Jump to content

List of exoplanets and planetary debris around white dwarfs

From Wikipedia, the free encyclopedia

This is a list of exoplanets and planetary debris disks around white dwarfs.

List of white dwarf exoplanets

[edit]

List of confirmed exoplanets

[edit]
System name Host star Mass of planet (MJ) Semi-major
axis (au)
Discovery method Discovery
year
Note Reference
WD 0806-661 single 1.5-8 2500 direct imaging 2011 WD 0806-661 B can be interpreted as either a sub-brown dwarf or an exoplanet. [1][2]
WD J0914+1914 metal-polluted single 0.070 to 0.074 detection of accreted planet material via spectroscopy 2019 likely ice giant [3]
WD 1856+534 single >0.84[4] 0.019 transiting 2020 the white dwarf co-moves with G 229-20 A/B [5][6][7]
GP Comae Berenices single 10.5±1.5[8] 0.0014 radial velocity 2016 suspected to contain strange quark matter [9] [10]
MOA-2010-BLG-477L single 1.4±0.3 2.8±0.5 microlensing 2012/2021 a Jupiter-analogue [11]
KMT-2020-BLG-0414 single 0.0060±0.0006 2.1±0.2 microlensing 2021/2024 1.9 earth-mass planet, also has a brown dwarf at 22 au [12][13]
QZ Serpentis white dwarf+K5 star 0.63 0.019 detection via "very long photometric period" (VLPP) 2022 has an orbital period of 1 day. [14][15]

List of candidate exoplanets

[edit]
System name Host star Status Mass of planet (MJ) Semi-major axis (au) Discovery method Discovery year Note Reference
GD 356 single rejected candidate <12 variability and missing IR-excess 2010 115 minute variability, iron-rich terrestrial planet was suspected to electromagnetically interacting with the white dwarf,[16] no orbiting body was detected, rejecting the idea of an unipolar inductor model[17] [16]
GD 140 single suspected 3.74+1.43
−0.90
anomaly in the Hipparcos-Gaia proper motion 2019 mass is estimated for separation of 5 AU, to be observed with JWST[18] [19][20]
LAWD 37 single suspected 0.60+0.23
−0.15
anomaly in the Hipparcos-Gaia proper motion 2019 mass is estimated for separation of 5 AU, to be observed with JWST[18] [19][20]
GD 394 metal-polluted single candidate EUV variability 2019 either a metal accretion spot that disappeared or an evaporating planet at a 1.15 day orbit, with a hydrogen-cloud around the planet transiting in front of the white dwarf[21] [21]
WD 0141-675 metal-polluted single candidate 9.26+2.64
−1.15
Gaia DR3 stellar multiples/radial velocity 2023 rejected due to software error[22] 33.65 ± 0.05 day period. ESPRESSO radial velocity observations however possibly detects a planet with a 16 day period[23] [24]
WD 1202−232 (LP 852-7) metal-polluted single candidate 1–7 11.47 direct imaging 2024 similar to solar system giant planets in age and separation [25]
WD 2105−82 (LAWD 83) metal-polluted single candidate 1–2 34.62 direct imaging 2024 similar to solar system giant planets in age and separation [25]
GALEX J071816.4+373139 massive single candidate 3.6 infrared excess 2024 planet candidate has a temperature of about 400 K [26]
WD 0310-688 (CPD-69 177) metal-polluted single candidate 3.0+5.5
−1.9
0.1-2 infrared excess 2024 planet candidate has a temperature of 248+84
−61
K
[27]
HS 0209+0832 metal-polluted single candidate detection of accreted planet material via spectroscopy 2024 metals in agreement with giant planet (similar to WD J0914+1914), period of 4.4 days from TESS, first and currently only white dwarf with detection of zinc [28]
Sirius B white dwarf+A0V star candidate 1.5 0.9 astrometry 2024 has a mass range of 0.8-2.4 Jupiter masses. [29] [30]
Central star of the Helix Nebula yes candidate 7.31 transiting 2024 orbits the central white dwarf of the Helix Nebula, has a radius of 1 RJ or 2.3 R🜨 [31]

List of exoplanets detected via timing

[edit]

Circumbinary exoplanets found with eclipse timing variations are sometimes listed as confirmed planets. The models describing these planets do however often fail to predict eclipse timing and the timing variation could be caused by other effects, such as magnetic effects.[32] Due to the high number of objects detected via timing, this list was separated from the above lists.

System name Host star Mass of planet (MJ) Semi-major
axis (au)
Discovery method Discovery
year
Note Reference
PSR B1620-26 white dwarf+pulsar 2.5±1 23 pulsar timing 1993 [33]
DP Leonis white dwarf+donor star 6.28 8.19 eclipse timing variations 2009 has a size of 1.14 RJ [34]
NN Serpentis PCEB: white dwarf+red dwarf 6.91±0.54 5.38±0.20 eclipse timing variation 2010 PCEB is surrounded by a dusty disk,[35] might be only one planet[36] [37]
2.28±0.38 3.39±0.10
UZ Fornacis white dwarf+red dwarf 6.3 5.9 eclipse timing variations 2011 planet b & c [38][39]
7.7 2.8
HU Aquarii white dwarf+M4.5V star 5.9 3.6 eclipse timing variations 2011 planet b & c [40][41]
4.5 5.4
RR Caeli (AB) white dwarf+dM star 4.2 5.3 eclipse timing variations 2012 planet b [42]
SDSS J1208+3550 single 9.5 0.00213 timing 2013 orbits its star in slightly less than an hour [43]
SDSS J1730+5545 single 6 0.00139 timing 2014 orbits its star in 35 minutes. [44] [45]
DE Canum Venaticorum white dwarf+M3V star 12.0293 5.75 eclipse timing variations 2018 has a size of 1.1 RJ [46] [47]
Candidates
LX Serpentis (AB) white dwarf+M3V star 7.5 9.1 timing 2016 also known as Stepanian's Star [48][49] [50]
DW Ursae Majoris white dwarf+M3V star 10.06 5.8 timing 2016 accretion disk in the system [51]
GK Virginis white dwarf+red dwarf 0.95 7.38 timing 2020 eclipsing binary [52]
KPD 0005+5106 X-ray single 1 timing 2021 Jupiter-analogue, has the same exact size and mass of Jupiter. [53]
RR Caeli (AB) white dwarf+dM star 2.7 9.7 timing 2021 planet c [54]
PSR J0337+1715 (AB) b pulsar+2 white dwarfs 0.03 pulsar timing 2022 probably similar to Neptune or Uranus. [55]

List of transiting debris or minor planets

[edit]
System name Metal
pollution
Type of
transiting object
Semi-major
axis (R)
Discovery method Discovery
Year
Note Ref.
WD 1145+017 yes minor planet 1.16[56] transiting 2015 [57]
SDSS J1228+1040 yes planetesimal 0.73 variable Calcium absorption line 2019 orbits within the debris disk of the white dwarf [58]
WD 0145+234 yes asteroid 1.29[59] tidal disruption event 2019 [60]
ZTF J0139+5245 yes debris cloud 77.4 transiting 2020 highly eccentric orbit (e>0.97)[61] [62][63]
ZTF J0328-1219 yes 2 debris clumps b: 2.11
c: 2.28
transiting 2021 [64][65]
SDSS J0107+2107 yes debris transiting 2021 [64]
ZTF J0347−1802 debris transiting 2021 transit duration of about 70 days [64]
ZTF J0923+4236 debris transiting 2021 period in the order of days, variation in the order of hours, vast long-term variation of transit numbers and depth [64][66]
SBSS 1232+563 yes debris transiting 2021 shallow transits [64]
WD 1054-226 yes many debris clouds 3.69 transiting 2022 disk detected in transit, variable with a period of 25.02 hours [67]

List of planetary debris around white dwarfs

[edit]

About 6% of white dwarfs show infrared excess due to a disk around a white dwarf.[68] In the past only a relative small sample of white dwarf disks was known.[69] Due to advances in white dwarf detection (e.g. with Gaia or LAMOST) and improvement of WISE infrared catalogs with unWISE/CatWISE, the number has increased to hundreds of candidates.[70][71][68] Therefore this list will be limited to disks with metal gas emission and notable systems.

Notable systems with planetary debris

[edit]
System name Host
temperature
(K)
Likely planetary
body accreted
Infrared
excess
Metal absorption lines Discovery year Notes and References
van Maanen 2 6,130 no Ca, Fe, Mg 1917 [72] first metal absorption line (calcium) discovered[73] in a white dwarf
G 29-38 11,600 chondritic object yes C, O, Mg, Si, Ca, Ti, Cr, Fe 1987/2005 [69][74][75][76] first confirmed disk
GD 362 9,740 asteroid with earth/Moon-like composition yes Ca, Na, Mg, Al, Si, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Sr 2005 [69][77][78][79] second confirmed disk
WD 1425+540 14,490 exo-Kuiper Belt Object no C, N, O, Mg, Si, S, Ca, Fe, Ni 2017 [80] first nitrogen detected in a white dwarf, likely an exo-KBO
SDSS 1557 21,800 object larger than 4 km yes Mg, Ca, Si 2011/2017 [81] white dwarf with a brown dwarf in a ultra-short orbit (2.27 hrs) and a circumbinary disk around the binary
WD J2356−209 4,040 sodium-rich body? no Na, Mg, Ca, Fe 2001/2019 [82][83] strong and broad sodium feature
WD J1644–0449 3,830 meteoritic composition, except for Lithium no Li, Na, K, Ca 2021 [84] one of the first detection of lithium and potassium in a white dwarf, similar discoveries at the same time
WD 2317+1830 4,210 or 4,557 primitive planetesimal[85] yes Li, Na, Ca 2021 [86] Coldest and oldest (9.5 Gyrs) white dwarf with a detected disk. Also one of the most massive white dwarfs with a disk. A newer work[87] finds higher temperature and lower age (6.4 Gyrs).
LSPM J0207+3331 6,120 2 minor planets yes 2021 [88] disk with two components around cold white dwarf
GALEX J2339–0424 13,735 exomoon no Be, O, Mg, Si, Ca, Ti, Cr, Mn, Fe 2021 [73][89] one of two white dwarfs with the first detection of beryllium, possibly due to exomoon accretion
GD 424 16,560 CI crondrite + water-rich body no O, Mg, Al, Si, Ca, Ti, Cr, Mn, Fe, Ni 2021 [90] mainly polluted by a rocky body, but also shows a large amount of trace-hydrogen, which could have come from a past accretion of a water-rich body
G238-44 20,000 iron-rich Mercury-like object + Kuiper Belt Object no C, N, O, Mg, Al, Si, P, S, Ca, Fe 2022 [91] unusual composition, showing that it accreted an iron-rich Mercury-like object and an icy KBO
WD 1054–226 7,910 no Mg, Al, Ca, Fe 2022 [67] disk detected in transit
WD J2147–4035 3,048 no Na, K, Li, C? 2022 [92] coldest white dwarf with metal-pollution, with a cooling age of 10 Gyrs, magnetic white dwarf
WD 0956+5912 8,720 Moon-sized object no Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni 2023 [93] recent accretion of a Moon-sized object
PHL 5038 7,525 no Ca 2009/2024 brown dwarf around the white dwarf is likely responsible for scattering a minor planet towards the white dwarf, first such system discovered
WD 0816–310 6,250 Vesta-sized object, likely chrondritic no Na, Mg, Ca, Cr, Mn, Fe, Ni 2024 [94] First observation of metals being guided by magnetic fields towards the magnetic poles

Gaseous disks

[edit]
System name Host
temperature (K)
Disk inner
radius (radius white dwarf = Rwd)
Disk outer
radius (Rwd)
Infrared excess Metal absorption lines Metal emission lines Disk
discovery
year
Notes and References
WD 1226+110 22,020 26 93 yes Mg, Ca, Si, O, C Ca, Fe 2006/2009 [95][96][97][69] has minor planet
WD 1041+091 17,912 18 38 yes C, O, Mg, Al, Si, P, S, Ca, Fe, Ni Ca 2007 [98][69][99] possibly differentiated carbonate-rich body
WD 0738+1835 13,600 12 21 yes O, Na, Mg, Si, Ca, Fe Ca 2010 [100][101][69] Ceres-sized body with bulk-earth composition
WD 0842+231 18,600 13 187 yes H, C, O, Si, Fe, Mg, Al, Ca, Cr, Mn, Ni Ca 2010 [102][103][69] object enhanced in iron, nickel, and maybe carbon, at least 100 km in diameter, eccentric disk, possibly maintained by a planet
WD 0959-0200 13,280 10 25 yes Mg, Ca Ca 2012 [104][69]
WD 1349-230 17,000 13 35 yes Ca Ca 2012 [105][106][101][69]
WD 1617+1620 13,432 9 20 yes Ca 2012 [107][101][69]
WD 1344+0324 26,071 90 105 yes Ca 2017 [108] coldest debris disk discovered at the time
WD 0145+234 13,000 13? 24? yes Ca, carbonates? 2019 [109][60][110] TDE of a minor planet, might had water in the past
WD 0006+2858 26,000 20 64 yes C, O, S, P, Mg, Al, Si, Ca Ca, O, Fe, Mg, Fe, Si 2020 [109][111][112]
WD 0347+1624 20,620 yes Ca, Mg, Al Ca, O, Fe 2020 [113][111]
WD 0510+2315 21,700 yes O, S, Mg, Al, Si, Ca O, Mg, Ca, Fe 2020 [109][111]
WD 0611-6931 16,550 10 165 yes Ca, C, O, S, P, Mg, Al, Si, Fe, Ni Ca, O, Fe, Si, Na, Mg 2020 [113][109][111]
WD 0644-0352 20,850 yes Ca, H, O, Mg, Al, Si, Ti, Cr, Fe Ca 2020 [113][111][109] possibly some water in the parent body
WD 1622+5840 19,560 yes Ca, H, C, O, S, P, Mg, Al, Si, Fe, Ni Ca, O, Fe 2020 [113][109][111]
WD 2100+2122 25,320 33 57 yes Ca, Mg, Al, Si, Fe Ca, Fe, O, Mg, Si 2020 [113][111][112]
WD 0846+5703 17,803 yes Si, Mg Ca, Mg, Fe 2021 [114] exceptionally strong infrared excess
WD 0234-0406 12,454 yes Mg, O, Ca, Al, Ti, Fe Ca, Mg/Fe 2021 [114] possibly water containing object accreted
WD 0529-3401 23,197 yes Mg, Si, Ca H, Ca, Mg, O, Fe 2021 [114] strong suggestion of water-containing body due to emission of H, O
WD 1930-5028 13,306 yes Mg, Ca Ca, Mg, Fe 2021 [114]
WD 2133+2428 29,282 yes Ca, O 2021 [114] hottest white dwarf with a gaseous disk
WD 2212-1352 13,454 yes Mg, Si, C, Ca, Al, Fe Ca, Mg, Fe 2021 [114]

See also

[edit]

References

[edit]
  1. ^ Luhman, K. L.; Burgasser, A. J.; Bochanski, J. J. (2011-03-01). "Discovery of a Candidate for the Coolest Known Brown Dwarf". The Astrophysical Journal. 730 (1): L9. arXiv:1102.5411. Bibcode:2011ApJ...730L...9L. doi:10.1088/2041-8205/730/1/L9. hdl:1721.1/95646. ISSN 0004-637X. S2CID 54666396.
  2. ^ Leggett, S. K.; Tremblin, P.; Esplin, T. L.; Luhman, K. L.; Morley, Caroline V. (2017-06-01). "The Y-type Brown Dwarfs: Estimates of Mass and Age from New Astrometry, Homogenized Photometry, and Near-infrared Spectroscopy". The Astrophysical Journal. 842 (2): 118. arXiv:1704.03573. Bibcode:2017ApJ...842..118L. doi:10.3847/1538-4357/aa6fb5. ISSN 0004-637X. S2CID 119249195.
  3. ^ Gänsicke, Boris T.; Schreiber, Matthias R.; Toloza, Odette; Gentile Fusillo, Nicola P.; Koester, Detlev; Manser, Christopher J. "Accretion of a giant planet onto a white dwarf" (PDF). ESO. Archived (PDF) from the original on 4 December 2019. Retrieved 2019-12-11.
  4. ^ Xu, Siyi; Diamond-Lowe, Hannah; MacDonald, Ryan J.; Vanderburg, Andrew; Blouin, Simon; Dufour, P.; Gao, Peter; Kreidberg, Laura; Leggett, S. K.; Mann, Andrew W.; Morley, Caroline V.; Stephens, Andrew W.; O'Connor, Christopher E.; Thao, Pa Chia; Lewis, Nikole K. (2021-12-01). "Gemini/GMOS Transmission Spectroscopy of the Grazing Planet Candidate WD 1856+534 b". The Astronomical Journal. 162 (6): 296. arXiv:2110.14106. Bibcode:2021AJ....162..296X. doi:10.3847/1538-3881/ac2d26. ISSN 0004-6256. S2CID 239998664.
  5. ^ Vanderburg, Andrew; et al. (16 September 2020). "A giant planet candidate transiting a white dwarf". Nature. 585 (7825): 363–367. arXiv:2009.07282. Bibcode:2020Natur.585..363V. doi:10.1038/s41586-020-2713-y. hdl:1721.1/129733. PMID 32939071. S2CID 221738865.
  6. ^ Chou, Felicia; Andreoli, Claire; Cofield, Calia (16 September 2020). "NASA Missions Spy First Possible Planet Hugging a Stellar Cinder". NASA.
  7. ^ Gary, Bruce L. (17 September 2020). "WD 1856+534 Transit Light Curve Photometry". BruceGary.net. Retrieved 17 September 2020.
  8. ^ Sion, Edward M.; Linnell, Albert P.; Godon, Patrick; Ballouz, Ronald-Louis (2011), "THE HOT COMPONENTS OF AM CVN HELIUM CATACLYSMICS", The Astrophysical Journal, 741 (1): 63, arXiv:1108.1388, Bibcode:2011ApJ...741...63S, doi:10.1088/0004-637X/741/1/63, S2CID 119284962
  9. ^ Kupfer, T.; Steeghs, D.; Groot, P. J.; Marsh, T. R.; Nelemans, G.; Roelofs, G. H. A. (2016-02-04). "UVES and X-Shooter spectroscopy of the emission line AM CVn systems GP Com and V396 Hya". Monthly Notices of the Royal Astronomical Society. 457 (2). Oxford University Press (OUP): 1828–1841. arXiv:1601.02841. doi:10.1093/mnras/stw126. ISSN 0035-8711.
  10. ^ Martin, Pierre-Yves (October 27, 2019). "Planet GP Com b". exoplanet.eu.
  11. ^ Blackman, J. W.; Beaulieu, J. P.; Bennett, D. P.; Danielski, C.; Alard, C.; Cole, A. A.; Vandorou, A.; Ranc, C.; Terry, S. K.; Bhattacharya, A.; Bond, I.; Bachelet, E.; Veras, D.; Koshimoto, N.; Batista, V. (2021-10-01). "A Jovian analogue orbiting a white dwarf star". Nature. 598 (7880): 272–275. arXiv:2110.07934. Bibcode:2021Natur.598..272B. doi:10.1038/s41586-021-03869-6. ISSN 0028-0836. PMID 34646001. S2CID 238860454.
  12. ^ Zang, Weicheng; Han, Cheongho; Kondo, Iona; Yee, Jennifer C.; Lee, Chung-Uk; Gould, Andrew; Mao, Shude; de Almeida, Leandro; Shvartzvald, Yossi; Zhang, Xiangyu; Albrow, Michael D.; Chung, Sun-Ju; Hwang, Kyu-Ha; Jung, Youn Kil; Ryu, Yoon-Hyun (2021-11-01). "An Earth-mass planet in a time of COVID-19: KMT-2020-BLG-0414Lb". Research in Astronomy and Astrophysics. 21 (9): 239. arXiv:2103.01896. Bibcode:2021RAA....21..239Z. doi:10.1088/1674-4527/21/9/239. hdl:2292/63363. ISSN 1674-4527.
  13. ^ Zhang, Keming; Zang, Weicheng; El-Badry, Kareem; Lu, Jessica R.; Bloom, Joshua S.; Agol, Eric; Gaudi, B. Scott; Konopacky, Quinn; LeBaron, Natalie (2024-09-03). "An Earth-mass planet and a brown dwarf in orbit around a white dwarf". Nature Astronomy. 8 (12): 1575–1582. arXiv:2409.02157. Bibcode:2024NatAs.tmp..237Z. doi:10.1038/s41550-024-02375-9.{{cite journal}}: CS1 maint: bibcode (link)
  14. ^ Martin, Pierre-Yves (October 27, 2022). "Planet QZ Ser b". exoplanet.eu.
  15. ^ Chavez, Carlos E.; Georgakarakos, Nikolaos; Aviles, Andres; Aceves, Hector; Tovmassian, Gagik; Zharikov, Sergey; Perez-Leon, J. E.; Tamayo, Francisco (August 2022). "Testing the third-body hypothesis in the cataclysmic variables LU Camelopardalis, QZ Serpentis, V1007 Herculis and BK Lyncis". Monthly Notices of the Royal Astronomical Society. 514 (3): 4629–4638. arXiv:2209.04065. Bibcode:2022MNRAS.514.4629C. doi:10.1093/mnras/stac1112. ISSN 0035-8711.
  16. ^ a b Wickramasinghe, Dayal T.; Farihi, Jay; Tout, Christopher A.; Ferrario, Lilia; Stancliffe, Richard J. (9 February 2010). "Does GD356 have a Terrestrial Planetary Companion?". Monthly Notices of the Royal Astronomical Society. 404 (4): 1984–1991. arXiv:1002.1761. Bibcode:2010MNRAS.404.1984W. doi:10.1111/j.1365-2966.2010.16417.x. S2CID 119255099.
  17. ^ Walters, N.; Farihi, J.; Marsh, T. R.; Bagnulo, S.; Landstreet, J. D.; Hermes, J. J.; Achilleos, N.; Wallach, A.; Hart, M.; Manser, C. J. (2021-05-01). "A test of the planet-star unipolar inductor for magnetic white dwarfs". Monthly Notices of the Royal Astronomical Society. 503 (3): 3743–3758. arXiv:2103.01993. Bibcode:2021MNRAS.503.3743W. doi:10.1093/mnras/stab617. ISSN 0035-8711.
  18. ^ a b "CYCLE 2 GO". STScI.edu. Retrieved 2023-05-15.
  19. ^ a b Kervella, Pierre; Arenou, Frédéric; Mignard, François; Thévenin, Frédéric (2019-03-01). "Stellar and substellar companions of nearby stars from Gaia DR2. Binarity from proper motion anomaly". Astronomy and Astrophysics. 623: A72. arXiv:1811.08902. Bibcode:2019A&A...623A..72K. doi:10.1051/0004-6361/201834371. ISSN 0004-6361. S2CID 119491061.
  20. ^ a b Kervella, Pierre; Arenou, Frédéric; Thévenin, Frédéric (2022-01-01). "Stellar and substellar companions from Gaia EDR3. Proper-motion anomaly and resolved common proper-motion pairs". Astronomy and Astrophysics. 657: A7. arXiv:2109.10912. Bibcode:2022A&A...657A...7K. doi:10.1051/0004-6361/202142146. ISSN 0004-6361. S2CID 237605138.
  21. ^ a b Wilson, David J.; Gänsicke, Boris T.; Koester, Detlev; Toloza, Odette; Holberg, Jay B.; Preval, Simon P.; Barstow, Martin A.; Belardi, Claudia; Burleigh, Matthew R.; Casewell, Sarah L.; Cauley, P. Wilson; Chote, Paul; Farihi, Jay; Hollands, Mark A.; Long, Knox S. (2019-03-01). "Multiwavelength observations of the EUV variable metal-rich white dwarf GD 394". Monthly Notices of the Royal Astronomical Society. 483 (3): 2941–2957. arXiv:1811.10614. Bibcode:2019MNRAS.483.2941W. doi:10.1093/mnras/sty3218. ISSN 0035-8711.
  22. ^ "Gaia DR3 known issues". ESA. 5 May 2023. Retrieved 8 August 2023. During validation of epoch astrometry for Gaia DR4, an error was discovered, that had already had an impact on the Gaia DR3 non-single star results. [...] We can conclude that the solutions for [...] WD 0141-675 [...] are false-positives as far as Gaia non-single star processing is concerned.
  23. ^ Ramirez, Sergio H.; Gaensicke, Boris T.; Koester, Detlev; Lafarga, Marina; Gentile-Fusillo, Nicola (2024-12-09). "ESPRESSO observations of the debris-accreting white dwarf WD 0141-675". arXiv:2412.06920 [astro-ph].
  24. ^ Gaia Collaboration; Arenou, F.; Babusiaux, C.; Barstow, M. A.; Faigler, S.; Jorissen, A.; Kervella, P.; Mazeh, T.; Mowlavi, N.; Panuzzo, P.; Sahlmann, J.; Shahaf, S.; Sozzetti, A.; Bauchet, N.; Damerdji, Y. (2023). "Gaia Data Release 3". Astronomy & Astrophysics. 674: A34. arXiv:2206.05595. doi:10.1051/0004-6361/202243782. S2CID 249626026.
  25. ^ a b Mullally, Susan E.; Debes, John; Cracraft, Misty; Mullally, Fergal; Poulsen, Sabrina; Albert, Loic; Thibault, Katherine; Reach, William T.; Hermes, J. J.; Barclay, Thomas; Kilic, Mukremin; Quintana, Elisa V. (24 Jan 2024). "JWST Directly Images Giant Planet Candidates Around Two Metal-Polluted White Dwarf Stars". The Astrophysical Journal Letters. 962 (2): L32. arXiv:2401.13153. Bibcode:2024ApJ...962L..32M. doi:10.3847/2041-8213/ad2348.
  26. ^ Cheng, Sihao; Schlaufman, Kevin C.; Caiazzo, Ilaria (2024-08-01). "A Candidate Giant Planet Companion to the Massive, Young White Dwarf GALEX J071816.4+373139 Informs the Occurrence of Giant Planets Orbiting B Stars". arXiv:2408.03985 [astro-ph.EP].
  27. ^ Limbach, Mary Anne; Vanderburg, Andrew; Venner, Alexander; Blouin, Simon; Stevenson, Kevin B.; MacDonald, Ryan J.; Jenkins, Sydney; Bowens-Rubin, Rachel; Soares-Furtado, Melinda (2024-08-29). "The MIRI Exoplanets Orbiting White Dwarfs (MEOW) Survey: Mid-Infrared Excess Reveals a Giant Planet Candidate around a Nearby White Dwarf". The Astrophysical Journal. 973 (1): L11. arXiv:2408.16813. Bibcode:2024ApJ...973L..11L. doi:10.3847/2041-8213/ad74ed.
  28. ^ Williams, Jamie; Gaensicke, Boris (2024-04-01). "Dissecting the atmosphere of a giant planet candidate orbiting a hot white dwarf". AASTCS10, Extreme Solar Systems V. 56 (4): 612.03. Bibcode:2024ESS.....561203W.
  29. ^ Martin, Pierre-Yves (October 27, 2024). "Planet Sirius Bb". exoplanet.eu.
  30. ^ Lucas, Miles; Bottom, Michael; Ruane, Garreth; Ragland, Sam (2022). "An Imaging Search for Post-main-sequence Planets of Sirius B". The Astronomical Journal. 163 (2): 81. arXiv:2112.05234. Bibcode:2022AJ....163...81L. doi:10.3847/1538-3881/ac4032.
  31. ^ Martin, Pierre-Yves (October 27, 2024). "Planet Helix Nebula b". exoplanet.eu.
  32. ^ Pulley, D.; Sharp, I. D.; Mallett, J.; von Harrach, S. (August 2022). "Eclipse timing variations in post-common envelope binaries: Are they a reliable indicator of circumbinary companions?". Monthly Notices of the Royal Astronomical Society. 514 (4): 5725–5738. arXiv:2206.06919. Bibcode:2022MNRAS.514.5725P. doi:10.1093/mnras/stac1676.
  33. ^ Sigurdsson, Steinn; Richer, Harvey B.; Hansen, Brad M.; Stairs, Ingrid H.; Thorsett, Stephen E. (2003-07-01). "A Young White Dwarf Companion to Pulsar B1620-26: Evidence for Early Planet Formation". Science. 301 (5630): 193–196. arXiv:astro-ph/0307339. Bibcode:2003Sci...301..193S. doi:10.1126/science.1086326. ISSN 0036-8075. PMID 12855802. S2CID 39446560.
  34. ^ "DP Leonis b - NASA Science". science.nasa.gov.
  35. ^ Hardy, Adam; Schreiber, Matthias R.; Parsons, Steven G.; Caceres, Claudio; Brinkworth, Carolyn; Veras, Dimitri; Gänsicke, Boris T.; Marsh, Thomas R.; Cieza, Lucas (2016-07-01). "The detection of dust around NN Ser". Monthly Notices of the Royal Astronomical Society. 459 (4): 4518–4526. arXiv:1604.05808. Bibcode:2016MNRAS.459.4518H. doi:10.1093/mnras/stw976. ISSN 0035-8711.
  36. ^ Özdönmez, Aykut; Er, Huseyin; Nasiroglu, Ilham (2023-12-01). "Investigation on the orbital period variations of NN Ser: implications for the hypothetical planets, the Applegate mechanism, and the orbital stability". Monthly Notices of the Royal Astronomical Society. 526 (3): 4725–4734. arXiv:2310.05465. Bibcode:2023MNRAS.526.4725O. doi:10.1093/mnras/stad3086. ISSN 0035-8711.
  37. ^ Beuermann, K.; Hessman, F. V.; Dreizler, S.; Marsh, T. R.; Parsons, S. G.; Winget, D. E.; Miller, G. F.; Schreiber, M. R.; Kley, W.; Dhillon, V. S.; Littlefair, S. P.; Copperwheat, C. M.; Hermes, J. J. (2010-10-01). "Two planets orbiting the recently formed post-common envelope binary NN Serpentis". Astronomy and Astrophysics. 521: L60. arXiv:1010.3608. Bibcode:2010A&A...521L..60B. doi:10.1051/0004-6361/201015472. ISSN 0004-6361. S2CID 53702506.
  38. ^ "UZ Fornacis b - NASA Science". science.nasa.gov.
  39. ^ "UZ Fornacis c - NASA Science". science.nasa.gov.
  40. ^ "HU Aquarii AB b - NASA Science". science.nasa.gov.
  41. ^ "HU Aquarii AB c - NASA Science". science.nasa.gov.
  42. ^ "RR Caeli b - NASA Science". science.nasa.gov.
  43. ^ Martin, Pierre-Yves (October 27, 2021). "Planet SDSS J1208+3550 b". exoplanet.eu.
  44. ^ Martin, Pierre-Yves (October 27, 2014). "Planet SDSS J1730+5545 b". exoplanet.eu.
  45. ^ Carter, P. J.; Steeghs, D.; Marsh, T. R.; Kupfer, T.; Copperwheat, C. M.; Groot, P. J.; Nelemans, G. (2013-11-29). "The AM Canum Venaticorum binary SDSS J173047.59+554518.5". Monthly Notices of the Royal Astronomical Society. 437 (3). Oxford University Press (OUP): 2894–2900. arXiv:1311.0008. doi:10.1093/mnras/stt2103. ISSN 0035-8711.
  46. ^ Martin, Pierre-Yves (October 27, 2018). "Planet DE CVn b". exoplanet.eu.
  47. ^ "DE Canum Venaticorum b - NASA Science". science.nasa.gov.
  48. ^ Martin, Pierre-Yves (October 27, 2019). "Planet LX Ser (AB)b". exoplanet.eu.
  49. ^ Li, Kai; Hu, Shaoming; Zhou, Jilin; Wu, Donghong; Guo, Difu; Jiang, Yunguo; Gao, Dongyang; Chen, Xu; Wang, Xianyu (2017-02-24). "A possible giant planet orbiting the cataclysmic variable LX Ser". Publications of the Astronomical Society of Japan. 69 (2). Oxford University Press (OUP). arXiv:1611.09504. doi:10.1093/pasj/psw134. ISSN 0004-6264.
  50. ^ Li, K.; Hu, S.-M.; Zhou, J.-L.; Wu, D.-H.; Guo, D.-F.; Jiang, Y.-G.; Gao, D.-Y.; Chen, X.; Wang, X.-Y. (November 29, 2016). "A possible giant planet orbiting the cataclysmic variable LX Ser". Publications of the Astronomical Society of Japan. 69 (2). arXiv:1611.09504. doi:10.1093/pasj/psw134.
  51. ^ Martin, Pierre-Yves (October 27, 2016). "Planet DW UMa (AB)b". exoplanet.eu.
  52. ^ Martin, Pierre-Yves (October 27, 2020). "Planet GK Vir b". exoplanet.eu.
  53. ^ Martin, Pierre-Yves (October 27, 2021). "Planet KPD 0005+5106 b". exoplanet.eu.
  54. ^ Martin, Pierre-Yves (October 27, 2021). "Planet RR Cae (AB) c". exoplanet.eu.
  55. ^ Martin, Pierre-Yves (October 27, 2022). "Planet PSR 20337+7115 b". exoplanet.eu.
  56. ^ Rappaport, S.; Gary, B. L.; Vanderburg, A.; Xu, S.; Pooley, D.; Mukai, K. (2018-02-01). "WD 1145+017: optical activity during 2016-2017 and limits on the X-ray flux". Monthly Notices of the Royal Astronomical Society. 474 (1): 933–946. arXiv:1709.08195. Bibcode:2018MNRAS.474..933R. doi:10.1093/mnras/stx2663. ISSN 0035-8711.
  57. ^ Vanderburg, Andrew; Johnson, John Asher; Rappaport, Saul; Bieryla, Allyson; Irwin, Jonathan; Lewis, John Arban; Kipping, David; Brown, Warren R.; Dufour, Patrick (2015-10-22). "A disintegrating minor planet transiting a white dwarf". Nature. 526 (7574): 546–549. arXiv:1510.06387. Bibcode:2015Natur.526..546V. doi:10.1038/nature15527. PMID 26490620. S2CID 4451207.
  58. ^ Manser, Christopher J.; Gänsicke, Boris T.; Eggl, Siegfried; Hollands, Mark; Izquierdo, Paula; Koester, Detlev; Landstreet, John D.; Lyra, Wladimir; Marsh, Thomas R.; Meru, Farzana; Mustill, Alexander J.; Rodríguez-Gil, Pablo; Toloza, Odette; Veras, Dimitri; Wilson, David J. (2019-04-01). "A planetesimal orbiting within the debris disc around a white dwarf star". Science. 364 (6435): 66–69. arXiv:1904.02163. Bibcode:2019Sci...364...66M. doi:10.1126/science.aat5330. ISSN 0036-8075. PMID 30948547. S2CID 96434522.
  59. ^ Swan, Andrew; Kenyon, Scott J.; Farihi, Jay; Dennihy, Erik; Gänsicke, Boris T.; Hermes, J. J.; Melis, Carl; von Hippel, Ted (2021-09-01). "Collisions in a gas-rich white dwarf planetary debris disc". Monthly Notices of the Royal Astronomical Society. 506 (1): 432–440. arXiv:2106.09025. Bibcode:2021MNRAS.506..432S. doi:10.1093/mnras/stab1738. ISSN 0035-8711. PMC 8263348. PMID 34248393.
  60. ^ a b Wang, Ting-Gui; Jiang, Ning; Ge, Jian; Cutri, Roc M.; Jiang, Peng; Sheng, Zhengfeng; Zhou, Hongyan; Bauer, James; Mainzer, Amy; Wright, Edward L. (2019-10-09). "An On-going Mid-infrared Outburst in the White Dwarf 0145+234: Catching in Action of Tidal Disruption of an Exoasteroid?". arXiv:1910.04314 [astro-ph.SR].
  61. ^ Veras, Dimitri (2021-10-01). Planetary Systems Around White Dwarfs. Bibcode:2021orel.bookE...1V.
  62. ^ Vanderbosch, Z.; Hermes, J. J.; Dennihy, E.; Dunlap, B. H.; Izquierdo, P.; Tremblay, P. -E.; Cho, P. B.; Gänsicke, B. T.; Toloza, O.; Bell, K. J.; Montgomery, M. H.; Winget, D. E. (2020-07-01). "A White Dwarf with Transiting Circumstellar Material Far outside the Roche Limit". The Astrophysical Journal. 897 (2): 171. arXiv:1908.09839. Bibcode:2020ApJ...897..171V. doi:10.3847/1538-4357/ab9649. ISSN 0004-637X. S2CID 219941489.
  63. ^ Veras, Dimitri; McDonald, Catriona H.; Makarov, Valeri V. (2020-03-01). "Constraining the origin of the planetary debris surrounding ZTF J0139+5245 through rotational fission of a triaxial asteroid". Monthly Notices of the Royal Astronomical Society. 492 (4): 5291–5296. arXiv:2001.08223. Bibcode:2020MNRAS.492.5291V. doi:10.1093/mnras/staa243. ISSN 0035-8711.
  64. ^ a b c d e Guidry, Joseph A.; Vanderbosch, Zachary P.; Hermes, J. J.; Barlow, Brad N.; Lopez, Isaac D.; Boudreaux, Thomas M.; Corcoran, Kyle A.; Bell, Keaton J.; Montgomery, M. H.; Heintz, Tyler M.; Castanheira, Barbara G.; Reding, Joshua S.; Dunlap, Bart H.; Winget, D. E.; Winget, Karen I. (2021-05-01). "I Spy Transits and Pulsations: Empirical Variability in White Dwarfs Using Gaia and the Zwicky Transient Facility". The Astrophysical Journal. 912 (2): 125. arXiv:2012.00035. Bibcode:2021ApJ...912..125G. doi:10.3847/1538-4357/abee68. ISSN 0004-637X. S2CID 227238802.
  65. ^ Vanderbosch, Zachary P.; Rappaport, Saul; Guidry, Joseph A.; Gary, Bruce L.; Blouin, Simon; Kaye, Thomas G.; Weinberger, Alycia J.; Melis, Carl; Klein, Beth L.; Zuckerman, B.; Vanderburg, Andrew; Hermes, J. J.; Hegedus, Ryan J.; Burleigh, Matthew. R.; Sefako, Ramotholo (2021-08-01). "Recurring Planetary Debris Transits and Circumstellar Gas around White Dwarf ZTF J0328-1219". The Astrophysical Journal. 917 (1): 41. arXiv:2106.02659. Bibcode:2021ApJ...917...41V. doi:10.3847/1538-4357/ac0822. ISSN 0004-637X. S2CID 235358242.
  66. ^ Aungwerojwit, Amornrat; Gänsicke, Boris T.; Dhillon, Vikram S.; Drake, Andrew; Inight, Keith; Kaye, Thomas G.; Marsh, T. R.; Mullen, Ed; Pelisoli, Ingrid; Swan, Andrew (2024-05-01). "Long-term variability in debris transiting white dwarfs". Monthly Notices of the Royal Astronomical Society. 530 (1): 117–128. arXiv:2404.04422. Bibcode:2024MNRAS.530..117A. doi:10.1093/mnras/stae750. ISSN 0035-8711.
  67. ^ a b Farihi, J. (April 2022). "Relentless and complex transits from a planetesimal debris disc". Monthly Notices of the Royal Astronomical Society. 511 (2): 1647–1666. doi:10.1093/mnras/stab3475. hdl:10023/24937.
  68. ^ a b Favieres, Cristina Madurga; Kissler-Patig, Markus; Xu, Siyi; Bonsor, Amy (2024-08-01). "A sample of 554 white dwarfs showing infrared excess from Gaia EDR3 and CatWISE catalogs". Astronomy and Astrophysics. 688: A168. Bibcode:2024A&A...688A.168M. doi:10.1051/0004-6361/202347368. ISSN 0004-6361.
  69. ^ a b c d e f g h i j Hoard, D. W.; Debes, John H.; Wachter, Stefanie; Leisawitz, David T.; Cohen, Martin (2013-06-01). "The WIRED Survey. IV. New Dust Disks from the McCook & Sion White Dwarf Catalog". The Astrophysical Journal. 770 (1): 21. arXiv:1304.7801. Bibcode:2013ApJ...770...21H. doi:10.1088/0004-637X/770/1/21. ISSN 0004-637X.
  70. ^ Lai, Samuel; Dennihy, Erik; Xu, Siyi; Nitta, Atsuko; Kleinman, Scot; Leggett, S. K.; Bonsor, Amy; Hodgkin, Simon; Rebassa-Mansergas, Alberto; Rogers, Laura K. (2021-10-01). "Infrared Excesses Around Bright White Dwarfs from Gaia and unWISE. II". The Astrophysical Journal. 920 (2): 156. arXiv:2107.01221. Bibcode:2021ApJ...920..156L. doi:10.3847/1538-4357/ac1354. ISSN 0004-637X.
  71. ^ Wang, Lin; Zhang, Xiaoxia; Wang, Junfeng; Zhang, Zhi-Xiang; Fang, Taotao; Gu, Wei-Min; Guo, Jincheng; Jiang, Xiaochuan (2023-02-01). "White Dwarfs with Infrared Excess from LAMOST Data Release 5". The Astrophysical Journal. 944 (1): 23. arXiv:2301.00705. Bibcode:2023ApJ...944...23W. doi:10.3847/1538-4357/acaf5a. ISSN 0004-637X.
  72. ^ Wolff, B.; Koester, D.; Liebert, J. (2002-04-01). "Element abundances in cool white dwarfs. II. Ultraviolet observations of DZ white dwarfs". Astronomy and Astrophysics. 385 (3): 995–1007. arXiv:astro-ph/0204408. Bibcode:2002A&A...385..995W. doi:10.1051/0004-6361:20020194. ISSN 0004-6361.
  73. ^ a b Klein, Beth L.; Doyle, Alexandra E.; Zuckerman, B.; Dufour, P.; Blouin, Simon; Melis, Carl; Weinberger, Alycia J.; Young, Edward D. (2021-06-01). "Discovery of Beryllium in White Dwarfs Polluted by Planetesimal Accretion". The Astrophysical Journal. 914 (1): 61. arXiv:2102.01834. Bibcode:2021ApJ...914...61K. doi:10.3847/1538-4357/abe40b. ISSN 0004-637X.
  74. ^ Zuckerman, B.; Becklin, E. E. (1987-11-01). "Excess infrared radiation from a white dwarf—an orbiting brown dwarf?". Nature. 330 (6144): 138–140. Bibcode:1987Natur.330..138Z. doi:10.1038/330138a0. ISSN 0028-0836. S2CID 4357883.
  75. ^ Reach, William T.; Kuchner, Marc J.; Von Hippel, Ted; Burrows, Adam; Mullally, Fergal; Kilic, Mukremin; Winget, D. E. (2005). "The Dust Cloud around the White Dwarf G29-38". The Astrophysical Journal. 635 (2): L161. arXiv:astro-ph/0511358. Bibcode:2005ApJ...635L.161R. doi:10.1086/499561. S2CID 119462589.
  76. ^ Xu, S.; Jura, M.; Koester, D.; Klein, B.; Zuckerman, B. (2014-03-01). "Elemental Compositions of Two Extrasolar Rocky Planetesimals". The Astrophysical Journal. 783 (2): 79. arXiv:1401.4252. Bibcode:2014ApJ...783...79X. doi:10.1088/0004-637X/783/2/79. ISSN 0004-637X.
  77. ^ Becklin, E. E.; Farihi, J.; Jura, M.; Song, Inseok; Weinberger, A. J.; Zuckerman, B. (2005-10-01). "A Dusty Disk around GD 362, a White Dwarf with a Uniquely High Photospheric Metal Abundance". The Astrophysical Journal. 632 (2): L119 – L122. arXiv:astro-ph/0509193. Bibcode:2005ApJ...632L.119B. doi:10.1086/497826. ISSN 0004-637X.
  78. ^ Kilic, Mukremin; von Hippel, Ted; Leggett, S. K.; Winget, D. E. (2005-10-01). "Excess Infrared Radiation from the Massive DAZ White Dwarf GD 362: A Debris Disk?". The Astrophysical Journal. 632 (2): L115 – L118. arXiv:astro-ph/0509188. Bibcode:2005ApJ...632L.115K. doi:10.1086/497825. ISSN 0004-637X.
  79. ^ Zuckerman, B.; Koester, D.; Melis, C.; Hansen, Brad M.; Jura, M. (2007-12-01). "The Chemical Composition of an Extrasolar Minor Planet". The Astrophysical Journal. 671 (1): 872–877. arXiv:0708.0198. Bibcode:2007ApJ...671..872Z. doi:10.1086/522223. ISSN 0004-637X.
  80. ^ Xu, S.; Zuckerman, B.; Dufour, P.; Young, E. D.; Klein, B.; Jura, M. (2017-02-01). "The Chemical Composition of an Extrasolar Kuiper-Belt-Object". The Astrophysical Journal. 836 (1): L7. arXiv:1702.02868. Bibcode:2017ApJ...836L...7X. doi:10.3847/2041-8213/836/1/L7. ISSN 0004-637X.
  81. ^ Farihi, J.; Parsons, S. G.; Gänsicke, B. T. (2017-03-01). "A circumbinary debris disk in a polluted white dwarf system". Nature Astronomy. 1 (3): 0032. arXiv:1612.05259. Bibcode:2017NatAs...1E..32F. doi:10.1038/s41550-016-0032. ISSN 2397-3366.
  82. ^ Oppenheimer, B. R.; et al. (22 March 2001). "Direct Detection of Galactic Halo Dark Matter". Science. 292 (5517): 698–702. arXiv:astro-ph/0104293. Bibcode:2001Sci...292..698O. doi:10.1126/science.1059954. PMID 11264524. S2CID 18882777.
  83. ^ Blouin, S.; Dufour, P.; Allard, N. F.; Salim, S.; Rich, R. M.; Koopmans, L. V. E. (2019-02-01). "A New Generation of Cool White Dwarf Atmosphere Models. III. WD J2356-209: Accretion of a Planetesimal with an Unusual Composition". The Astrophysical Journal. 872 (2): 188. arXiv:1902.03219. Bibcode:2019ApJ...872..188B. doi:10.3847/1538-4357/ab0081. ISSN 0004-637X.
  84. ^ Kaiser, B. C.; Clemens, J. C.; Blouin, S.; Dufour, P.; Hegedus, R. J.; Reding, J. S.; Bédard, A. (2021-01-01). "Lithium pollution of a white dwarf records the accretion of an extrasolar planetesimal". Science. 371 (6525): 168–172. arXiv:2012.12900. Bibcode:2021Sci...371..168K. doi:10.1126/science.abd1714. ISSN 0036-8075. PMID 33335019.
  85. ^ Kaiser, Benjamin C.; Clemens, J. Christopher; Blouin, Simon; Dennihy, Erik; Dufour, Patrick; Hegedus, Ryan J.; Reding, Joshua S. (2024-12-02). "The Origins of Lithium Enhancement in Polluted White Dwarfs". arXiv:2412.01878 [astro-ph].
  86. ^ Hollands, Mark A.; Tremblay, Pier-Emmanuel; Gänsicke, Boris T.; Koester, Detlev; Gentile-Fusillo, Nicola Pietro (2021-05-01). "Alkali metals in white dwarf atmospheres as tracers of ancient planetary crusts". Nature Astronomy. 5 (5): 451–459. arXiv:2101.01225. Bibcode:2021NatAs...5..451H. doi:10.1038/s41550-020-01296-7. ISSN 2397-3366.
  87. ^ Bergeron, P.; Kilic, Mukremin; Blouin, Simon; Bédard, A.; Leggett, S. K.; Brown, Warren R. (2022-07-01). "On the Nature of Ultracool White Dwarfs: Not so Cool after All". The Astrophysical Journal. 934 (1): 36. arXiv:2206.03174. Bibcode:2022ApJ...934...36B. doi:10.3847/1538-4357/ac76c7. ISSN 0004-637X.
  88. ^ Debes, John H.; Thevenot, Melina; Kuchner, Marc; Burgasser, Adam; Schneider, Adam; Meisner, Aaron; Gagne, Jonathan; Faherty, Jaqueline K.; Rees, Jon M.; Allen, Michaela; Caselden, Dan; Cushing, Michael; Wisniewski, John; Allers, Katelyn; The Backyard Worlds: Planet 9 Collaboration; The Disk Detective Collaboration (2019). "A 3 Gyr White Dwarf with Warm Dust Discovered via the Backyard Worlds: Planet 9 Citizen Science Project". The Astrophysical Journal. 872 (2): L25. arXiv:1902.07073. Bibcode:2019ApJ...872L..25D. doi:10.3847/2041-8213/ab0426. S2CID 119359995.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  89. ^ Doyle, Alexandra E.; Desch, Steven J.; Young, Edward D. (2021-02-01). "Icy Exomoons Evidenced by Spallogenic Nuclides in Polluted White Dwarfs". The Astrophysical Journal. 907 (2): L35. arXiv:2102.01835. Bibcode:2021ApJ...907L..35D. doi:10.3847/2041-8213/abd9ba. ISSN 0004-637X.
  90. ^ Izquierdo, Paula; Toloza, Odette; Gänsicke, Boris T.; Rodríguez-Gil, Pablo; Farihi, Jay; Koester, Detlev; Guo, Jincheng; Redfield, Seth (2021-03-01). "GD 424 - a helium-atmosphere white dwarf with a large amount of trace hydrogen in the process of digesting a rocky planetesimal". Monthly Notices of the Royal Astronomical Society. 501 (3): 4276–4288. arXiv:2012.12957. Bibcode:2021MNRAS.501.4276I. doi:10.1093/mnras/staa3987. ISSN 0035-8711.
  91. ^ Johnson, Ted M.; Klein, Beth L.; Koester, D.; Melis, Carl; Zuckerman, B.; Jura, M. (2022-12-01). "Unusual Abundances from Planetary System Material Polluting the White Dwarf G238-44". The Astrophysical Journal. 941 (2): 113. arXiv:2211.02673. Bibcode:2022ApJ...941..113J. doi:10.3847/1538-4357/aca089. ISSN 0004-637X.
  92. ^ Elms, Abbigail K.; Tremblay, Pier-Emmanuel; Gänsicke, Boris T.; Koester, Detlev; Hollands, Mark A.; Gentile Fusillo, Nicola Pietro; Cunningham, Tim; Apps, Kevin (2022-12-01). "Spectral analysis of ultra-cool white dwarfs polluted by planetary debris". Monthly Notices of the Royal Astronomical Society. 517 (3): 4557–4574. arXiv:2206.05258. Bibcode:2022MNRAS.517.4557E. doi:10.1093/mnras/stac2908. ISSN 0035-8711.
  93. ^ Swan, Andrew; Farihi, Jay; Melis, Carl; Dufour, Patrick; Desch, Steven J.; Koester, Detlev; Guo, Jincheng (2023-12-01). "Planetesimals at DZ stars - I. Chondritic compositions and a massive accretion event". Monthly Notices of the Royal Astronomical Society. 526 (3): 3815–3831. arXiv:2309.06467. Bibcode:2023MNRAS.526.3815S. doi:10.1093/mnras/stad2867. ISSN 0035-8711.
  94. ^ Bagnulo, Stefano; Farihi, Jay; Landstreet, John D.; Folsom, Colin P. (2024-03-01). "Discovery of Magnetically Guided Metal Accretion onto a Polluted White Dwarf". The Astrophysical Journal. 963 (1): L22. arXiv:2402.16526. Bibcode:2024ApJ...963L..22B. doi:10.3847/2041-8213/ad2619. ISSN 0004-637X.
  95. ^ Gänsicke, B. T.; Marsh, T. R.; Southworth, J.; Rebassa-Mansergas, A. (2006-12-01). "A Gaseous Metal Disk Around a White Dwarf". Science. 314 (5807): 1908–1910. arXiv:astro-ph/0612697. Bibcode:2006Sci...314.1908G. doi:10.1126/science.1135033. ISSN 0036-8075. PMID 17185598.
  96. ^ Xu, Siyi; Dufour, Patrick; Klein, Beth; Melis, Carl; Monson, Nathaniel N.; Zuckerman, B.; Young, Edward D.; Jura, Michael A. (2019-12-01). "Compositions of Planetary Debris around Dusty White Dwarfs". The Astronomical Journal. 158 (6): 242. arXiv:1910.07197. Bibcode:2019AJ....158..242X. doi:10.3847/1538-3881/ab4cee. ISSN 0004-6256.
  97. ^ Brinkworth, C. S.; Gänsicke, B. T.; Marsh, T. R.; Hoard, D. W.; Tappert, C. (2009-05-01). "A Dusty Component to the Gaseous Debris Disk Around the White Dwarf SDSS J1228+1040". The Astrophysical Journal. 696 (2): 1402–1406. arXiv:0902.4044. Bibcode:2009ApJ...696.1402B. doi:10.1088/0004-637X/696/2/1402. ISSN 0004-637X.
  98. ^ Gänsicke, B. T.; Marsh, T. R.; Southworth, J. (2007-09-01). "SDSSJ104341.53+085558.2: a second white dwarf with a gaseous debris disc". Monthly Notices of the Royal Astronomical Society. 380 (1): L35 – L39. arXiv:0705.0447. Bibcode:2007MNRAS.380L..35G. doi:10.1111/j.1745-3933.2007.00343.x. ISSN 0035-8711.
  99. ^ Melis, Carl; Dufour, P. (2017-01-01). "Does a Differentiated, Carbonate-rich, Rocky Object Pollute the White Dwarf SDSS J104341.53+085558.2?". The Astrophysical Journal. 834 (1): 1. arXiv:1610.08016. Bibcode:2017ApJ...834....1M. doi:10.3847/1538-4357/834/1/1. ISSN 0004-637X.
  100. ^ Dufour, P.; Kilic, M.; Fontaine, G.; Bergeron, P.; Lachapelle, F. -R.; Kleinman, S. J.; Leggett, S. K. (2010-08-01). "The Discovery of the Most Metal-rich White Dwarf: Composition of a Tidally Disrupted Extrasolar Dwarf Planet". The Astrophysical Journal. 719 (1): 803–809. arXiv:1006.3710. Bibcode:2010ApJ...719..803D. doi:10.1088/0004-637X/719/1/803. ISSN 0004-637X.
  101. ^ a b c Manser, Christopher J.; Gänsicke, Boris T.; Gentile Fusillo, Nicola Pietro; Ashley, Richard; Breedt, Elmé; Hollands, Mark; Izquierdo, Paula; Pelisoli, Ingrid (2020-04-01). "The frequency of gaseous debris discs around white dwarfs". Monthly Notices of the Royal Astronomical Society. 493 (2): 2127–2139. arXiv:2002.01936. Bibcode:2020MNRAS.493.2127M. doi:10.1093/mnras/staa359. ISSN 0035-8711.
  102. ^ Wilson, D. J.; Gänsicke, B. T.; Koester, D.; Toloza, O.; Pala, A. F.; Breedt, E.; Parsons, S. G. (2015-08-01). "The composition of a disrupted extrasolar planetesimal at SDSS J0845+2257 (Ton 345)". Monthly Notices of the Royal Astronomical Society. 451 (3): 3237–3248. arXiv:1505.07466. Bibcode:2015MNRAS.451.3237W. doi:10.1093/mnras/stv1201. ISSN 0035-8711.
  103. ^ Melis, C.; Jura, M.; Albert, L.; Klein, B.; Zuckerman, B. (2010-10-01). "Echoes of a Decaying Planetary System: The Gaseous and Dusty Disks Surrounding Three White Dwarfs". The Astrophysical Journal. 722 (2): 1078–1091. arXiv:1007.2023. Bibcode:2010ApJ...722.1078M. doi:10.1088/0004-637X/722/2/1078. ISSN 0004-637X.
  104. ^ Farihi, J.; Gänsicke, B. T.; Steele, P. R.; Girven, J.; Burleigh, M. R.; Breedt, E.; Koester, D. (2012-04-01). "A trio of metal-rich dust and gas discs found orbiting candidate white dwarfs with K-band excess". Monthly Notices of the Royal Astronomical Society. 421 (2): 1635–1643. arXiv:1112.5163. Bibcode:2012MNRAS.421.1635F. doi:10.1111/j.1365-2966.2012.20421.x. ISSN 0035-8711.
  105. ^ Koester, D.; Rollenhagen, K.; Napiwotzki, R.; Voss, B.; Christlieb, N.; Homeier, D.; Reimers, D. (2005-03-01). "Metal traces in white dwarfs of the SPY (ESO Supernova Ia Progenitor Survey) sample". Astronomy and Astrophysics. 432 (3): 1025–1032. Bibcode:2005A&A...432.1025K. doi:10.1051/0004-6361:20041927. hdl:2299/1210. ISSN 0004-6361.
  106. ^ Girven, J.; Brinkworth, C. S.; Farihi, J.; Gänsicke, B. T.; Hoard, D. W.; Marsh, T. R.; Koester, D. (2012-04-01). "Constraints on the Lifetimes of Disks Resulting from Tidally Destroyed Rocky Planetary Bodies". The Astrophysical Journal. 749 (2): 154. arXiv:1202.3784. Bibcode:2012ApJ...749..154G. doi:10.1088/0004-637X/749/2/154. ISSN 0004-637X.
  107. ^ Brinkworth, C. S.; Gänsicke, B. T.; Girven, J. M.; Hoard, D. W.; Marsh, T. R.; Parsons, S. G.; Koester, D. (2012-05-01). "A Spitzer Space Telescope Study of the Debris Disks around Four SDSS White Dwarfs". The Astrophysical Journal. 750 (1): 86. arXiv:1202.6411. Bibcode:2012ApJ...750...86B. doi:10.1088/0004-637X/750/1/86. ISSN 0004-637X.
  108. ^ Li, Lifang; Zhang, Fenghui; Kong, Xiaoyang; Han, Quanwang; Li, Jiansha (2017-02-01). "A Hot White Dwarf SDSS J134430.11+032423.1 with a Planetary Debris Disk". The Astrophysical Journal. 836 (1): 71. Bibcode:2017ApJ...836...71L. doi:10.3847/1538-4357/836/1/71. ISSN 0004-637X.
  109. ^ a b c d e f Melis, Carl; Klein, Beth; Doyle, Alexandra E.; Weinberger, Alycia; Zuckerman, B.; Dufour, Patrick (2020-12-01). "Serendipitous Discovery of Nine White Dwarfs with Gaseous Debris Disks". The Astrophysical Journal. 905 (1): 56. arXiv:2010.03695. Bibcode:2020ApJ...905...56M. doi:10.3847/1538-4357/abbdfa. ISSN 0004-637X.
  110. ^ Swan, Andrew; Farihi, Jay; Su, Kate Y. L.; Desch, Steven J. (2024-03-01). "The first white dwarf debris disc observed by JWST". Monthly Notices of the Royal Astronomical Society. 529 (1): L41 – L46. arXiv:2310.09355. Bibcode:2024MNRAS.529L..41S. doi:10.1093/mnrasl/slad198. ISSN 0035-8711.
  111. ^ a b c d e f g Rogers, L. K.; Bonsor, A.; Xu, S.; Dufour, P.; Klein, B. L.; Buchan, A.; Hodgkin, S.; Hardy, F.; Kissler-Patig, M.; Melis, C.; Weinberger, A. J.; Zuckerman, B. (2024-01-01). "Seven white dwarfs with circumstellar gas discs I: white dwarf parameters and accreted planetary abundances". Monthly Notices of the Royal Astronomical Society. 527 (3): 6038–6054. arXiv:2311.14048. Bibcode:2024MNRAS.527.6038R. doi:10.1093/mnras/stad3557. ISSN 0035-8711.
  112. ^ a b Owens, Dylan; Xu, Siyi; Manjavacas, Elena; Leggett, S. K.; Casewell, S. L.; Dennihy, Erik; Dufour, Patrick; Klein, Beth L.; Yeh, Sherry; Zuckerman, B. (2023-07-01). "Disk or Companion: Characterizing Excess Infrared Flux in Seven White Dwarf Systems with Near-infrared Spectroscopy". The Astronomical Journal. 166 (1): 5. arXiv:2303.16330. Bibcode:2023AJ....166....5O. doi:10.3847/1538-3881/accc25. ISSN 0004-6256.
  113. ^ a b c d e Dennihy, Erik; Xu, Siyi; Lai, Samuel; Bonsor, Amy; Clemens, J. C.; Dufour, Patrick; Gänsicke, Boris T.; Gentile Fusillo, Nicola Pietro; Hardy, François; Hegedus, R. J.; Hermes, J. J.; Kaiser, B. C.; Kissler-Patig, Markus; Klein, Beth; Manser, Christopher J. (2020-12-01). "Five New Post-main-sequence Debris Disks with Gaseous Emission". The Astrophysical Journal. 905 (1): 5. arXiv:2010.03693. Bibcode:2020ApJ...905....5D. doi:10.3847/1538-4357/abc339. ISSN 0004-637X.
  114. ^ a b c d e f Gentile Fusillo, N. P.; Manser, C. J.; Gänsicke, Boris T.; Toloza, O.; Koester, D.; Dennihy, E.; Brown, W. R.; Farihi, J.; Hollands, M. A.; Hoskin, M. J.; Izquierdo, P.; Kinnear, T.; Marsh, T. R.; Santamaría-Miranda, A.; Pala, A. F. (2021-06-01). "White dwarfs with planetary remnants in the era of Gaia - I. Six emission line systems". Monthly Notices of the Royal Astronomical Society. 504 (2): 2707–2726. arXiv:2010.13807. Bibcode:2021MNRAS.504.2707G. doi:10.1093/mnras/stab992. ISSN 0035-8711.