Jump to content

Alper Erturk

From Wikipedia, the free encyclopedia
Alper Erturk
Born (1982-04-03) April 3, 1982 (age 42)
EducationVirginia Polytechnic Institute and State University, METU
Scientific career
Fields
InstitutionsGeorgia Institute of Technology, George W. Woodruff School of Mechanical Engineering

Alper Erturk (born April 3, 1982) is a mechanical engineer and the Woodruff Professor in the George W. Woodruff School of Mechanical Engineering at Georgia Institute of Technology.[1]

Research

[edit]

Erturk leads the Smart Structures and Dynamical Systems Laboratory[2] at Georgia Tech. His publications are mostly in the areas of dynamics, vibration, and wave propagation involving smart materials and metamaterials.[3] Erturk made fundamental contributions in the field of energy harvesting from dynamical systems. His distributed-parameter piezoelectric energy harvester models[4][5] have been widely used by many research groups. He was one of the first researchers to explore nonlinear dynamic phenomena for frequency bandwidth enhancement in energy harvesting, specifically by using a bistable Duffing oscillator with electromechanical coupling, namely the piezomagnetoelastic energy harvester.[6] His early energy harvesting work also included the use of aeroelastic flutter to enable scalable airflow energy harvesting through piezoaeroelastic systems.[7] His collaborative work on flexoelectricity[8] established a framework to exploit strain gradient-induced polarization in elastic dielectrics for enhanced electricity generation at the nanoscale.[9]

Erturk's group also contributed to smart material-based bio-inspired aquatic locomotion by developing the first untethered piezoelectric swimmer[10] and explored fluid-structure interaction via underwater actuation of piezoelectric cantilevers.[11][12] Their recent efforts resulted in multifunctional piezoelectric concepts for bio-inspired swimming and energy harvesting.[13]

Another research topic explored by his group is wireless power and data transfer using ultrasound waves.[14][15] More recently, Erturk and collaborators investigated the leveraging of guided waves in cranial and transcranial ultrasound.[16][17][18]

Erturk and collaborators also explored metamaterials and phononic crystals for elastic and acoustic wave phenomena. They developed and experimentally tested some of the first 2D elastic wave[19][20] and 3D bulk acoustic wave[21][22] lenses, locally resonant metamaterial-based structural theories and experiments,[23] including programmable piezoelectric metamaterials and metastructures.[24]

Awards

[edit]

References

[edit]
  1. ^ "Erturk | The George W. Woodruff School of Mechanical Engineering". Me.gatech.edu. Retrieved 2017-02-24.
  2. ^ "Smart Structures & Dynamical Systems Laboratory". Ssdsl.gatech.edu. Retrieved 2017-02-24.
  3. ^ "Alper Erturk - Google Scholar Citations". Scholar.google.com. Retrieved 2017-02-24.
  4. ^ Erturk, A.; Inman, D. J. (2008). "A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters". Journal of Vibration and Acoustics. 130 (4): 041002. doi:10.1115/1.2890402.
  5. ^ Erturk, A; Inman, D J (2009). "An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations". Smart Materials and Structures. 18 (2): 025009. Bibcode:2009SMaS...18b5009E. doi:10.1088/0964-1726/18/2/025009. S2CID 11735917.
  6. ^ Erturk, A.; Hoffmann, J.; Inman, D. J. (2009). "A piezomagnetoelastic structure for broadband vibration energy harvesting". Applied Physics Letters. 94 (25): 254102. Bibcode:2009ApPhL..94y4102E. doi:10.1063/1.3159815. hdl:10919/47364.
  7. ^ Erturk, A.; Vieira, W. G. R.; De Marqui, C.; Inman, D. J. (2010). "On the energy harvesting potential of piezoaeroelastic systems" (PDF). Applied Physics Letters. 96 (18): 184103. Bibcode:2010ApPhL..96r4103E. doi:10.1063/1.3427405. hdl:10919/47397.
  8. ^ Deng, Qian; Kammoun, Mejdi; Erturk, Alper; Sharma, Pradeep (2014). "Nanoscale flexoelectric energy harvesting". International Journal of Solids and Structures. 51 (18): 3218–25. doi:10.1016/j.ijsolstr.2014.05.018.
  9. ^ Moura, Adriane G.; Erturk, Alper (2017). "Electroelastodynamics of flexoelectric energy conversion and harvesting in elastic dielectrics". Journal of Applied Physics. 121 (6): 064110. Bibcode:2017JAP...121f4110M. doi:10.1063/1.4976069.
  10. ^ Cen, L; Erturk, A (2013). "Bio-inspired aquatic robotics by untethered piezohydroelastic actuation". Bioinspiration & Biomimetics. 8 (1): 016006. Bibcode:2013BiBi....8a6006C. doi:10.1088/1748-3182/8/1/016006. PMID 23348365. S2CID 23469873.
  11. ^ Shahab, S; Erturk, A (2016). "Electrohydroelastic Euler–Bernoulli–Morison model for underwater resonant actuation of macro-fiber composite piezoelectric cantilevers". Smart Materials and Structures. 25 (10): 105007. Bibcode:2016SMaS...25j5007S. doi:10.1088/0964-1726/25/10/105007. S2CID 138994154.
  12. ^ Demirer, E; Wang, Y; Erturk, A; Alexeev, A (2021). "Effect of actuation method on hydrodynamics of elastic plates oscillating at resonance". Journal of Fluid Mechanics. 910: A4. doi:10.1088/0964-1726/25/10/105007. S2CID 138994154.
  13. ^ Tan, D; Wang, Y; Kohtanen, E; Erturk, A (2021). "Trout-like multifunctional piezoelectric robotic fish and energy harvester". Bioinspiration & Biomimetics. 16 (4): 046024. Bibcode:2013BiBi....8a6006C. doi:10.1088/1748-3190/ac011e. PMID 33984855. S2CID 234494709.
  14. ^ Shahab, S.; Gray, M.; Erturk, A. (2015). "Ultrasonic power transfer from a spherical acoustic wave source to a free-free piezoelectric receiver: Modeling and experiment". Journal of Applied Physics. 117 (10): 787–798. Bibcode:2015JAP...117j4903S. doi:10.1016/j.ultrasmedbio.2020.11.019. PMID 33358510. S2CID 3916680.
  15. ^ Sugino, C.; Gerbe, R.; Reinke, C.; Ruzzene, M.; Erturk, A.; El-Kady, I. (2020). "Ultrasonic Communication through a Metallic Barrier: Transmission Modeling and Crosstalk Minimization". 2020 IEEE International Ultrasonics Symposium (IUS). Vol. 20154561. pp. 1–3. doi:10.1109/IUS46767.2020.9251623. ISBN 978-1-7281-5448-0. OSTI 1881699. S2CID 227064319.
  16. ^ Mazzotti, M; Sugino, C; Kohtanen, E; Erturk, A; Ruzzene, M (2021). "Experimental identification of high order Lamb waves and estimation of the mechanical properties of a dry human skull". Ultrasonics. 113: 106343. doi:10.1016/j.ultras.2020.106343. PMID 33540235. S2CID 231817861.
  17. ^ Sugino, C; Ruzzene, M; Erturk, A (2021). "Experimental and Computational Investigation of Guided Waves in a Human Skull". Ultrasound in Medicine and Biology. 47 (3): 787–798. doi:10.1063/1.4914130. PMID 33358510.
  18. ^ Mazzotti, M; Kohtanen, E; Erturk, A; Ruzzene, M (2021). "Radiation Characteristics of Cranial Leaky Lamb Waves". IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 68 (6): 2129–2140. doi:10.1109/TUFFC.2021.3057309. PMID 33544671. S2CID 231874479.
  19. ^ Tol, S.; Degertekin, F. L.; Erturk, A. (2016). "Gradient-index phononic crystal lens-based enhancement of elastic wave energy harvesting". Applied Physics Letters. 109 (6): 063902. Bibcode:2016ApPhL.109f3902T. doi:10.1063/1.4960792.
  20. ^ Tol, S.; Degertekin, F. L.; Erturk, A. (2017). "Phononic crystal Luneburg lens for omnidirectional elastic wave focusing and energy harvesting". Applied Physics Letters. 111 (1): 013503. Bibcode:2017ApPhL.111a3503T. doi:10.1063/1.4991684.
  21. ^ Allam, A.; Sabra, K.; Erturk, A. (2020). "3D-Printed Gradient-Index Phononic Crystal Lens for Underwater Acoustic Wave Focusing". Physical Review Applied. 13 (6): 064064. Bibcode:2020PhRvP..13f4064A. doi:10.1103/PhysRevApplied.13.064064. S2CID 225755648.
  22. ^ Allam, A.; Sabra, K.; Erturk, A. (2021). "Sound energy harvesting by leveraging a 3D-printed phononic crystal lens". Applied Physics Letters. 118 (10): 103504. Bibcode:2021ApPhL.118j3504A. doi:10.1063/5.0030698. S2CID 233798880.
  23. ^ Sugino, Christopher; Leadenham, Stephen; Ruzzene, Massimo; Erturk, Alper (2016). "On the mechanism of bandgap formation in locally resonant finite elastic metamaterials". Journal of Applied Physics. 120 (13): 134501. Bibcode:2016JAP...120m4501S. doi:10.1063/1.4963648. S2CID 32979571.
  24. ^ Sugino, Christopher; Leadenham, Stephen; Ruzzene, Massimo; Erturk, Alper (2020). "Digitally Programmable Resonant Elastic Metamaterials". Physical Review Applied. 13 (6): 061001. Bibcode:2020PhRvP..13f1001S. doi:10.1103/PhysRevApplied.13.061001. S2CID 219970467.
  25. ^ "SPIE News". spie.org. Retrieved 2020-04-27.
  26. ^ "SEM Awards". sem.org. Retrieved 2020-05-10.
  27. ^ "ASME Newsmakers". Asme.org. Retrieved 2017-04-20.
  28. ^ "ASME Newsmakers". Asme.org. Retrieved 2017-04-20.
  29. ^ Pouellette3 (19 April 2017). "ME's Alper Erturk Awarded a Second ASME Award; College of Engineering". Coe.gatech.edu. Retrieved 2017-04-20.{{cite web}}: CS1 maint: numeric names: authors list (link)
  30. ^ "TASSA Website | 2016". Tassausa.org. Retrieved 2017-02-24.
  31. ^ "ASME Newsmakers". Asme.org. Archived from the original on 2015-09-05. Retrieved 2017-02-24.
  32. ^ "ASME Newsmakers". Asme.org. Retrieved 2017-02-24.
  33. ^ "ME's Alper Erturk to Receive ASME Gary Anderson Early Achievement Award | College of Engineering". Coe.gatech.edu. 2015-03-16. Retrieved 2017-02-24.
  34. ^ "Erturk Receives 2 ASME Awards | The George W. Woodruff School of Mechanical Engineering". Me.gatech.edu. Retrieved 2017-02-24.
  35. ^ "Erturk Receives NSF CAREER Award | The George W. Woodruff School of Mechanical Engineering". Me.gatech.edu. Retrieved 2017-02-24.