Jump to content

Draft:Schroeder's paradox

From Wikipedia, the free encyclopedia

Schroeder's paradox refers to the phenomenon of certain polymers exhibit more solvent uptake (observed as swelling) when exposed to a pure liquid versus a saturated vapor.[1] It is named after the German chemist Paul von Schroeder, who first reported the phenomenon working on a sample of gelatin in contact with water.[2]

According to phase equilibrium theory, the activity of a chemical species should be equal to its equilibrium partial vapor pressure, so both saturated vapor and pure liquid should exhibit the same equilibrium for absorption into the polymer. Additional surface effects along the polymer-liquid interface are required to explain the difference. A mechanism based on action of Maxwell stresses at the polymer's surface, present only where the polymer is submerged in liquid, has been proposed to explain this effect in the case of ion-exchange polymers,[3] and a similar mechanism involving van der Waals and solvation forces for the case of nonionogenic polymers.[4]

The phenomenon, which has largely gone ignored, is recently of note due to its possible application to the water/Nafion system with technological importance due to application in proton-exchange membrane fuel cells.[5][6]

References

[edit]
  1. ^ Vallieres, Cécile; Winkelmann, Dirk; Roizard, Denis; Favre, Eric; Scharfer, Philip; Kind, Matthias (2006). "On Schroeder's paradox". Journal of Membrane Science. 278 (1–2): 357–364. doi:10.1016/j.memsci.2005.11.020. ISSN 0376-7388. S2CID 96219123.
  2. ^ Schroeder, Paul von (1903). "Über Erstarrungs- und Quellugserscheinungen von Gelatine". Zeitschrift für Physikalische Chemie. 45U (1): 75–117. doi:10.1515/zpch-1903-4503. S2CID 92062180.
  3. ^ Roldughin, V. I.; Karpenko–Jereb, L. V. (2016). "On the Schroeder paradox for ion-exchange polymers". Colloid Journal. 78 (6): 795–799. doi:10.1134/S1061933X16060132. S2CID 99380488.
  4. ^ Roldughin, V. I.; Karpenko–Jereb, L. V. (2017). "On the Schroeder paradox for nonionogenic polymers". Colloid Journal. 79 (4): 532–539. doi:10.1134/S1061933X17040123. S2CID 102504291.
  5. ^ Gates, Craig M.; Newman, John (2000). "Equilibrium and diffusion of methanol and water in a nafion 117 membrane". AIChE Journal. 46 (10): 2076–2085. doi:10.1002/aic.690461018. S2CID 98498235.
  6. ^ Chen, Lei; Chen, Yanyu; Tao, Wen-Quan (2023). "Schroeder's paradox in proton exchange membrane fuel cells: A review". Renewable and Sustainable Energy Reviews. 173 113050. doi:10.1016/j.rser.2022.113050. ISSN 1364-0321. S2CID 256777246.