Jump to content

SARM1

From Wikipedia, the free encyclopedia

SARM1
Identifiers
AliasesSARM1, MyD88-5, SAMD2, SARM, sterile alpha and TIR motif containing 1, hHsTIR
External IDsOMIM: 607732; MGI: 2136419; HomoloGene: 9015; GeneCards: SARM1; OMA:SARM1 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_015077

NM_001168521
NM_172795

RefSeq (protein)

NP_055892
NP_055892.2

NP_001161993
NP_766383

Location (UCSC)Chr 17: 28.36 – 28.4 MbChr 11: 78.36 – 78.39 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Sterile alpha and TIR motif containing 1 Is an enzyme that in humans is encoded by the SARM1 gene. It is the most evolutionarily conserved member of the Toll/Interleukin receptor-1 (TIR) family.[5][6] SARM1's TIR domain has intrinsic NADase enzymatic activity that is highly conserved from archaea, plants, nematode worms, fruit flies, and humans.[7][8][9] In mammals, SARM1 is highly expressed in neurons, where it resides in both cell bodies and axons, and can be associated with mitochondria.[10]

Function

[edit]

While SARM1 has been studied as a Toll-like receptor adaptor protein in an immune context, its most well-studied function in mammals is as a sensor of metabolic stress and an executioner of neuronal cell body and axon death.[5][11][12][13][14][15] Because SARM1 is highly expressed in the nervous system, most studies of SARM1 focus on neuron degeneration, but some SARM1 can be found in other tissues, notably macrophages and T cells.[16][17] By generating cADPR or NAADP, SARM1 may function as a Ca2+-signaling enzyme similar to CD38.[18][19][20][21][22]

Regulation of enzymatic activity

[edit]

SARM1's TIR domain is a multi-functional NAD(P)ase enzyme capable of hydrolyzing NAD+ or NADP, cyclizing NAD+ or NADP to form cADPR or cADPRP, and transglycosidation (base exchange) of NAD+ or NADP with free pyridines to form molecules such as NAADP.[6][8][23][20][24][21][25] For NAD+, The transglycosidation (base exchange) activity of SARM1 extends beyond simple pyridines and includes many heterocyclic nucleophilic bases.[26]

SARM1's enzymatic activity can be regulated at the TIR domain orthosteric site by naturally occurring metabolites such as nicotinamide, NADP, and nicotinic acid riboside.[6][21][27] Non-endogenous small chemical molecules have also been shown to inhibit SARM1's enzymatic activity at or near the orthosteric site.[26][28][29][30][31]

In addition, SARM1's enzymatic activity can be regulated by its allosteric site at the ARM domain, which can bind to NMN or NAD+.[13][26] The ratio of NMN/NAD+ in cells determines SARM1's enzymatic activity.[13][21][32][33][34] A chemically-modified cell permeable version of NMN, CZ-48, likely activates SARM1 via interacting with this allosteric region.[20][35] Two long-studied neurotoxins, Vacor and 3-acetylpyridine, cause neurodegeneration by activating SARM1. Both Vacor and 3-acetylpyridine can be modified by NAMPT to become their mononucleotide versions (Vacor-MN or 3-AP-MN) that bind to SARM1's allosteric ARM domain region and activate its TIR domain NADase activity.[36][37] When NAD+ levels are low, nicotinic acid mononucleotide (NaMN) can bind to the allosteric region and inhibit SARM1 activity,[38] thus explaining the potent axon protection provided by treating neurons with the NaMN precursor nicotinic acid riboside (NaR) while inhibiting NAMPT.[39] Chemical screening approaches have also identified covalent inhibitors of SARM1's allosteric ARM domain region.[24][40]

Other pro-degeneration signaling pathways, such as the MAP kinase pathway, have been linked to SARM1 activation. MAPK signaling has been shown to promote the loss of NMNAT2, thereby promoting SARM1 activation.[41][42][43] SARM1 activation also triggers the MAP kinase cascade, indicating some form of feedback loop may exist.[44]

Relevance to human disease

[edit]

Possible implications of the SARM1 pathway with regard to human health may be found in animal models of neurodegeneration, where loss of SARM1 is neuroprotective in models of traumatic brain injury,[45][46][47][48][49][31][50][51] chemotherapy-induced neuropathy,[52][53][54][29][55][56][31] diabetic neuropathy,[56][57] degenerative eye conditions,[58][59][60][61][62][63][64] drug-induced Schwann cell death,[65] Charcot-Marie-Tooth disease,[66] and hereditary spastic paraplegia.[67]

Loss-of-function alleles of the SARM1 gene also occur naturally in the human population, potentially altering susceptibility to various neurological conditions.[68]

Specific mutations in the human NMNAT2 gene, encoding a key regulator of SARM1 activity, have linked the Wallerian degeneration mechanism to two human neurological diseases - fetal akinesia deformation sequence[69] and childhood-onset polyneuropathy with erythromelalgia.[70] Mutations in the human SARM1 gene that result in SARM1 protein with constitutive NADase activity have been reported in patients with amyotrophic lateral sclerosis (ALS).[71][72]

Wallerian degeneration pathway

[edit]

SARM1 protein plays a central role in the Wallerian degeneration pathway. The role for this gene in the Wallerian degeneration pathway was first identified in a Drosophila melanogaster mutagenesis screen,[11] and subsequently genetic knockout of its homologue in mice showed robust protection of transected axons comparable to that of WldS mutation (a mouse mutation resulting in delayed Wallerian degeneration).[11][12] Loss of SARM1 in human iPSC-derived neurons is also axon protective.[73]

The SARM1 protein has a mitochondrial localization signal, an auto-inhibitory N-terminus region consisting of armadillo (ARM)/HEAT motifs, two sterile alpha motif domains (SAM) responsible for multimerization, and a C-terminal Toll/Interleukin-1 receptor (TIR) domain that possesses enzymatic activity.[12] The functional unit of SARM1 is an octameric ring.[74] In healthy neurons, SARM1's enzyme activity is mostly autoinhibited through intramolecular and intermolecular interactions between ARM-ARM, ARM-SAM and ARM-TIR domains, as well as interactions between a duplex of octameric rings.[75][35][15][14][13][76]

SARM1's enzymatic activity is critically tuned to the activity of another axonal enzyme, NMNAT2. NMNAT2 is a labile protein in axons and is rapidly degraded after axon injury.[77] NMNAT2 is a transferase that uses ATP to convert nicotinamide mononucleotide (NMN) into NAD+. Remarkably, genetic loss of NMNAT2 in mice leads to embryonic lethality that can be fully rescued by genetic loss of SARM1, indicating that SARM1 acts downstream of NMNAT2.[78] Thus, when NMNAT2 is degraded after axon injury, SARM1 is activated. Conversely, overexpression of the WldS protein (which contains functional NMNAT1), axon-targeted NMNAT1, or NMNAT2 itself can protect axons and keep SARM1 from being activated.[79][80][81][82][83][84][85][86][87] These findings lead to the hypothesis and subsequent demonstration that NMNAT2's substrate NMN, which should increase when NMNAT2 is degraded after injury, can promote axon degeneration via SARM1.[88][89] Further studies revealed that NMN could activate SARM1's enzymatic activity.[20][35] Through a combination of structural, biochemical, biophysical, and cellular assays, it was revealed that SARM1 is tuned to NMNAT activity by sensing the ratio of NMN/NAD+.[13] This ratio is sensed by an allosteric region in SARM1's ARM domain region that can bind either NMN or NAD+. NAD+ binding is associated with SARM1's auto-inhibited state,[13][14][15] while NMN binding to the allosteric region results in a conformational change in the ARM domain that allows for multimerization of SARM1's TIR domains and enzymatic activation.[13][26][33][34]

SARM1 activation locally triggers a rapid collapse of NAD+ levels in the distal section of the injured axon, which then undergoes degeneration.[90] This collapse in NAD+ levels was later shown to be due to SARM1's TIR domain having intrinsic NAD+ cleavage activity.[6] SARM1 can hydrolyze NAD+ into nicotinamide and adenosine diphosphate ribose (ADPR), generate cyclic ADPR (cADPR), or mediate a base-exchange reaction with ADPR and free pyridine-ring containing bases, like nicotinamide.[6][19][20][21] Activation of SARM1's NADase activity is necessary and sufficient to collapse NAD+ levels and initiate the Wallerian degeneration pathway.[90][6] NAD+ loss is followed by depletion of ATP, defects in mitochondrial movement and depolarization, calcium influx, externalization of phosphatidylserine, and loss of membrane permeability prior to catastrophic axonal self-destruction.[91]

SARM1 activation due to loss of NMNAT2 in neurons also elicits a pro-degenerative neuroinflammatory response from peripheral nervous system macrophages and central nervous system astrocytes and microglia.[92][93][unreliable source]

References

[edit]
  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000004139Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000050132Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ a b Carty M, Bowie AG (March 2019). "SARM: From immune regulator to cell executioner". Biochemical Pharmacology. 161: 52–62. doi:10.1016/j.bcp.2019.01.005. hdl:2262/108422. PMID 30633870. S2CID 58613555.
  6. ^ a b c d e f Essuman K, Summers DW, Sasaki Y, Mao X, DiAntonio A, Milbrandt J (March 2017). "The SARM1 Toll/Interleukin-1 Receptor Domain Possesses Intrinsic NAD+ Cleavage Activity that Promotes Pathological Axonal Degeneration". Neuron. 93 (6): 1334–1343.e5. doi:10.1016/j.neuron.2017.02.022. PMC 6284238. PMID 28334607.
  7. ^ Essuman K, Summers DW, Sasaki Y, Mao X, Yim AK, DiAntonio A, et al. (February 2018). "TIR Domain Proteins Are an Ancient Family of NAD+-Consuming Enzymes". Current Biology. 28 (3): 421–430.e4. Bibcode:2018CBio...28E.421E. doi:10.1016/j.cub.2017.12.024. PMC 5802418. PMID 29395922.
  8. ^ a b Wan L, Essuman K, Anderson RG, Sasaki Y, Monteiro F, Chung EH, et al. (August 2019). "TIR domains of plant immune receptors are NAD+-cleaving enzymes that promote cell death". Science. 365 (6455): 799–803. Bibcode:2019Sci...365..799W. doi:10.1126/science.aax1771. PMC 7045805. PMID 31439793.
  9. ^ Zhang Q, Zmasek CM, Cai X, Godzik A (April 2011). "TIR domain-containing adaptor SARM is a late addition to the ongoing microbe-host dialog". Developmental and Comparative Immunology. 35 (4): 461–468. doi:10.1016/j.dci.2010.11.013. PMC 3085110. PMID 21110998.
  10. ^ Gerdts J, Summers DW, Milbrandt J, DiAntonio A (February 2016). "Axon Self-Destruction: New Links among SARM1, MAPKs, and NAD+ Metabolism". Neuron. 89 (3): 449–460. doi:10.1016/j.neuron.2015.12.023. PMC 4742785. PMID 26844829.
  11. ^ a b c Osterloh JM, Yang J, Rooney TM, Fox AN, Adalbert R, Powell EH, et al. (July 2012). "dSarm/Sarm1 is required for activation of an injury-induced axon death pathway". Science. 337 (6093): 481–484. Bibcode:2012Sci...337..481O. doi:10.1126/science.1223899. PMC 5225956. PMID 22678360.
  12. ^ a b c Gerdts J, Summers DW, Sasaki Y, DiAntonio A, Milbrandt J (August 2013). "Sarm1-mediated axon degeneration requires both SAM and TIR interactions". The Journal of Neuroscience. 33 (33): 13569–13580. doi:10.1523/JNEUROSCI.1197-13.2013. PMC 3742939. PMID 23946415.
  13. ^ a b c d e f g Figley MD, Gu W, Nanson JD, Shi Y, Sasaki Y, Cunnea K, et al. (April 2021). "SARM1 is a metabolic sensor activated by an increased NMN/NAD+ ratio to trigger axon degeneration". Neuron. 109 (7): 1118–1136.e11. doi:10.1016/j.neuron.2021.02.009. PMC 8174188. PMID 33657413.
  14. ^ a b c Jiang Y, Liu T, Lee CH, Chang Q, Yang J, Zhang Z (December 2020). "The NAD+-mediated self-inhibition mechanism of pro-neurodegenerative SARM1". Nature. 588 (7839): 658–663. Bibcode:2020Natur.588..658J. doi:10.1038/s41586-020-2862-z. PMID 33053563. S2CID 222420804.
  15. ^ a b c Sporny M, Guez-Haddad J, Khazma T, Yaron A, Dessau M, Shkolnisky Y, et al. (November 2020). "Structural basis for SARM1 inhibition and activation under energetic stress". eLife. 9. doi:10.7554/eLife.62021. PMC 7688312. PMID 33185189.
  16. ^ Covarrubias AJ, Perrone R, Grozio A, Verdin E (February 2021). "NAD+ metabolism and its roles in cellular processes during ageing". Nature Reviews. Molecular Cell Biology. 22 (2): 119–141. doi:10.1038/s41580-020-00313-x. PMC 7963035. PMID 33353981.
  17. ^ Doran CG, Sugisawa R, Carty M, Roche F, Fergus C, Hokamp K, et al. (December 2021). "CRISPR/Cas9-mediated SARM1 knockout and epitope-tagged mice reveal that SARM1 does not regulate nuclear transcription, but is expressed in macrophages". The Journal of Biological Chemistry. 297 (6): 101417. doi:10.1016/j.jbc.2021.101417. PMC 8661062. PMID 34793837.
  18. ^ Lee HC, Zhao YJ (December 2019). "Resolving the topological enigma in Ca2+ signaling by cyclic ADP-ribose and NAADP". The Journal of Biological Chemistry. 294 (52): 19831–19843. doi:10.1074/jbc.REV119.009635. PMC 6937575. PMID 31672920.
  19. ^ a b Sasaki Y, Engber TM, Hughes RO, Figley MD, Wu T, Bosanac T, et al. (July 2020). "cADPR is a gene dosage-sensitive biomarker of SARM1 activity in healthy, compromised, and degenerating axons". Experimental Neurology. 329: 113252. doi:10.1016/j.expneurol.2020.113252. PMC 7302925. PMID 32087251.
  20. ^ a b c d e Zhao ZY, Xie XJ, Li WH, Liu J, Chen Z, Zhang B, et al. (May 2019). "A Cell-Permeant Mimetic of NMN Activates SARM1 to Produce Cyclic ADP-Ribose and Induce Non-apoptotic Cell Death". iScience. 15: 452–466. Bibcode:2019iSci...15..452Z. doi:10.1016/j.isci.2019.05.001. PMC 6531917. PMID 31128467.
  21. ^ a b c d e Angeletti C, Amici A, Gilley J, Loreto A, Trapanotto AG, Antoniou C, et al. (February 2022). "SARM1 is a multi-functional NAD(P)ase with prominent base exchange activity, all regulated bymultiple physiologically relevant NAD metabolites". iScience. 25 (2): 103812. Bibcode:2022iSci...25j3812A. doi:10.1016/j.isci.2022.103812. PMC 8844822. PMID 35198877.
  22. ^ Li Y, Pazyra-Murphy MF, Avizonis D, de Sá Tavares Russo M, Tang S, Chen CY, et al. (February 2022). "Sarm1 activation produces cADPR to increase intra-axonal Ca++ and promote axon degeneration in PIPN". The Journal of Cell Biology. 221 (2): e202106080. doi:10.1083/jcb.202106080. PMC 8704956. PMID 34935867.
  23. ^ Horsefield S, Burdett H, Zhang X, Manik MK, Shi Y, Chen J, et al. (August 2019). "NAD+ cleavage activity by animal and plant TIR domains in cell death pathways". Science. 365 (6455): 793–799. Bibcode:2019Sci...365..793H. doi:10.1126/science.aax1911. hdl:10072/393098. PMID 31439792. S2CID 201616651.
  24. ^ a b Li WH, Huang K, Cai Y, Wang QW, Zhu WJ, Hou YN, et al. (May 2021). "Permeant fluorescent probes visualize the activation of SARM1 and uncover an anti-neurodegenerative drug candidate". eLife. 10. doi:10.7554/eLife.67381. PMC 8143800. PMID 33944777.
  25. ^ Loring HS, Icso JD, Nemmara VV, Thompson PR (March 2020). "Initial Kinetic Characterization of Sterile Alpha and Toll/Interleukin Receptor Motif-Containing Protein 1". Biochemistry. 59 (8): 933–942. doi:10.1021/acs.biochem.9b01078. PMC 7085114. PMID 32049506.
  26. ^ a b c d Shi Y, Kerry PS, Nanson JD, Bosanac T, Sasaki Y, Krauss R, et al. (May 2022). "Structural basis of SARM1 activation, substrate recognition, and inhibition by small molecules". Molecular Cell. 82 (9): 1643–1659.e10. doi:10.1016/j.molcel.2022.03.007. PMC 9188649. PMID 35334231.
  27. ^ Zhao YJ, He WM, Zhao ZY, Li WH, Wang QW, Hou YN, et al. (December 2021). "Acidic pH irreversibly activates the signaling enzyme SARM1". The FEBS Journal. 288 (23): 6783–6794. doi:10.1111/febs.16104. PMID 34213829. S2CID 235707670.
  28. ^ Hughes RO, Bosanac T, Mao X, Engber TM, DiAntonio A, Milbrandt J, et al. (January 2021). "Small Molecule SARM1 Inhibitors Recapitulate the SARM1-/- Phenotype and Allow Recovery of a Metastable Pool of Axons Fated to Degenerate". Cell Reports. 34 (1): 108588. doi:10.1016/j.celrep.2020.108588. PMC 8179325. PMID 33406435.
  29. ^ a b Bosanac T, Hughes RO, Engber T, Devraj R, Brearley A, Danker K, et al. (November 2021). "Pharmacological SARM1 inhibition protects axon structure and function in paclitaxel-induced peripheral neuropathy". Brain. 144 (10): 3226–3238. doi:10.1093/brain/awab184. PMC 8634121. PMID 33964142.
  30. ^ Loring HS, Parelkar SS, Mondal S, Thompson PR (September 2020). "Identification of the first noncompetitive SARM1 inhibitors". Bioorganic & Medicinal Chemistry. 28 (18): 115644. doi:10.1016/j.bmc.2020.115644. PMC 7443514. PMID 32828421.
  31. ^ a b c Bratkowski M, Burdett TC, Danao J, Wang X, Mathur P, Gu W, et al. (September 2022). "Uncompetitive, adduct-forming SARM1 inhibitors are neuroprotective in preclinical models of nerve injury and disease". Neuron. 110 (22): S0896–6273(22)00749–8. doi:10.1016/j.neuron.2022.08.017. PMID 36087583. S2CID 252167671.
  32. ^ Alexandris AS, Ryu J, Rajbhandari L, Harlan R, McKenney J, Wang Y, et al. (September 2022). "Protective effects of NAMPT or MAPK inhibitors and NaR on Wallerian degeneration of mammalian axons". Neurobiology of Disease. 171: 105808. doi:10.1016/j.nbd.2022.105808. PMC 10621467. PMID 35779777. S2CID 250122204.
  33. ^ a b Llobet Rosell A, Paglione M, Gilley J, Kocia M, Perillo G, Gasparrini M, et al. (December 2022). "The NAD+ precursor NMN activates dSarm to trigger axon degeneration in Drosophila". eLife. 11: e80245. doi:10.7554/eLife.80245. PMC 9788811. PMID 36476387.
  34. ^ a b Hou YN, Cai Y, Li WH, He WM, Zhao ZY, Zhu WJ, et al. (December 2022). "A conformation-specific nanobody targeting the nicotinamide mononucleotide-activated state of SARM1". Nature Communications. 13 (1): 7898. Bibcode:2022NatCo..13.7898H. doi:10.1038/s41467-022-35581-y. PMC 9780360. PMID 36550129.
  35. ^ a b c Bratkowski M, Xie T, Thayer DA, Lad S, Mathur P, Yang YS, et al. (August 2020). "Structural and Mechanistic Regulation of the Pro-degenerative NAD Hydrolase SARM1". Cell Reports. 32 (5): 107999. doi:10.1016/j.celrep.2020.107999. PMID 32755591.
  36. ^ Loreto A, Angeletti C, Gu W, Osborne A, Nieuwenhuis B, Gilley J, et al. (December 2021). "Neurotoxin-mediated potent activation of the axon degeneration regulator SARM1". eLife. 10: e72823. doi:10.7554/eLife.72823. PMC 8758145. PMID 34870595.
  37. ^ Wu T, Zhu J, Strickland A, Ko KW, Sasaki Y, Dingwall CB, et al. (October 2021). "Neurotoxins subvert the allosteric activation mechanism of SARM1 to induce neuronal loss". Cell Reports. 37 (3): 109872. doi:10.1016/j.celrep.2021.109872. PMC 8638332. PMID 34686345.
  38. ^ Sasaki Y, Zhu J, Shi Y, Gu W, Kobe B, Ve T, et al. (November 2021). "Nicotinic acid mononucleotide is an allosteric SARM1 inhibitor promoting axonal protection". Experimental Neurology. 345: 113842. doi:10.1016/j.expneurol.2021.113842. PMC 8571713. PMID 34403688. S2CID 237012029.
  39. ^ Liu HW, Smith CB, Schmidt MS, Cambronne XA, Cohen MS, Migaud ME, et al. (October 2018). "Pharmacological bypass of NAD+ salvage pathway protects neurons from chemotherapy-induced degeneration". Proceedings of the National Academy of Sciences of the United States of America. 115 (42): 10654–10659. Bibcode:2018PNAS..11510654L. doi:10.1073/pnas.1809392115. PMC 6196523. PMID 30257945.
  40. ^ Feldman HC, Merlini E, Guijas C, DeMeester KE, Njomen E, Kozina EM, et al. (August 2022). "Selective inhibitors of SARM1 targeting an allosteric cysteine in the autoregulatory ARM domain". Proceedings of the National Academy of Sciences of the United States of America. 119 (35): e2208457119. Bibcode:2022PNAS..11908457F. doi:10.1073/pnas.2208457119. PMC 9436332. PMID 35994671.
  41. ^ Walker LJ, Summers DW, Sasaki Y, Brace EJ, Milbrandt J, DiAntonio A (January 2017). "MAPK signaling promotes axonal degeneration by speeding the turnover of the axonal maintenance factor NMNAT2". eLife. 6. doi:10.7554/eLife.22540. PMC 5241118. PMID 28095293.
  42. ^ Summers DW, Milbrandt J, DiAntonio A (September 2018). "Palmitoylation enables MAPK-dependent proteostasis of axon survival factors". Proceedings of the National Academy of Sciences of the United States of America. 115 (37): E8746 – E8754. Bibcode:2018PNAS..115E8746S. doi:10.1073/pnas.1806933115. PMC 6140512. PMID 30150401.
  43. ^ Summers DW, Frey E, Walker LJ, Milbrandt J, DiAntonio A (February 2020). "DLK Activation Synergizes with Mitochondrial Dysfunction to Downregulate Axon Survival Factors and Promote SARM1-Dependent Axon Degeneration". Molecular Neurobiology. 57 (2): 1146–1158. doi:10.1007/s12035-019-01796-2. PMC 7035184. PMID 31696428.
  44. ^ Yang J, Wu Z, Renier N, Simon DJ, Uryu K, Park DS, et al. (January 2015). "Pathological axonal death through a MAPK cascade that triggers a local energy deficit". Cell. 160 (1–2): 161–176. doi:10.1016/j.cell.2014.11.053. PMC 4306654. PMID 25594179.
  45. ^ Henninger N, Bouley J, Sikoglu EM, An J, Moore CM, King JA, et al. (April 2016). "Attenuated traumatic axonal injury and improved functional outcome after traumatic brain injury in mice lacking Sarm1". Brain. 139 (Pt 4): 1094–1105. doi:10.1093/brain/aww001. PMC 5006226. PMID 26912636.
  46. ^ Ziogas NK, Koliatsos VE (April 2018). "Primary Traumatic Axonopathy in Mice Subjected to Impact Acceleration: A Reappraisal of Pathology and Mechanisms with High-Resolution Anatomical Methods". The Journal of Neuroscience. 38 (16): 4031–4047. doi:10.1523/JNEUROSCI.2343-17.2018. PMC 6705930. PMID 29567804.
  47. ^ Marion CM, McDaniel DP, Armstrong RC (November 2019). "Sarm1 deletion reduces axon damage, demyelination, and white matter atrophy after experimental traumatic brain injury". Experimental Neurology. 321: 113040. doi:10.1016/j.expneurol.2019.113040. PMID 31445042. S2CID 201124859.
  48. ^ Maynard ME, Redell JB, Zhao J, Hood KN, Vita SM, Kobori N, et al. (May 2020). "Sarm1 loss reduces axonal damage and improves cognitive outcome after repetitive mild closed head injury". Experimental Neurology. 327: 113207. doi:10.1016/j.expneurol.2020.113207. PMC 7959192. PMID 31962129.
  49. ^ Bradshaw DV, Knutsen AK, Korotcov A, Sullivan GM, Radomski KL, Dardzinski BJ, et al. (May 2021). "Genetic inactivation of SARM1 axon degeneration pathway improves outcome trajectory after experimental traumatic brain injury based on pathological, radiological, and functional measures". Acta Neuropathologica Communications. 9 (1): 89. doi:10.1186/s40478-021-01193-8. PMC 8130449. PMID 34001261.
  50. ^ Alexandris AS, Lee Y, Lehar M, Alam Z, Samineni P, Tripathi SJ, et al. (October 2022). "Traumatic axonopathy in spinal tracts after impact acceleration head injury: Ultrastructural observations and evidence of SARM1-dependent axonal degeneration". Experimental Neurology. 359: 114252. doi:10.1016/j.expneurol.2022.114252. PMC 10321775. PMID 36244414. S2CID 252894815.
  51. ^ Alexandris AS, Lee Y, Lehar M, Alam Z, McKenney J, Perdomo D, et al. (2023-03-14). "Traumatic Axonal Injury in the Optic Nerve: The Selective Role of SARM1 in the Evolution of Distal Axonopathy". Journal of Neurotrauma. 40 (15–16): 1743–1761. doi:10.1089/neu.2022.0416. ISSN 1557-9042. PMC 10460965. PMID 36680758. S2CID 256055839.
  52. ^ Geisler S, Doan RA, Strickland A, Huang X, Milbrandt J, DiAntonio A (December 2016). "Prevention of vincristine-induced peripheral neuropathy by genetic deletion of SARM1 in mice". Brain. 139 (Pt 12): 3092–3108. doi:10.1093/brain/aww251. PMC 5840884. PMID 27797810.
  53. ^ Geisler S, Doan RA, Cheng GC, Cetinkaya-Fisgin A, Huang SX, Höke A, et al. (September 2019). "Vincristine and bortezomib use distinct upstream mechanisms to activate a common SARM1-dependent axon degeneration program". JCI Insight. 4 (17). doi:10.1172/jci.insight.129920. PMC 6777905. PMID 31484833.
  54. ^ Gould SA, White M, Wilbrey AL, Pór E, Coleman MP, Adalbert R (April 2021). "Protection against oxaliplatin-induced mechanical and thermal hypersensitivity in Sarm1-/- mice". Experimental Neurology. 338: 113607. doi:10.1016/j.expneurol.2021.113607. PMID 33460644. S2CID 231614379.
  55. ^ Cetinkaya-Fisgin A, Luan X, Reed N, Jeong YE, Oh BC, Hoke A (December 2020). "Cisplatin induced neurotoxicity is mediated by Sarm1 and calpain activation". Scientific Reports. 10 (1): 21889. Bibcode:2020NatSR..1021889C. doi:10.1038/s41598-020-78896-w. PMC 7736304. PMID 33318563.
  56. ^ a b Turkiew E, Falconer D, Reed N, Höke A (September 2017). "Deletion of Sarm1 gene is neuroprotective in two models of peripheral neuropathy". Journal of the Peripheral Nervous System. 22 (3): 162–171. doi:10.1111/jns.12219. PMC 5585053. PMID 28485482.
  57. ^ Cheng Y, Liu J, Luan Y, Liu Z, Lai H, Zhong W, et al. (November 2019). "Sarm1 Gene Deficiency Attenuates Diabetic Peripheral Neuropathy in Mice". Diabetes. 68 (11): 2120–2130. doi:10.2337/db18-1233. PMC 6804630. PMID 31439642.
  58. ^ Fernandes KA, Mitchell KL, Patel A, Marola OJ, Shrager P, Zack DJ, et al. (June 2018). "Role of SARM1 and DR6 in retinal ganglion cell axonal and somal degeneration following axonal injury". Experimental Eye Research. 171: 54–61. doi:10.1016/j.exer.2018.03.007. PMC 5964014. PMID 29526794.
  59. ^ Ozaki E, Gibbons L, Neto NG, Kenna P, Carty M, Humphries M, et al. (May 2020). "SARM1 deficiency promotes rod and cone photoreceptor cell survival in a model of retinal degeneration". Life Science Alliance. 3 (5): e201900618. doi:10.26508/lsa.201900618. PMC 7184027. PMID 32312889.
  60. ^ Ko KW, Milbrandt J, DiAntonio A (August 2020). "SARM1 acts downstream of neuroinflammatory and necroptotic signaling to induce axon degeneration". The Journal of Cell Biology. 219 (8): e201912047. doi:10.1083/jcb.201912047. PMC 7401797. PMID 32609299.
  61. ^ Sasaki Y, Kakita H, Kubota S, Sene A, Lee TJ, Ban N, et al. (October 2020). "SARM1 depletion rescues NMNAT1-dependent photoreceptor cell death and retinal degeneration". eLife. 9: e62027. doi:10.7554/eLife.62027. PMC 7591247. PMID 33107823.
  62. ^ Finnegan LK, Chadderton N, Kenna PF, Palfi A, Carty M, Bowie AG, et al. (January 2022). "SARM1 Ablation Is Protective and Preserves Spatial Vision in an In Vivo Mouse Model of Retinal Ganglion Cell Degeneration". International Journal of Molecular Sciences. 23 (3): 1606. doi:10.3390/ijms23031606. PMC 8835928. PMID 35163535.
  63. ^ Gibbons L, Ozaki E, Greene C, Trappe A, Carty M, Coppinger JA, et al. (2022). "SARM1 Promotes Photoreceptor Degeneration in an Oxidative Stress Model of Retinal Degeneration". Frontiers in Neuroscience. 16: 852114. doi:10.3389/fnins.2022.852114. PMC 9012108. PMID 35431772.
  64. ^ Liu P, Chen W, Jiang H, Huang H, Liu L, Fang F, et al. (2023-06-13). "Differential effects of SARM1 inhibition in traumatic glaucoma and EAE optic neuropathies". Molecular Therapy. Nucleic Acids. 32: 13–27. doi:10.1016/j.omtn.2023.02.029. ISSN 2162-2531. PMC 10025007. PMID 36950280.
  65. ^ Tian W, Czopka T, López-Schier H (January 2020). "Systemic loss of Sarm1 protects Schwann cells from chemotoxicity by delaying axon degeneration". Communications Biology. 3 (1): 49. doi:10.1038/s42003-020-0776-9. PMC 6992705. PMID 32001778.
  66. ^ Yamada Y, Strickland A, Sasaki Y, Bloom AJ, DiAntonio A, Milbrandt J (October 2022). "A SARM1/mitochondrial feedback loop drives neuropathogenesis in a Charcot-Marie-Tooth disease type 2A rat model". The Journal of Clinical Investigation. 132 (23): e161566. doi:10.1172/JCI161566. PMC 9711878. PMID 36287202. S2CID 253118335.
  67. ^ Montoro-Gámez C, Nolte H, Molinié T, Evangelista G, Tröder S, Barth E, et al. (2023-04-22). "SARM1 deletion delays cerebellar but not spinal cord degeneration in an enhanced mouse model of SPG7 deficiency". Brain: A Journal of Neurology. 146 (10): 4117–4131. doi:10.1093/brain/awad136. ISSN 1460-2156. PMID 37086482.
  68. ^ Ademi M, Yang X, Coleman MP, Gilley J (August 2022). "Natural variants of human SARM1 cause both intrinsic and dominant loss-of-function influencing axon survival". Scientific Reports. 12 (1): 13846. Bibcode:2022NatSR..1213846A. doi:10.1038/s41598-022-18052-8. PMC 9381744. PMID 35974060.
  69. ^ Lukacs M, Gilley J, Zhu Y, Orsomando G, Angeletti C, Liu J, et al. (October 2019). "Severe biallelic loss-of-function mutations in nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) in two fetuses with fetal akinesia deformation sequence". Experimental Neurology. 320: 112961. doi:10.1016/j.expneurol.2019.112961. PMC 6708453. PMID 31136762.
  70. ^ Huppke P, Wegener E, Gilley J, Angeletti C, Kurth I, Drenth JP, et al. (October 2019). "Homozygous NMNAT2 mutation in sisters with polyneuropathy and erythromelalgia". Experimental Neurology. 320: 112958. doi:10.1016/j.expneurol.2019.112958. PMID 31132363. S2CID 162183820.
  71. ^ Gilley J, Jackson O, Pipis M, Estiar MA, Al-Chalabi A, Danzi MC, et al. (November 2021). "Enrichment of SARM1 alleles encoding variants with constitutively hyperactive NADase in patients with ALS and other motor nerve disorders". eLife. 10: e70905. doi:10.7554/eLife.70905. PMC 8735862. PMID 34796871.
  72. ^ Bloom AJ, Mao X, Strickland A, Sasaki Y, Milbrandt J, DiAntonio A (January 2022). "Constitutively active SARM1 variants that induce neuropathy are enriched in ALS patients". Molecular Neurodegeneration. 17 (1): 1. doi:10.1186/s13024-021-00511-x. PMC 8739729. PMID 34991663.
  73. ^ Chen YH, Sasaki Y, DiAntonio A, Milbrandt J (May 2021). "SARM1 is required in human derived sensory neurons for injury-induced and neurotoxic axon degeneration". Experimental Neurology. 339: 113636. doi:10.1016/j.expneurol.2021.113636. PMC 8171232. PMID 33548217.
  74. ^ Sporny M, Guez-Haddad J, Lebendiker M, Ulisse V, Volf A, Mim C, et al. (September 2019). "Structural Evidence for an Octameric Ring Arrangement of SARM1". Journal of Molecular Biology. 431 (19): 3591–3605. doi:10.1016/j.jmb.2019.06.030. PMID 31278906. S2CID 195819811.
  75. ^ Shen C, Vohra M, Zhang P, Mao X, Figley MD, Zhu J, et al. (January 2021). "Multiple domain interfaces mediate SARM1 autoinhibition". Proceedings of the National Academy of Sciences of the United States of America. 118 (4): e2023151118. Bibcode:2021PNAS..11823151S. doi:10.1073/pnas.2023151118. PMC 7848697. PMID 33468661.
  76. ^ Khazma T, Golan-Vaishenker Y, Guez-Haddad J, Grossman A, Sain R, Weitman M, et al. (December 2022). "A duplex structure of SARM1 octamers stabilized by a new inhibitor". Cellular and Molecular Life Sciences. 80 (1): 16. doi:10.1007/s00018-022-04641-3. PMC 11072711. PMID 36564647. S2CID 255085095.
  77. ^ Gilley J, Coleman MP (January 2010). "Endogenous Nmnat2 is an essential survival factor for maintenance of healthy axons". PLOS Biology. 8 (1): e1000300. doi:10.1371/journal.pbio.1000300. PMC 2811159. PMID 20126265.
  78. ^ Gilley J, Orsomando G, Nascimento-Ferreira I, Coleman MP (March 2015). "Absence of SARM1 rescues development and survival of NMNAT2-deficient axons". Cell Reports. 10 (12): 1974–1981. doi:10.1016/j.celrep.2015.02.060. PMC 4386025. PMID 25818290.
  79. ^ Araki T, Sasaki Y, Milbrandt J (August 2004). "Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration". Science. 305 (5686): 1010–1013. Bibcode:2004Sci...305.1010A. doi:10.1126/science.1098014. PMID 15310905. S2CID 32370137.
  80. ^ Sasaki Y, Vohra BP, Lund FE, Milbrandt J (April 2009). "Nicotinamide mononucleotide adenylyl transferase-mediated axonal protection requires enzymatic activity but not increased levels of neuronal nicotinamide adenine dinucleotide". The Journal of Neuroscience. 29 (17): 5525–5535. doi:10.1523/JNEUROSCI.5469-08.2009. PMC 3162248. PMID 19403820.
  81. ^ Sasaki Y, Vohra BP, Baloh RH, Milbrandt J (May 2009). "Transgenic mice expressing the Nmnat1 protein manifest robust delay in axonal degeneration in vivo". The Journal of Neuroscience. 29 (20): 6526–6534. doi:10.1523/JNEUROSCI.1429-09.2009. PMC 2697066. PMID 19458223.
  82. ^ Sasaki Y, Milbrandt J (December 2010). "Axonal degeneration is blocked by nicotinamide mononucleotide adenylyltransferase (Nmnat) protein transduction into transected axons". The Journal of Biological Chemistry. 285 (53): 41211–41215. doi:10.1074/jbc.C110.193904. PMC 3009846. PMID 21071441.
  83. ^ Sasaki Y, Nakagawa T, Mao X, DiAntonio A, Milbrandt J (October 2016). "NMNAT1 inhibits axon degeneration via blockade of SARM1-mediated NAD+ depletion". eLife. 5. doi:10.7554/eLife.19749. PMC 5063586. PMID 27735788.
  84. ^ Coleman MP, Conforti L, Buckmaster EA, Tarlton A, Ewing RM, Brown MC, et al. (August 1998). "An 85-kb tandem triplication in the slow Wallerian degeneration (Wlds) mouse". Proceedings of the National Academy of Sciences of the United States of America. 95 (17): 9985–9990. Bibcode:1998PNAS...95.9985C. doi:10.1073/pnas.95.17.9985. PMC 21448. PMID 9707587.
  85. ^ Beirowski B, Babetto E, Gilley J, Mazzola F, Conforti L, Janeckova L, et al. (January 2009). "Non-nuclear Wld(S) determines its neuroprotective efficacy for axons and synapses in vivo". The Journal of Neuroscience. 29 (3): 653–668. doi:10.1523/JNEUROSCI.3814-08.2009. PMC 6665162. PMID 19158292.
  86. ^ Conforti L, Wilbrey A, Morreale G, Janeckova L, Beirowski B, Adalbert R, et al. (February 2009). "Wld S protein requires Nmnat activity and a short N-terminal sequence to protect axons in mice". The Journal of Cell Biology. 184 (4): 491–500. doi:10.1083/jcb.200807175. PMC 2654131. PMID 19237596.
  87. ^ Babetto E, Beirowski B, Janeckova L, Brown R, Gilley J, Thomson D, et al. (October 2010). "Targeting NMNAT1 to axons and synapses transforms its neuroprotective potency in vivo". The Journal of Neuroscience. 30 (40): 13291–13304. doi:10.1523/JNEUROSCI.1189-10.2010. PMC 6634738. PMID 20926655.
  88. ^ Di Stefano M, Nascimento-Ferreira I, Orsomando G, Mori V, Gilley J, Brown R, et al. (May 2015). "A rise in NAD precursor nicotinamide mononucleotide (NMN) after injury promotes axon degeneration". Cell Death and Differentiation. 22 (5): 731–742. doi:10.1038/cdd.2014.164. PMC 4392071. PMID 25323584.
  89. ^ Loreto A, Di Stefano M, Gering M, Conforti L (December 2015). "Wallerian Degeneration Is Executed by an NMN-SARM1-Dependent Late Ca(2+) Influx but Only Modestly Influenced by Mitochondria". Cell Reports. 13 (11): 2539–2552. doi:10.1016/j.celrep.2015.11.032. PMID 26686637. S2CID 25667592.
  90. ^ a b Gerdts J, Brace EJ, Sasaki Y, DiAntonio A, Milbrandt J (April 2015). "SARM1 activation triggers axon degeneration locally via NAD⁺ destruction". Science. 348 (6233): 453–457. Bibcode:2015Sci...348..453G. doi:10.1126/science.1258366. PMC 4513950. PMID 25908823.
  91. ^ Ko KW, Devault L, Sasaki Y, Milbrandt J, DiAntonio A (November 2021). "Live imaging reveals the cellular events downstream of SARM1 activation". eLife. 10: e71148. doi:10.7554/eLife.71148. PMC 8612704. PMID 34779400.
  92. ^ Dingwall CB, Strickland A, Yum SW, Yim AK, Zhu J, Wang PL, et al. (October 2022). "Macrophage depletion blocks congenital SARM1-dependent neuropathy". The Journal of Clinical Investigation. 132 (23): e159800. doi:10.1172/JCI159800. PMC 9711884. PMID 36287209.
  93. ^ Niou Z, Yang S, Sri A, Rodriquez H, Gilley J, Coleman MP, et al. (2022-02-08). "NMNAT2 in cortical glutamatergic neurons exerts both cell and non-cell autonomous influences to shape cortical development and to maintain neuronal health". bioRxiv: 2022.02.05.479195. doi:10.1101/2022.02.05.479195. S2CID 246746270.
[edit]
  • SARM1 (Wikigenes collaborative publishing)