Jump to content

Ehrenfest equations

From Wikipedia, the free encyclopedia

Ehrenfest equations (named after Paul Ehrenfest) are equations which describe changes in specific heat capacity and derivatives of specific volume in second-order phase transitions. The Clausius–Clapeyron relation does not make sense for second-order phase transitions,[1] as both specific entropy and specific volume do not change in second-order phase transitions.

Quantitative consideration

[edit]

Ehrenfest equations are the consequence of continuity of specific entropy and specific volume , which are first derivatives of specific Gibbs free energy – in second-order phase transitions. If one considers specific entropy as a function of temperature and pressure, then its differential is: . As , then the differential of specific entropy also is:

,

where and are the two phases which transit one into other. Due to continuity of specific entropy, the following holds in second-order phase transitions: . So,

Therefore, the first Ehrenfest equation is:

.

The second Ehrenfest equation is got in a like manner, but specific entropy is considered as a function of temperature and specific volume:

The third Ehrenfest equation is got in a like manner, but specific entropy is considered as a function of and :

.

Continuity of specific volume as a function of and gives the fourth Ehrenfest equation:

.

Limitations

[edit]

Derivatives of Gibbs free energy are not always finite. Transitions between different magnetic states of metals can't be described by Ehrenfest equations.

See also

[edit]

References

[edit]
  1. ^ Sivuhin D.V. General physics course. V.2. Thermodynamics and molecular physics. 2005