Jump to content

Tetrathiafulvalene

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by John of Reading (talk | contribs) at 17:35, 13 March 2013 (Typo fixing, replaced: a organosulfur compound → an organosulfur compound using AWB (8853)). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Tetrathiafulvalene
Names
IUPAC name
2,2’-bis(1,3-dithiolylidene)
Other names
Δ2,2-bi-1,3-dithiole
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.045.979 Edit this at Wikidata
  • InChI=1S/C6H4S4/c1-2-8-5(7-1)6-9-3-4-10-6/h1-4H checkY
    Key: FHCPAXDKURNIOZ-UHFFFAOYSA-N checkY
  • InChI=1/C6H4S4/c1-2-8-5(7-1)6-9-3-4-10-6/h1-4H
    Key: FHCPAXDKURNIOZ-UHFFFAOYAZ
  • C1=CSC(=C2SC=CS2)S1
Properties
C6H4S4
Molar mass 204.36 g/mol
Appearance yellow solid
Density ? g/cm3
Melting point 116-119 °C
Boiling point decomp.
Solubility in other solvents insoluble in water,
soluble in organic
solvents
Structure
0 D
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
combustible
Related compounds
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Tetrathiafulvalene is an organosulfur compound with the formula (H2C2S2C)2. Studies on this heterocyclic compound contributed to the development of molecular electronics. TTF is related to the hydrocarbon fulvalene, (C5H4)2, by replacement of four CH groups with sulfur atoms. Over 10,000 scientific publications discuss TTF and its derivatives.[1]

Preparation

The high level of interest in TTFs has spawned the development of many syntheses of TTF and its analogues.[1] Most preparations entail the coupling of cyclic C3S2 building blocks such as 1,3-dithiole-2-thiones or the related 1,3-dithiole-2-ones. For TTF itself, the synthesis begins with the trithiocarbonate H2C2S2CS, which is S-methylated and then reduced to give H2C2S2CH(SCH3), which is treated as follows:[2]

H
2
C
2
S
2
CH(SCH
3
)
+ HBF
4
[H
2
C
2
S
2
CH+
]BF
4
+ HSCH
3
2 [H
2
C
2
S
2
CH+
]BF
4
+ 2 Et
3
N
(H
2
C
2
S
2
C)
2
+ 2 Et
3
NHBF
4

Redox properties

Bulk TTF itself has unremarkable electrical properties. Distinctive properties are, however, associated with salts of its oxidized derivatives, such as salts derived from TTF+.

The high electrical conductivity of TTF salts can be attributed to the following features of TTF: (i) its planarity, which allows π-π stacking of its oxidized derivatives, (ii) its high symmetry, which promotes charge delocalization, thereby minimizing coulombic repulsions, and (iii) its ability to undergo oxidation at mild potentials to give a stable radical cation. Electrochemical measurements show that TTF can be oxidized twice reversibly:

TTF → TTF+
+ -
e
(E = 0.34 V)
TTF+
TTF2+
+ -
e
(E = 0.78 V, vs. Ag/AgCl in MeCN solution)

Each dithiolylidene ring in TTF has 7π electrons: 2 for each sulfur atom, 1 for each sp2 carbon atom. Thus, oxidation converts each ring to an aromatic 6π-electron configuration, consequently leaving the central double bond essentially a single bond, as all π-electrons occupy ring orbitals.

History

Wudl et al. first demonstrated that the salt [TTF+
]Cl
was a semiconductor.[3] Subsequently, Ferraris et al. showed that the charge-transfer salt [TTF]TCNQ is a narrow band gap semi-conductor.[4] X-ray diffraction studies of [TTF][TCNQ] revealed stacks of partially oxidized TTF molecules adjacent to anionic stacks of TCNQ molecules. This “segregated stack” motif was unexpected and is responsible for the distinctive electrical properties, i.e. high and anisotropic electrical conductivity. Since these early discoveries, numerous analogues of TTF have been prepared. Well studied analogues include tetramethyltetrathiafulvalene (Me4TTF), tetramethylselenafulvalenes (TMTSFs), and bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF, CAS [66946-48-3]).[5] Several tetramethyltetrathiafulvalene salts (called Fabre salts) are of some relevance as organic superconductor.

See also

References

  1. ^ a b Bendikov, M; Wudl, F; Perepichka, D. F. (2004). "Tetrathiafulvalenes, Oligoacenenes, and Their Buckminsterfullerene Derivatives: The Brick and Mortar of Organic Electronics". Chemical Reviews. 104 (11): 4891–4945. doi:10.1021/cr030666m. PMID 15535637.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  2. ^ Wudl, F.; Kaplan, M. L. (1979). "2,2'Bi-1,3-dithiolylidene (Tetrathiafulvalene, TTF) and Its Radical Cation Derivatives". Inorg. Synth. Inorganic Syntheses. 19: 27–30. doi:10.1002/9780470132500.ch7. ISBN 978-0-470-13250-0.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. ^ Wudl, F.; Wobschall, D.; Hufnagel, E. J. (1972). "Electrical Conductivity by the Bis(1,3-dithiole)-bis(1,3-dithiolium) System". J. Am. Chem. Soc. 94 (2): 670–672. doi:10.1021/ja00757a079.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  4. ^ Ferraris, J.; Cowan, D. O.; Walatka, V. V., Jr.; Perlstein, J. H. (1973). "Electron transfer in a new highly conducting donor-acceptor complex". J. Am. Chem. Soc. 95 (3): 948. doi:10.1021/ja00784a066.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  5. ^ Larsen, J.; Lenoir, C. (1998). "2,2'-Bi-5,6-Dihydro-1,3-Dithiolo[4,5-b][1,4]dithiinylidene (BEDT-TTF)". Organic Syntheses{{cite journal}}: CS1 maint: multiple names: authors list (link); Collected Volumes, vol. 9, p. 72.

Further reading