From Wikipedia, the free encyclopedia
In mathematics, Euler's differential equation is a first-order non-linear ordinary differential equation, named after Leonhard Euler. It is given by:[1]
![{\displaystyle {\frac {dy}{dx}}+{\frac {\sqrt {a_{0}+a_{1}y+a_{2}y^{2}+a_{3}y^{3}+a_{4}y^{4}}}{\sqrt {a_{0}+a_{1}x+a_{2}x^{2}+a_{3}x^{3}+a_{4}x^{4}}}}=0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/30e0e7ca1c7ee52da4f4c5c32551003a8e7dd553)
This is a separable equation and the solution is given by the following integral equation:
![{\displaystyle \int {\frac {dy}{\sqrt {a_{0}+a_{1}y+a_{2}y^{2}+a_{3}y^{3}+a_{4}y^{4}}}}+\int {\frac {dx}{\sqrt {a_{0}+a_{1}x+a_{2}x^{2}+a_{3}x^{3}+a_{4}x^{4}}}}=c}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1497139ded4f05dedbf8863a77de2c7722b784a9)
- ^ Ince, E. L. "L. 1944 Ordinary Differential Equations." 227.