
  67. ^ "U.S. FDA Approves Pfizer's Cibinqo (abrocitinib) for Adults with Moderate-to-Severe Atopic Dermatitis". Pfizer Inc. (Press release). 14 January 2022. Retrieved 16 January 2022.
  68. ^ "U.S. FDA Approves RINVOQ® (upadacitinib) to Treat Adults and Children 12 Years and Older with Refractory, Moderate to Severe Atopic Dermatitis". AbbeVie (Press release). Retrieved March 6, 2022.
  69. ^ Yepes-Nuñez, Juan José; Guyatt, Gordon H.; Gómez-Escobar, Luis Guillermo; Pérez-Herrera, Lucia C.; Chu, Alexandro W.L.; Ceccaci, Renata; Acosta-Madiedo, Ana Sofía; Wen, Aaron; Moreno-López, Sergio; MacDonald, Margaret; Barrios, Mónica; Chu, Xiajing; Islam, Nazmul; Gao, Ya; Wong, Melanie M. (4 January 2023). "Allergen immunotherapy for atopic dermatitis: Systematic review and meta-analysis of benefits and harms". Journal of Allergy and Clinical Immunology. 151 (1): 147–158. doi:10.1016/j.jaci.2022.09.020.
  70. ^ Tam H, Calderon MA, Manikam L, Nankervis H, García Núñez I, Williams HC, Durham S, Boyle RJ (February 2016). "Specific allergen immunotherapy for the treatment of atopic eczema" (PDF). The Cochrane Database of Systematic Reviews. 2016 (2): CD008774. doi:10.1002/14651858.CD008774.pub2. hdl:10044/1/31818. PMC 8761476. PMID 26871981.
  71. ^ Dębińska A, Sikorska-Szaflik H, Urbanik M, Boznański A (2015). "The role of vitamin D in atopic dermatitis". Dermatitis (Review). 26 (4): 155–61. doi:10.1097/DER.0000000000000128. PMID 26172483. S2CID 35345939.
  72. ^ Kim G, Bae JH (September 2016). "Vitamin D and atopic dermatitis: A systematic review and meta-analysis". Nutrition (Systematic Review and Meta-Analysis). 32 (9): 913–20. doi:10.1016/j.nut.2016.01.023. PMID 27061361.
  73. ^ Hattangdi-Haridas; Lanham-New; Wong; Ho; Darling (2019-08-09). "Vitamin D Deficiency and Effects of Vitamin D Supplementation on Disease Severity in Patients with Atopic Dermatitis: A Systematic Review and Meta-Analysis in Adults and Children". Nutrients. 11 (8): 1854. doi:10.3390/nu11081854. ISSN 2072-6643. PMC 6722944. PMID 31405041.{{cite journal}}: CS1 maint: PMC format (link) CS1 maint: unflagged free DOI (link)
  74. ^ Venter, Carina; Agostoni, Carlo; Arshad, S. Hasan; Ben‐Abdallah, Miriam; Du Toit, George; Fleischer, David M.; Greenhawt, Matthew; Glueck, Deborah H.; Groetch, Marion; Lunjani, Nonhlanhla; Maslin, Kate; Maiorella, Alexander; Meyer, Rosan; Antonella, Muraro; Netting, Merryn J. (10 June 2020). Peters, Rachel (ed.). "Dietary factors during pregnancy and atopic outcomes in childhood: A systematic review from the European Academy of Allergy and Clinical Immunology". Pediatric Allergy and Immunology. 31 (8): 889–912. doi:10.1111/pai.13303. ISSN 0905-6157. PMC 9588404. PMID 32524677.{{cite journal}}: CS1 maint: PMC format (link)
  75. ^ Trikamjee, Thulja; Comberiati, Pasquale; D'Auria, Enza; Peroni, Diego; Zuccotti, Gian Vincenzo (2021-01-12). "Nutritional Factors in the Prevention of Atopic Dermatitis in Children". Frontiers in Pediatrics. 8: 577413. doi:10.3389/fped.2020.577413. ISSN 2296-2360. PMC 7874114. PMID 33585361.{{cite journal}}: CS1 maint: PMC format (link) CS1 maint: unflagged free DOI (link)
  76. ^ Makrgeorgou A, Leonardi-Bee J, Bath-Hextall FJ, Murrell DF, Tang ML, Roberts A, Boyle RJ (November 2018). "Probiotics for treating eczema". The Cochrane Database of Systematic Reviews. 2018 (11): CD006135. doi:10.1002/14651858.CD006135.pub3. PMC 6517242. PMID 30480774.
  77. ^ Rusu, Emilia; Enache, Georgiana; Cursaru, Raluca; Alexescu, Alexandra; Radu, Raluca; Onila, Oana; Cavallioti, Teodora; Rusu, Florin; Posea, Mihaela; Jinga, Mariana; Radulian, Gabriela (2019-06-14). "Prebiotics and probiotics in atopic dermatitis (Review)". Experimental and Therapeutic Medicine. doi:10.3892/etm.2019.7678. ISSN 1792-0981. PMC 6639913. PMID 31384325.{{cite journal}}: CS1 maint: PMC format (link)
  78. ^ Umborowati, Menul Ayu; Damayanti, Damayanti; Anggraeni, Sylvia; Endaryanto, Anang; Surono, Ingrid S.; Effendy, Isaak; Prakoeswa, Cita Rosita Sigit (2022-08-17). "The role of probiotics in the treatment of adult atopic dermatitis: a meta-analysis of randomized controlled trials". Journal of Health, Population and Nutrition. 41 (1): 37. doi:10.1186/s41043-022-00318-6. ISSN 2072-1315. PMC 9386980. PMID 35978397.{{cite journal}}: CS1 maint: PMC format (link) CS1 maint: unflagged free DOI (link)
  79. ^ Chang YS, Trivedi MK, Jha A, Lin YF, Dimaano L, García-Romero MT (March 2016). "Synbiotics for Prevention and Treatment of Atopic Dermatitis: A Meta-analysis of Randomized Clinical Trials". JAMA Pediatrics. 170 (3): 236–42. doi:10.1001/jamapediatrics.2015.3943. PMID 26810481.
  80. ^ Roberts, Katherine; Gilbertson, Anna; Dawson, Shoba; Turner, Nicholas; Ridd, Matthew J. (4 December 2021). "Test‐guided dietary exclusions for treating established atopic dermatitis in children: A systematic review". Clinical & Experimental Allergy. 52 (3): 442–446. doi:10.1111/cea.14072. ISSN 0954-7894.
  81. ^ Lio PA (October 2013). "Non-pharmacologic therapies for atopic dermatitis". Current Allergy and Asthma Reports. 13 (5): 528–38. doi:10.1007/s11882-013-0371-y. PMID 23881511. S2CID 40875822.
  82. ^ Bakaa, Layla; Pernica, Jeffrey M.; Couban, Rachel J.; Tackett, Kelly Jo; Burkhart, Craig N.; Leins, Liz; Smart, Joanne; Garcia-Romero, Maria Teresa; Elizalde-Jiménez, Itzel Guadalupe; Herd, Michael; Asiniwasis, Rachel Netahe; Boguniewicz, Mark; De Benedetto, Anna; Chen, Lina; Ellison, Kathy (2022-06). "Bleach baths for atopic dermatitis". Annals of Allergy, Asthma & Immunology. 128 (6): 660–668.e9. doi:10.1016/j.anai.2022.03.024. {{cite journal}}: Check date values in: |date= (help)
  83. ^ Jaros, Joanna; Wilson, Claire; Shi, Vivian Y. (2020-08). "Fabric Selection in Atopic Dermatitis: An Evidence-Based Review". American Journal of Clinical Dermatology. 21 (4): 467–482. doi:10.1007/s40257-020-00516-0. ISSN 1175-0561. {{cite journal}}: Check date values in: |date= (help)
  84. ^ "Clothing and eczema". National Eczema Society. 2020-02-11. Retrieved 2023-04-10.
  85. ^ Thandi, Charankumal Singh; Constantinou, Sophie; Vincent, Rosie; Ridd, Matthew J. (2023-03-22). "Where and how have written action plans for atopic eczema/dermatitis been developed and evaluated? Systematic review". Skin Health and Disease. doi:10.1002/ski2.213. ISSN 2690-442X.
  86. ^ Santer, Miriam; Muller, Ingrid; Becque, Taeko; Stuart, Beth; Hooper, Julie; Steele, Mary; Wilczynska, Sylvia; Sach, Tracey H; Ridd, Matthew J; Roberts, Amanda; Ahmed, Amina; Yardley, Lucy; Little, Paul; Greenwell, Kate; Sivyer, Katy (2022-12-07). "Eczema Care Online behavioural interventions to support self-care for children and young people: two independent, pragmatic, randomised controlled trials". BMJ: e072007. doi:10.1136/bmj-2022-072007. ISSN 1756-1833.
  87. ^ Tintle S, Shemer A, Suárez-Fariñas M, Fujita H, Gilleaudeau P, Sullivan-Whalen M, Johnson-Huang L, Chiricozzi A, Cardinale I, Duan S, Bowcock A, Krueger JG, Guttman-Yassky E (September 2011). "Reversal of atopic dermatitis with narrow-band UVB phototherapy and biomarkers for therapeutic response". The Journal of Allergy and Clinical Immunology. 128 (3): 583–93.e1–4. doi:10.1016/j.jaci.2011.05.042. PMC 3448950. PMID 21762976.
  88. ^ Beattie PE, Finlan LE, Kernohan NM, Thomson G, Hupp TR, Ibbotson SH (May 2005). "The effect of ultraviolet (UV) A1, UVB and solar-simulated radiation on p53 activation and p21". The British Journal of Dermatology. 152 (5): 1001–8. doi:10.1111/j.1365-2133.2005.06557.x. PMID 15888160. S2CID 22191753.
  89. ^ Musters, Annelie H; Mashayekhi, Soudeh; Harvey, Jane; Axon, Emma; Lax, Stephanie J; Flohr, Carsten; Drucker, Aaron M; Gerbens, Louise; Ferguson, John; Ibbotson, Sally; Dawe, Robert S; Garritsen, Floor; Brouwer, Marijke; Limpens, Jacqueline; Prescott, Laura E (2021-10-28). Cochrane Skin Group (ed.). "Phototherapy for atopic eczema". Cochrane Database of Systematic Reviews. 2021 (11). doi:10.1002/14651858.CD013870.pub2. PMC 8552896. PMID 34709669.{{cite journal}}: CS1 maint: PMC format (link)
  90. ^ Jans J, Garinis GA, Schul W, van Oudenaren A, Moorhouse M, Smid M, Sert YG, van der Velde A, Rijksen Y, de Gruijl FR, van der Spek PJ, Yasui A, Hoeijmakers JH, Leenen PJ, van der Horst GT (November 2006). "Differential role of basal keratinocytes in UV-induced immunosuppression and skin cancer". Molecular and Cellular Biology. 26 (22): 8515–26. doi:10.1128/MCB.00807-06. PMC 1636796. PMID 16966369.
  91. ^ Gu S, Yang AW, Xue CC, Li CG, Pang C, Zhang W, Williams HC (September 2013). "Chinese herbal medicine for atopic eczema". The Cochrane Database of Systematic Reviews (9): CD008642. doi:10.1002/14651858.CD008642.pub2. PMID 24018636.
  92. ^ Saito H (August 2005). "Much atopy about the skin: genome-wide molecular analysis of atopic dermatitis". International Archives of Allergy and Immunology. 137 (4): 319–25. doi:10.1159/000086464. PMID 15970641. S2CID 20040720.
  93. ^ "Atopic Dermatitis". www.uchospitals.edu. 1 January 2015. Archived from the original on 2015-04-08. Retrieved 2 April 2015.
  94. ^ O'Connor, C.; Murphy, M. (17 April 2021). "Scratching the surface: a review of online misinformation and conspiracy theories in atopic dermatitis". Clinical and Experimental Dermatology. 46 (8): 1545–1547. doi:10.1111/ced.14679. PMID 33864398. S2CID 233278383. Retrieved 29 November 2022.
  95. ^ Bao L, Shi VY, Chan LS (February 2013). "IL-4 up-regulates epidermal chemotactic, angiogenic, and pro-inflammatory genes and down-regulates antimicrobial genes in vivo and in vitro: relevant in the pathogenesis of atopic dermatitis". Cytokine. 61 (2): 419–25. doi:10.1016/j.cyto.2012.10.031. PMID 23207180.
  96. ^ Di Lernia V (January 2015). "Therapeutic strategies in extrinsic atopic dermatitis: focus on inhibition of IL-4 as a new pharmacological approach". Expert Opinion on Therapeutic Targets. 19 (1): 87–96. doi:10.1517/14728222.2014.965682. PMID 25283256. S2CID 140140078.
  97. ^ Totté JE, van der Feltz WT, Hennekam M, van Belkum A, van Zuuren EJ, Pasmans SG (October 2016). "Prevalence and odds of Staphylococcus aureus carriage in atopic dermatitis: a systematic review and meta-analysis". The British Journal of Dermatology. 175 (4): 687–95. doi:10.1111/bjd.14566. PMID 26994362. S2CID 23617550.
[edit]