Jump to content

C17orf75

From Wikipedia, the free encyclopedia
C17orf75
Identifiers
AliasesC17orf75, NJMU-R1, SRI2, chromosome 17 open reading frame 75
External IDsMGI: 1917841; HomoloGene: 11177; GeneCards: C17orf75; OMA:C17orf75 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_022344

NM_027472

RefSeq (protein)

NP_071739

NP_081748

Location (UCSC)Chr 17: 32.32 – 32.35 MbChr 11: 80.25 – 80.27 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Protein Njmu-R1 is a protein that in humans is encoded by the C17orf75 gene. [5] C17orf75 is also known as SRI2 (sensitization to ricin complex subunit 2) and is a human protein encoding gene located at 17q11.2 on the complementary strand.[6] The C17orf75 gene is ubiquitously expressed at medium-low levels throughout the body and at slightly higher levels in the brain and testes.[7] This protein is thought to be part of a complex associated with Golgi-mediated vesicle capture.[8]

Gene

[edit]

The C17orf75 gene spans from position 32,328,441 to position 32,342,173 with a length of 13,733 nucleotides. The length after intron excision is 4,547 nucleotides, and the coding sequence is 1,191 nucleotides in length. C17orf75 has 10 exons.[9]

RNA

[edit]

C17orf75 has 4 transcript isoforms: C17orf75 and 3 predicted isoforms which are C17orf75 transcript variant X1 (4,568 nucleotides in length), C17orf75 transcript variant X2 (4,449 nucleotides in length), and C17orf75 transcript variant X3 (4,464 nucleotides in length).

Protein

[edit]

Structure

[edit]
Diagram of the protein NJMU-R1's secondary structure and post-translational modifications.[10]
Immunohistochemistry staining of the mouse cerebellum for the protein NJMU-R1 in green.[11]

The primary isoform of the protein NJMU-R1 is 396 amino acids long. The theoretical isoelectric point for the protein NJMU-R1 is around 5, and its predicted molecular weight is around 44 kD.[12] This protein has a leucine zipper that is predicted to contribute to a coiled coil in the protein's folded structure.[13] The secondary structure of the protein is predicted to dominated by helices, with some beta sheets.[14] 3 potential disulfide bridge sites via cysteine residues are predicted in the protein.[15]

Post-Translational Modifications

[edit]

The protein NJMU-R1 has two experimentally determined serine phosphorylation sites near the N-terminus.[16] Predicted post-translational modifications include tyrosine sulfation,[17] O-linked glycosylation,[18] and GPI anchor attachment.[19]

Tissue Localization

[edit]

Immunohistochemistry staining images show moderate protein levels throughout mouse brain tissues, but the Purkinje layer in the cerebellum shows a distinctly high level of protein concentration, especially as compared to the neighboring granular layer. There are also high protein concentrations in the circumventricular organs of the mouse brain.[11]

Cellular Localization

[edit]

Within the cell, images have shown the protein to be clustered in the cytosol and near the Golgi apparatus.[20] The PSORTII tool also predicts that this protein is localized to the cytosol.[13]

Expression Data

[edit]

RNA sequencing data shows that C17orf75 is expressed highly in the testes, brain, and at moderately elevated levels in the kidney and thyroid.[7] Microarray data shows that this gene is expressed ubiquitously in most tissues, with moderate-to-high expression in the brain and testes and moderate-to-low expression in all other tissues.[21]

Expression levels of C17orf75 are seen to be higher in colorectal[22] and other cancers,[23][24] suggesting that C17orf75 may be a protooncogene or that there is another element of the gene's regulation that is causing these elevated levels.

Human C17orf75 orthologs in select species obtained from a BLASTP search using the human protein with accession number: NP_071739.2.

Homology

[edit]

The C17orf75 gene has orthologs as distantly related as amoeba and slime molds that are approximately 1,092,000,000 years old. It is seen in most animals that diverged since then, such as insects, though, notably, not Drosophila, marine vertebrates, marine invertebrates, 14 amphibians (only frogs/toads and caecilians), reptiles, birds, and mammals.

Protein Interactions

[edit]

Research findings show that NJMU-R1 is predicted to be part of a trimer (with FAM91A1 [Family With Sequence Similarity 91 Member A1] and SRI1), as elicited through immunoprecipitation, fractionation, and mass spectrometry. This trimer has been proposed to promote the Golgi’s capture of vesicles, particularly vesicles involved with the AB toxin, ricin, as knockouts of C17orf75 lead to higher cell susceptibility to ricin.[25]

References

[edit]
  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000108666Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000057181Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ "Entrez Gene: Chromosome 17 open reading frame 75". Retrieved 2022-07-28.
  6. ^ "C17orf75 chromosome 17 open reading frame 75 [Homo sapiens (human)] - Gene - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2022-07-30.
  7. ^ a b "C17orf75 chromosome 17 open reading frame 75 [Homo sapiens (human)] - Gene Expression - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2022-07-30.
  8. ^ Navarro Negredo, Paloma; Edgar, James R.; Manna, Paul T.; Antrobus, Robin; Robinson, Margaret S. (2018-02-09). "The WDR11 complex facilitates the tethering of AP-1-derived vesicles". Nature Communications. 9 (1): 596. Bibcode:2018NatCo...9..596N. doi:10.1038/s41467-018-02919-4. ISSN 2041-1723. PMC 5807400. PMID 29426865.
  9. ^ "C17orf75 chromosome 17 open reading frame 75 [Homo sapiens (human)] - Genomic Regions - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2022-07-30.
  10. ^ Ren, Jian; Wen, Longping; Gao, Xinjiao; Jin, Changjiang; Xue, Yu; Yao, Xuebiao (January 20, 2009). "DOG 1.0: illustrator of protein domain structures". Cell Research. 19 (2): 271–273. doi:10.1038/cr.2009.6. ISSN 1748-7838. PMID 19153597. S2CID 26835642.
  11. ^ a b "Brain tissue expression of C17orf75 - Summary - The Human Protein Atlas". www.proteinatlas.org. Retrieved 2022-07-30.
  12. ^ "protein Njmu-R1 [Homo sapiens] - Protein - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2022-07-30.
  13. ^ a b "PSORTII Tool". Retrieved July 24, 2022.[permanent dead link]
  14. ^ "I-TASSER server for protein structure and function prediction". zhanggroup.org. Retrieved 2022-07-30.
  15. ^ Ferre, F.; Clote, P. (2006-07-01). "DiANNA 1.1: an extension of the DiANNA web server for ternary cysteine classification". Nucleic Acids Research. 34 (Web Server): W182 – W185. doi:10.1093/nar/gkl189. ISSN 0305-1048. PMC 1538812. PMID 16844987.
  16. ^ "C17orf75 (human)". www.phosphosite.org. Retrieved 2022-07-30.
  17. ^ "ExPASy - Sulfinator". web.expasy.org. Retrieved 2022-07-30.
  18. ^ "NetOGlyc - 4.0 Tool". DTU Health Tech. Retrieved 2022-07-30.
  19. ^ "GPI Prediction Server". mendel.imp.ac.at. Retrieved 2022-07-30.
  20. ^ "Subcellular - C17orf75 - The Human Protein Atlas". www.proteinatlas.org. Retrieved 2022-07-30.
  21. ^ "GDS596 Large-scale analysis of the human transcriptome". www.ncbi.nlm.nih.gov. Retrieved 2022-07-30.
  22. ^ "GDS4382 Colorectal cancer tumors". www.ncbi.nlm.nih.gov. Retrieved 2022-07-30.
  23. ^ Chakraborty, Sanjukta; Khare, Sonal; Dorairaj, Syril Kumar; Prabhakaran, Venkatesh C.; Prakash, D. Ravi; Kumar, Arun (September 2007). "Identification of genes associated with tumorigenesis of retinoblastoma by microarray analysis". Genomics. 90 (3): 344–353. doi:10.1016/j.ygeno.2007.05.002. ISSN 0888-7543. PMID 17604597.
  24. ^ Chakraborty, Sanjukta; Nagashri, M. N.; Mohiyuddin, S. M. Azeem; Gopinath, K. S.; Kumar, Arun (February 18, 2011). "Gene Expression Profiling of Oral Squamous Cell Carcinoma by Differential Display RT-PCR and Identification of Tumor Biomarkers". Indian Journal of Surgical Oncology. 1 (4): 284–293. doi:10.1007/s13193-011-0054-x. ISSN 0975-7651. PMC 3244262. PMID 22693380.
  25. ^ Navarro Negredo, Paloma; Edgar, James R.; Manna, Paul T.; Antrobus, Robin; Robinson, Margaret S. (2018-02-09). "The WDR11 complex facilitates the tethering of AP-1-derived vesicles". Nature Communications. 9 (1): 596. Bibcode:2018NatCo...9..596N. doi:10.1038/s41467-018-02919-4. ISSN 2041-1723. PMC 5807400. PMID 29426865.