Jump to content

Tardigrade

From Wikipedia, the free encyclopedia
(Redirected from Tardigrada)

Tardigrade
Temporal range: Turonian –Recent Middle Cambrian stem-group fossils
Milnesium tardigradum, a eutardigrade
Echiniscus insularis, a heterotardigrade
Scientific classification Edit this classification
Domain: Eukaryota
Kingdom: Animalia
Subkingdom: Eumetazoa
Clade: ParaHoxozoa
Clade: Bilateria
Clade: Nephrozoa
(unranked): Protostomia
Superphylum: Ecdysozoa
(unranked): Panarthropoda
Phylum: Tardigrada
Spallanzani, 1777
Classes

Tardigrades (/ˈtɑːrdɪɡrdz/ ),[1] known colloquially as water bears or moss piglets,[2] are a phylum of eight-legged segmented micro-animals. They were first described by the German zoologist Johann August Ephraim Goeze in 1773, who called them Kleiner Wasserbär 'little water bear'. In 1776, the Italian biologist Lazzaro Spallanzani named them Tardigrada, which means 'slow walker'.

They live in diverse regions of Earth's biosphere – mountaintops, the deep sea, tropical rainforests, and the Antarctic. Tardigrades are among the most resilient animals known, with individual species able to survive extreme conditions – such as exposure to extreme temperatures, extreme pressures (both high and low), air deprivation, radiation, dehydration, and starvation – that would quickly kill most other known forms of life. Tardigrades have survived exposure to outer space.

There are about 1,300 known species in the phylum Tardigrada, a part of the superphylum Ecdysozoa. The earliest known fossil is from the Cambrian, some 500 million years ago. They lack several of the Hox genes found in arthropods, and the middle region of the body corresponding to an arthropod's thorax and abdomen. Instead, most of their body is homologous to an arthropod's head.

Tardigrades are usually about 0.5 mm (0.020 in) long when fully grown. They are short and plump, with four pairs of legs, each ending in claws (usually four to eight) or suction disks. Tardigrades are prevalent in mosses and lichens and can readily be collected and viewed under a low-power microscope, making them accessible to students and amateur scientists. Their clumsy crawling and their well-known ability to survive life-stopping events have brought them into science fiction and popular culture including items of clothing, statues, soft toys and crochet patterns.

Description

[edit]

Tardigrades have barrel-shaped bodies with four pairs of stubby legs. Most range from 0.3 to 0.5 mm (0.012 to 0.020 in) in length, although the largest species may reach 1.2 mm (0.047 in).[3] The body consists of a head, three body segments each with a pair of legs, and a caudal segment with a fourth pair of legs. The legs are without joints, while the feet have four to eight claws each, or suction discs. The cuticle contains chitin and protein and is moulted periodically. The first three pairs of legs are directed downward along the sides and are the primary means of locomotion, while the fourth pair is directed backward on the last segment of the trunk and is used primarily for grasping the substrate.[4][2][5]

All adult tardigrades of the same species have the same number of cells. Some species have as many as 40,000 cells in each adult, while others have far fewer.[6][7] The body cavity consists of a haemocoel, but the only place where a true coelom exists is around the gonad. There are no respiratory organs; gas exchange occurs across the entire body surface. Some tardigrades have three tubular glands associated with the rectum; these may be excretory organs similar to the Malpighian tubules of arthropods.[8] Nephridia are absent.[9]

The tubular mouth is armed with stylets, which are used to pierce cells, algae, or small invertebrates on which the tardigrades feed, releasing the body fluids or cell contents. The mouth opens into a triradiate, muscular, sucking pharynx. The stylets are lost when the animal molts, and a new pair is secreted from a pair of glands that lie on either side of the mouth. The pharynx connects to a short esophagus, and then to an intestine that occupies much of the length of the body, which is the main site of digestion. The intestine opens, via a short rectum, to an anus located at the terminal end of the body. Some species only defecate when they molt, leaving the feces behind with the shed cuticle.[8]

The tardigrade nervous system consists primarily of the brain and four segmental ganglia associated with the four body segments.[10] The brain comprises about 1% of the total body volume.[11] The brain develops in a bilaterally symmetric pattern.[12] Tardigrades have a dorsal brain atop a paired ventral nervous system. The brain includes multiple lobes, mostly consisting of three bilaterally paired clusters of neurons.[13] The brain is attached to a large ganglion below the esophagus, from which a double ventral nerve cord runs the length of the body. The cord possesses one ganglion per segment, each of which produces lateral nerve fibres that run into the limbs. Many species possess a pair of rhabdomeric pigment-cup eyes, and numerous sensory bristles are on the head and body.[14]

Tardigrades possess a buccopharyngeal apparatus, a swallowing device made of muscles and spines that activates an inner jaw and begins digestion and movement along the throat and intestine. this, along with the claws, is used to differentiate species.[15]

Reproduction

[edit]
Shed cuticle of female tardigrade, containing eggs

Although some species are parthenogenetic, both males and females are usually present; females are frequently larger and more common. Both sexes have a single gonad located above the intestine. Two ducts run from the testes in males, opening through a single pore in front of the anus. In contrast, females have a single duct opening either just above the anus or directly into the rectum, which forms a cloaca.[8]

Tardigrades are oviparous, and fertilization is usually external. Mating occurs during the molt with the eggs being laid inside the shed cuticle of the female and then covered with sperm. A few species have internal fertilization, with mating occurring before the female fully sheds her cuticle. In most cases, the eggs are left inside the shed cuticle to develop, but some species attach them to a nearby substrate.[8]

The eggs hatch after no more than 14 days, with the young already possessing their full complement of adult cells. Growth to adult size occurs by enlargement of the individual cells (hypertrophy), rather than by cell division. Tardigrades may molt up to 12 times.[8]

Tardigrades tend to court before mating. Courtship was first observed in tardigrades in 1895; up to nine males aggregate around a female to mate.[16]

Ecology and life history

[edit]

Tardigrades are cosmopolitan, living in all Earth's biomes (biogeographical regions). Among marine habitats, they range from the intertidal zone to abyssal depths, in every ocean. In freshwater, they live in a variety of cave, lake, and river habitats. On land, they frequent lichens, liverworts, and mosses which grow on soil, tree bark, and rocks; they are also found directly in soil and leaf litter.[17][18]

Tardigrades pierce the cells of algae, plants, bacteria, protozoa, and small invertebrates such as rotifers to feed.[4] but some are carnivorous.[19] A few extant species, such as Tetrakentron synaptae, alongside the Cambrian 'Orsten' tardigrade, are parasitic.[20][21]

The eggs and cysts of tardigrades are durable enough to be carried great distances on the feet of other animals.[5] The lifespan of tardigrades ranges from three to four months for some species, up to two years for other species, not counting their time in dormant states.[22] Many aquatic invertebrate predators feed on tardigrades as part of their diet.[23] One species, Echiniscoides wyethi, lives on barnacles.[24]

With the exception of 62 exclusively freshwater species, all non-marine tardigrades are found in terrestrial environments. Because the majority of the marine species belongs to Heterotardigrada, the most ancestral class, the phylum evidently has a marine origin.[25]

Environmental tolerance

[edit]

Tardigrades inhabit extreme habitats as varied as hot springs, glacial cryoconite holes, and on top of the Himalayas.[26][27] They are not considered extremophilic because they are not adapted to exploit these conditions, only to endure them. This means that their chances of dying increase the longer they are exposed to the extreme environments,[3] whereas true extremophiles thrive in a physically or geochemically extreme environment.[28]

Dehydrated 'tun' state

[edit]

Tardigrades are capable of suspending their metabolism. While in this state, they can go without food or water for around five years, sometimes longer, only to later rehydrate, forage, and reproduce.[29][30][31] Depending on the environment, they may enter this state via anhydrobiosis, allowing tardigrades to survive in habitats that might otherwise be fatal. Anhydrobiosis also permits resistance to unnatural abiotic extremes such as subzero temperatures.[32] In this cryptobiotic state with suspended metabolism, the tardigrade is known as a "tun".[33] Mitochondria and muscle contraction due to mitochondria are essential for entering the dehydrated "tun" state.[34]

Damage protection proteins

[edit]

Tardigrades' ability to remain desiccated for long periods of time was thought to depend on high levels of the sugar trehalose,[35] common in organisms that survive desiccation.[36] However, tardigrades do not only synthesize enough trehalose for this function.[35][37] Instead, tardigrades produce intrinsically disordered proteins in response to desiccation. Three of these are specific to tardigrades and have been called tardigrade specific proteins. These may protect membranes from damage by associating with the polar heads of lipid molecules.[38] They may also form a glass-like matrix that protects cytoplasm from damage during desiccation.[39]

Tardigrade DNA is protected from radiation by the dsup ("damage suppressor") protein.[40] In a test with human cells, dsup reduced X-ray damage by around 40%.[40] The shielding likely involves strong electrostatic attraction and high protein flexibility, forming a molecular aggregate with DNA.[41] The Dsup proteins of Ramazzottius varieornatus and Hypsibius exemplaris promote survival by binding to nucleosomes and protecting chromosomal DNA from hydroxyl radicals.[42] The Dsup protein of R. varieornatus confers resistance to ultraviolet-C by upregulating DNA repair genes that protect the genomic DNA from the damages introduced by UV irradiation.[43]

Extremes of temperature

[edit]

Tardigrades can survive in extreme environments that would kill almost any other animal, including:[36][44][45]

Tardigrades can survive:

  • A few minutes at 151 °C (304 °F)[46]
  • 30 years at −20 °C (−4 °F)[47]
  • A few days at −200 °C (−328 °F; 73 K)[46]
  • A few minutes at −272 °C (−458 °F; 1 K)[48]

Tardigrades are however sensitive to high temperatures: 48 hours at 37.1 °C (98.8 °F) kills half of unacclimitized active tardigrades. Acclimation boosts the lethal temperature to 37.6 °C (99.7 °F). Those in the tun state fare better, half surviving 82.7 °C (180.9 °F) for one hour. Longer exposure decreases the lethal temperature. For 24 hours of exposure, 63.1 °C (145.6 °F) kills half of the tun state tardigrades.[49]

Extremes of pressure

[edit]

Tardigrades can withstand the extremely low pressure of a vacuum, and very high pressures, more than 1,200 times atmospheric pressure. Some species can also withstand pressures of 6,000 atmospheres, nearly six times the pressure of water in the deepest ocean trench.[6]

Radiation

[edit]

Tardigrades can withstand 1,000 times more radiation than other animals,[50] median lethal doses of 5,000 Gy (of gamma rays) and 6,200 Gy (of heavy ions) in hydrated animals (5 to 10 Gy could be fatal to a human).[51] Earlier experiments attributed this to their lowered water content, providing fewer reactants for ionizing radiation.[51] However, tardigrades, when hydrated, remain much more resistant to shortwave UV radiation than other animals; one reason is their ability to repair damage to their DNA.[52]

Exposure to space (vacuum and ultraviolet)

[edit]

Tardigrades have survived exposure to space. In 2007, dehydrated tardigrades were taken into low Earth orbit on the FOTON-M3 mission carrying the BIOPAN astrobiology payload. For 10 days, groups of tardigrades, some of them previously dehydrated, some of them not, were exposed to the hard vacuum of space, or vacuum and solar ultraviolet radiation.[53][54][55] Back on Earth, more than 68% of the subjects protected from solar ultraviolet radiation were reanimated within 30 minutes following rehydration; although subsequent mortality was high, many produced viable embryos.[53]

In contrast, hydrated samples exposed to the combined effect of vacuum and full solar ultraviolet radiation had significantly reduced survival, with only three subjects of Milnesium tardigradum surviving.[53] The space vacuum did not have a significant effect on egg-laying in either R. coronifer or M. tardigradum. However, M. tardigradum exposed to UV radiation had a lower egg laying rate.[56] In 2011, Italian scientists sent tardigrades on board the International Space Station along with extremophiles on STS-134, the final flight of Space Shuttle Endeavour.[57] Their conclusion was that microgravity and cosmic radiation "did not significantly affect survival of tardigrades in flight" and that tardigrades could be useful in space research.[58][59]

In 2011, tardigrades were to be sent on the Russian Fobos-Grunt mission's Living Interplanetary Flight Experiment to Phobos, but the launch failed. In 2019, a capsule containing tardigrades in a cryptobiotic state was on board the Israeli lunar lander Beresheet which crashed on the Moon; they were described as unlikely to have survived the impact.[60] Despite tardigrades' ability to survive in space, tardigrades on Mars would still need food.[61]

Other stresses

[edit]

The longest that living tardigrades have been shown to survive in a dry state is nearly 10 years.[30]

They can survive Impacts up to about 900 meters per second, and momentary shock pressures up to about 1.14 gigapascals.[60]

Taxonomy

[edit]

Johann August Ephraim Goeze originally named the tardigrade Kleiner Wasserbär, meaning 'little water-bear' in German (today, Germans often call them Bärtierchen 'little bear-animal').[62][63] The name water bear comes from the way they walk, reminiscent of a bear's gait. The name Tardigradum means 'slow walker' and was given by Lazzaro Spallanzani in 1776.[64][3] Ferdinand Richters worked on the taxonomy of tardigrades from 1900 to 1913, with studies of Nordic, Arctic, marine, and South American species; he described many species at this time,[65][66] and in 1926 set up the class Eutardigrada.[67][68] In 1927, Ernst Marcus set up the class Heterotardigrada.[69] In 1937 Gilbert Rahm, studying the fauna of Japan's hot springs, distinguished the class Mesotardigrada, with a single species Thermozodium esakii;[70] its validity is now doubted.[71] In 1962, Giuseppe Ramazzotti [it] suggested that the Tardigrada be promoted to a phylum.[4][72] In 2019, Noemi Guil and colleagues proposed to promote the order Apochela to the new class Apotardigrada.[73] There are about 1,300 described species in the phylum Tardigrada, a part of the superphylum Ecdysozoa.[74]

Evolution

[edit]

Evolutionary history

[edit]

The minute sizes of tardigrades and their membranous integuments make their fossilization both difficult to detect and highly unusual. The only known fossil specimens are those from mid-Cambrian deposits in Siberia (in the Orsten fauna) and a few specimens from Cretaceous and Neogene amber.[75][76] The Siberian tardigrade fossils differ from living tardigrades in several ways. They have three pairs of legs rather than four, they have a simplified head morphology, and they have no posterior head appendages, but they share with modern tardigrades their columnar cuticle construction.[77] Scientists think they represent a stem group of living tardigrades.[75]

Multiple lines of evidence show that tardigrades are secondarily miniaturized from a larger ancestor,[81] probably a lobopodian, perhaps resembling Aysheaia, which many analyses place close to the divergence of the tardigrade lineage.[79][80] An alternative hypothesis derives tactopoda from a clade encompassing dinocaridids and Opabinia.[82] The enigmatic panarthropodan Sialomorpha found in 30-million year old Dominican amber, while not a tardigrade, shows some apparent affinities.[83] A 2023 morphological analysis concluded that luolishaniids, a group of Cambrian lobopodians, might be the tardigrades' closest known relatives.[78]

Tardigrades lack several of the Hox genes found in arthropods, and a large intermediate region of the body axis. In insects, this corresponds to the entire thorax and abdomen. Practically the whole body, except for the last pair of legs, is made up of just the segments that are homologous to the head region in arthropods. This implies that tardigrades evolved from an ancestral ecdysozoan with a longer body and more segments.[84]

Tardigrade body plan compared to arthropods, onychophora, and annelids. Tardigrades have lost the whole middle section of the ecdysozoan body plan, and its Hox genes.[84]

The oldest remains of modern tardigrades are those of Milnesium swolenskyi, belonging to the living genus Milnesium known from a Late Cretaceous (Turonian) aged specimen of New Jersey amber, around 90 million years old. Another fossil species, Beorn leggi, is known from a Late Campanian (~72 mya) specimen of Canadian amber, belonging to the family Hypsibiidae.[85] The related hypsibioidean Aerobius dactylus was found in the same amber piece.[86][87] The youngest known fossil tadigrade genus, Paradoryphoribius, was discovered in amber dated to about 16 mya.[76]

External phylogeny

[edit]

Morphological and molecular (genomic) studies have attempted to define how tardigrades relate to other ecdysozoan groups. Two plausible placements have been proposed: tardigrades are either most closely related to Arthropoda and Onychophora, or to nematodes.[88]

Panarthropoda

Water bears (Tardigrada)

Antennopoda

Velvet worms (Onychophora)

Arthropods (Arthropoda)

Internal phylogeny

[edit]

In 2012, the internal phylogeny of the phylum was studied using molecular markers (ribosomal RNA), finding that the Heterotardigrada and Arthrotardigrada seemed to be paraphyletic.[89]

Tardigrada

"Arthrotardigrada"

Echiniscoidea

Eutardigrada
Apochela

Milnesiidae

Parachela

Isohypsibiodea

Macrobiotoidea

Hypsibioidea

In 2018, a report integrating multiple morphological and molecular studies concluded that while the Arthrotardigrada appear to be paraphyletic, the Heterotardigrada is an accepted clade. All the lower-level taxa have been much reorganized, but the major groupings remain in place.[90]

Tardigrada
Heterotardigrada
Eutardigrada
Apochela

Milnesiidae

Parachela

Isohypsibiodea

Macrobiotoidea

Hypsibioidea

Genomics

[edit]

Tardigrade genomes vary in size, from about 75 to 800 megabase pairs of DNA.[91] Hypsibius exemplaris (formerly Hypsibius dujardini) has a compact genome of 100 megabase pairs[88] and a generation time of about two weeks; it can be cultured indefinitely and cryopreserved.[92] The genome of Ramazzottius varieornatus, one of the most stress-tolerant species of tardigrades, was sequenced in 2015. Less than 1.2% of its genes are the result of horizontal gene transfer from other species.[93]

In culture and society

[edit]

Popularity

[edit]

Tardigrades are common in mosses and lichens on walls and roofs, and can readily be collected and viewed under a low-power microscope. If they are dry, they can be reanimated on a microscope slide by adding a little water, making them accessible to beginning students and amateur scientists.[94] Current Biology attributed their popularity to "their clumsy crawling [which] is about as adorable as can be."[18] The zoologists James F. Fleming and Kazuhuru Arakawa called them "a charismatic phylum".[71] They have been famous[95] for their ability to survive life-stopping events such as being dried out since Spallanzani first resuscitated them from some dry sediment in a gutter in the 18th century.[95] These traits have made them appear in various kinds of science fiction an other pop culture.[96][97] Live Science notes that they are popular enough to appear on merchandise like clothes, earrings, and keychains, with crochet patterns for people to make their own tardigrade.[98] The Dutch artist Arno Coenen [nl] created statues for St Eusebius' Church, Arnhem of microscopic organisms including a tardigrade and a coronavirus.[99]

In books and music

[edit]

The short-story "Bathybia" by Douglas Mawson, published in the 1908 book Aurora Australis, printed in the Antarctic, deals with an expedition to the South Pole where the team encounters giant mushrooms and arthropods. The team watches a giant tardigrade fighting a similarly enormous rotifer; another giant water bear bites a man's toe, rendering him comatose for half an hour. Finally, a four-foot-long tardigrade, waking from hibernation, scares the narrator from his sleep, and he realizes it was all a dream.[100][101]

The second arc of the comic book Paper Girls (2015) features a pair of tardigrades that have been enormously enlarged as a side effect of time travel.[102] Musician Cosmo Sheldrake imagines himself a tardigrade in his 2015 "Tardigrade Song".[103][104]

In film and TV

[edit]

When the characters in the superhero films Ant-Man (2015) and Ant-Man and the Wasp (2018) shrink themselves to enter the "Quantum Realm", they encounter tardigrades.[105][106][107] In the 2015 sci-fi horror film Harbinger Down, the characters have to deal with deadly mutated tardigrades, the result of Cold War experiments.[108][109] In Star Trek: Discovery (2017), the alien "Ripper" creature, who is used to "navigate" through a galactic mycelium network and instantly reposition the ship, is a huge version of a terrestrial tardigrade.[110][109] The 2017 South Park episode "Moss Piglets" involves a science experiment in which tardigrades learn to dance to the music of Taylor Swift.[111] The 2018 Family Guy episode "Big Trouble in Little Quahog" features Stewie and Brian being shrunk to a microscopic level, during which they meet a group of friendly tardigrades or "water bears" who help them.[112]

See also

[edit]

References

[edit]
  1. ^ "tardigrade". Dictionary.com Unabridged (Online). n.d.
  2. ^ a b Miller, William (2017-02-06). "Tardigrades". American Scientist. Retrieved 2018-04-13.
  3. ^ a b c Bordenstein, Sarah. "Tardigrades (Water Bears)". Microbial Life Educational Resources. National Science Digital Library. Retrieved 2014-01-24.
  4. ^ a b c Romano, Frank A. (2003). "On water bears". Florida Entomologist. 86 (2): 134–137. doi:10.1653/0015-4040(2003)086[0134:OWB]2.0.CO;2.
  5. ^ a b Nelson, Diane (1 July 2002). "Current status of Tardigrada: Evolution and Ecology". Integrative and Comparative Biology. 42 (3): 652–659. doi:10.1093/icb/42.3.652. PMID 21708761.
  6. ^ a b Seki, Kunihiro; Toyoshima, Masato (1998). "Preserving tardigrades under pressure". Nature. 395 (6705): 853–854. Bibcode:1998Natur.395..853S. doi:10.1038/27576. S2CID 4429569.
  7. ^ Kinchin, Ian M. (1994) The Biology of Tardigrades Ashgate Publishing
  8. ^ a b c d e Barnes, Robert D. (1982). Invertebrate Zoology. Philadelphia, PA: Holt-Saunders International. pp. 877–880. ISBN 978-0-03-056747-6.
  9. ^ Segmentation in Tardigrada and diversification of segmental patterns in Panarthropoda
  10. ^ Mayer, Georg; Martin, Christine; Rüdiger, Jan; Kauschke, Susann; Stevenson, Paul A; et al. (2013). "Selective neuronal staining in tardigrades and onychophorans provides insights into the evolution of segmental ganglia in panarthropods". BMC Evolutionary Biology. 13 (1): 230. doi:10.1186/1471-2148-13-230. PMC 4015553. PMID 24152256.
  11. ^ Gross, Vladimir; Müller, Mark; Hehn, Lorenz; Ferstl, Simone; Allner, Sebastian; Dierolf, Martin; Achterhold, Klaus; Mayer, Georg; Pfeiffer, Franz (2019). "X-ray imaging of a water bear offers a new look at tardigrade internal anatomy". Zoological Letters. 5 (1). doi:10.1186/s40851-019-0130-6. PMC 6511223. PMID 31110777.
  12. ^ Gross, Vladimir; Mayer, Georg (2015). "Neural development in the tardigrade Hypsibius dujardini based on anti-acetylated α-tubulin immunolabeling". EvoDevo. 6: 12. doi:10.1186/s13227-015-0008-4. PMC 4458024. PMID 26052416.
  13. ^ Zantke, Juliane; Wolff, Carsten; Scholtz, Gerhard (2007). "Three-dimensional reconstruction of the central nervous system of Macrobiotus hufelandi (Eutardigrada, Parachela): Implications for the phylogenetic position of Tardigrada". Zoomorphology. 127 (1): 21–36. doi:10.1007/s00435-007-0045-1. S2CID 43853965.
  14. ^ Greven, Hartmut (2007). "Comments on the eyes of tardigrades". Arthropod Structure & Development. 36 (4): 401–407. Bibcode:2007ArtSD..36..401G. doi:10.1016/j.asd.2007.06.003. PMID 18089118.
  15. ^ Elzinga, Richard J. (1998). "Microspines in the alimentary canal of Arthropoda, Onychophora, annelida". International Journal of Insect Morphology and Embryology. 27 (4): 341–349. doi:10.1016/S0020-7322(98)00027-0.
  16. ^ Sugiura, Kenta; Matsumoto, Midori (2021). "Sexual reproductive behaviours of tardigrades: A review". Invertebrate Reproduction & Development. 65 (4): 279–287. Bibcode:2021InvRD..65..279S. doi:10.1080/07924259.2021.1990142. S2CID 244504291.
  17. ^ Nelson, Diane R.; Bartels, Paul J.; Guil, Noemi (2018). "Tardigrade Ecology". Water Bears: The Biology of Tardigrades. Vol. 2. Cham: Springer International Publishing. pp. 163–210. doi:10.1007/978-3-319-95702-9_7. ISBN 978-3-319-95701-2.
  18. ^ a b Goldstein, Bob; Blaxter, Mark (2002). "Tardigrades". Current Biology. 12 (14): R475. Bibcode:2002CBio...12.R475G. doi:10.1016/S0960-9822(02)00959-4. PMID 12176341.
  19. ^ Morgan, Clive I. (1977). "Population dynamics of two species of Tardigrada, Macrobiotus hufelandii (Schultze) and Echiniscus (Echiniscus) testudo (Doyere), in roof moss from Swansea". Journal of Animal Ecology. 46 (1): 263–279. Bibcode:1977JAnEc..46..263M. doi:10.2307/3960. JSTOR 3960.
  20. ^ Müller, Klaus J.; Walossek, Dieter; Zakharov, Arcady (14 July 1995). "'Orsten' type phosphatized soft-integument preservation and a new record from the Middle Cambrian Kuonamka Formation in Siberia". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 197 (1): 101–118. doi:10.1127/njgpa/197/1995/101.
  21. ^ First record of water bears (Tardigrada) from sponges (Porifera)
  22. ^ Glime, Janice (2010). "Tardigrades". Bryophyte Ecology: Volume 2, Bryological Interaction.
  23. ^ Kinchin, IM (1987). "The moss fauna 1; Tardigrades". Journal of Biological Education. 21 (4): 288–290. doi:10.1080/00219266.1987.9654916.
  24. ^ Perry, Emma S.; Miller, William R. (2015). "Echiniscoides wyethi, a new marine tardigrade from Maine, U.S.A. (Heterotardigrada: Echiniscoidea: Echiniscoididae)". Proceedings of the Biological Society of Washington. 128 (1): 103–110. doi:10.2988/0006-324X-128.1.103. S2CID 85893082.
  25. ^ van Straalen, Nico M. (August 2021). "Evolutionary terrestrialization scenarios for soil invertebrates". Pedobiologia. 87–88: 150753. Bibcode:2021Pedob..8750753V. doi:10.1016/j.pedobi.2021.150753.
  26. ^ Hogan, C. Michael (2010). "Extremophile". In E. Monosson; C. Cleveland. (eds.). Encyclopedia of Earth. Washington, DC: National Council for Science and the Environment.
  27. ^ A hole in the nematosphere: tardigrades and rotifers dominate the cryoconite hole environment, whereas nematodes are missing
  28. ^ Rothschild, Lynn J.; Mancinelli, Rocco L. (2001). "Life in extreme environments". Nature. 409 (6823): 1092–1101. Bibcode:2001Natur.409.1092R. doi:10.1038/35059215. PMID 11234023. S2CID 529873.
  29. ^ Crowe, John H.; Carpenter, John F.; Crowe, Lois M. (October 1998). "The role of vitrification in anhydrobiosis". Annual Review of Physiology. 60: 73–103. doi:10.1146/annurev.physiol.60.1.73. PMID 9558455.
  30. ^ a b Guidetti, Roberto; Jönsson, K. Ingemar (2002). "Long-term anhydrobiotic survival in semi-terrestrial micrometazoans". Journal of Zoology. 257 (2): 181–187. CiteSeerX 10.1.1.630.9839. doi:10.1017/S095283690200078X.
  31. ^ Bell, Graham (2016). "Experimental macroevolution". Proceedings of the Royal Society B: Biological Sciences. 283 (1822): 20152547. doi:10.1098/rspb.2015.2547. PMC 4721102. PMID 26763705.
  32. ^ Jönsson, K. Ingemar; Bertolani, Roberto (September 2001). "Facts and fiction about long-term survival in tardigrades". Journal of Zoology. 255 (1): 121–123. doi:10.1017/S0952836901001169.
  33. ^ Piper, Ross (2007), Extraordinary Animals: An Encyclopedia of Curious and Unusual Animals, Greenwood Press. p. 277. ISBN 978-0-313-33922-6.
  34. ^ Halberg, Kenneth Agerlin; Jørgensen, Aslak; Møbjerg, Nadja (31 December 2013). "Desiccation Tolerance in the Tardigrade Richtersius coronifer Relies on Muscle Mediated Structural Reorganization". PLoS ONE. 8 (12): e85091. doi:10.1371/journal.pone.0085091. PMC 3877342. PMID 24391987.
  35. ^ a b Hibshman, Jonathan D.; Clegg, James S.; Goldstein, Bob (2020-10-23). "Mechanisms of Desiccation Tolerance: Themes and Variations in Brine Shrimp, Roundworms, and Tardigrades". Frontiers in Physiology. 11: 592016. doi:10.3389/fphys.2020.592016. PMC 7649794. PMID 33192606.
  36. ^ a b Kamilari, Maria; Jørgensen, Aslak; Schiøtt, Morten; Møbjerg, Nadja (2019-07-24). "Comparative transcriptomics suggest unique molecular adaptations within tardigrade lineages". BMC Genomics. 20 (1): 607. doi:10.1186/s12864-019-5912-x. ISSN 1471-2164. PMC 6652013. PMID 31340759.
  37. ^ Lapinski, Jens; Tunnacliffe, Alan (2003). "Anhydrobiosis without trehalose in bdelloid rotifers". FEBS Letters. 553 (3): 387–390. Bibcode:2003FEBSL.553..387L. doi:10.1016/S0014-5793(03)01062-7. PMID 14572656. S2CID 1692056.
  38. ^ Boothby, Thomas C; Tapia, Hugo; Brozena, Alexandra H; Piszkiewicz, Samantha; Smith, Austin E; et al. (2017). "Tardigrades Use Intrinsically Disordered Proteins to Survive Desiccation". Molecular Cell. 65 (6): 975–984.e5. doi:10.1016/j.molcel.2017.02.018. PMC 5987194. PMID 28306513.
  39. ^ Boothby, Thomas C.; Piszkiewicz, Samantha; Holehouse, Alex; Pappu, Rohit V.; Pielak, Gary J. (December 2018). "Tardigrades use intrinsically disordered proteins to survive desiccation". Cryobiology. 85: 137–138. doi:10.1016/j.cryobiol.2018.10.077. hdl:11380/1129511. S2CID 92411591.
  40. ^ a b Hashimoto, Takuma; Horikawa, Daiki D; Saito, Yuki; Kuwahara, Hirokazu; Kozuka-Hata, Hiroko; et al. (2016). "Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein". Nature Communications. 7: 12808. Bibcode:2016NatCo...712808H. doi:10.1038/ncomms12808. PMC 5034306. PMID 27649274.
  41. ^ Mínguez-Toral, Marina; Cuevas-Zuviría, Bruno; Garrido-Arandia, María; Pacios, Luis F. (December 2020). "A computational structural study on the DNA-protecting role of the tardigrade-unique Dsup protein". Scientific Reports. 10 (1): 13424. Bibcode:2020NatSR..1013424M. doi:10.1038/s41598-020-70431-1. PMC 7414916. PMID 32770133.
  42. ^ Chavez, Carolina; Cruz-Becerra, Grisel; Fei, Jia; Kassavetis, George A.; Kadonaga, James T. (2019-10-01). "The tardigrade damage suppressor protein binds to nucleosomes and protects DNA from hydroxyl radicals". eLife. 8. doi:10.7554/eLife.47682. ISSN 2050-084X. PMC 6773438. PMID 31571581.
  43. ^ Ricci, Claudia; Riolo, Giulia; Marzocchi, Carlotta; Brunetti, Jlenia; Pini, Alessandro; Cantara, Silvia (2021-09-27). "The Tardigrade Damage Suppressor Protein Modulates Transcription Factor and DNA Repair Genes in Human Cells Treated with Hydroxyl Radicals and UV-C". Biology. 10 (10): 970. doi:10.3390/biology10100970. PMC 8533384. PMID 34681069.
  44. ^ Sloan, David; Alves Batista, Rafael; Loeb, Abraham (2017). "The Resilience of Life to Astrophysical Events". Scientific Reports. 7 (1): 5419. arXiv:1707.04253. Bibcode:2017NatSR...7.5419S. doi:10.1038/s41598-017-05796-x. PMC 5511186. PMID 28710420.
  45. ^ Orellana, Roberto; Macaya, Constanza; Bravo, Guillermo; Dorochesi, Flavia; Cumsille, Andrés; Valencia, Ricardo; Rojas, Claudia; Seeger, Michael (2018-10-30). "Living at the Frontiers of Life: Extremophiles in Chile and Their Potential for Bioremediation". Frontiers in Microbiology. 9: 2309. doi:10.3389/fmicb.2018.02309. PMC 6218600. PMID 30425685.
  46. ^ a b Horikawa, Daiki D (2012). "Survival of Tardigrades in Extreme Environments: A Model Animal for Astrobiology". In Altenbach, Alexander V.; Bernhard, Joan M.; Seckbach, Joseph (eds.). Anoxia. Cellular Origin, Life in Extreme Habitats and Astrobiology. Vol. 21. pp. 205–217. doi:10.1007/978-94-007-1896-8_12. ISBN 978-94-007-1895-1.
  47. ^ Tsujimoto, Megumu; Imura, Satoshi; Kanda, Hiroshi (February 2015). "Recovery and reproduction of an Antarctic tardigrade retrieved from a moss sample frozen for over 30 years". Cryobiology. 72 (1): 78–81. doi:10.1016/j.cryobiol.2015.12.003. PMID 26724522.
  48. ^ Becquerel, Paul (1950). "La suspension de la vie au dessous de 1/20 K absolu par demagnetization adiabatique de l'alun de fer dans le vide les plus eléve" [The suspension of life below 1/20 K absolute by adiabatic demagnetization of iron alum in the highest vacuum]. Comptes Rendus des Séances de l'Académie des Sciences (in French). 231 (4): 261–263.
  49. ^ Neves, Ricardo Cardoso; Hvidepil, Lykke K. B.; Sørensen-Hygum, Thomas L.; Stuart, Robyn M.; Møbjerg, Nadja (9 January 2020). "Thermotolerance experiments on active and desiccated states of Ramazzottius varieornatus emphasize that tardigrades are sensitive to high temperatures". Scientific Reports. 10 (1): 94. Bibcode:2020NatSR..10...94N. doi:10.1038/s41598-019-56965-z. PMC 6952461. PMID 31919388.
  50. ^ Horikawa, Daiki D.; Sakashita, Tetsuya; Katagiri, Chihiro; Watanabe, Masahiko; Kikawada, Takahiro; et al. (2006). "Radiation tolerance in the tardigrade Milnesium tardigradum". International Journal of Radiation Biology. 82 (12): 843–848. doi:10.1080/09553000600972956. PMID 17178624. S2CID 25354328.
  51. ^ a b Horikawa, Daiki D; Sakashita, Tetsuya; Katagiri, Chihiro; Watanabe, Masahiko; Kikawada, Takahiro; et al. (2009). "Radiation tolerance in the tardigrade Milnesium tardigradum". International Journal of Radiation Biology. 82 (12): 843–848. doi:10.1080/09553000600972956. PMID 17178624. S2CID 25354328.
  52. ^ Horikawa, Daiki D. "UV Radiation Tolerance of Tardigrades". NASA.com. Archived from the original on 2013-02-18. Retrieved 2013-01-15.
  53. ^ a b c Jönsson, K. Ingemar; Rabbow, Elke; Schill, Ralph O.; Harms-Ringdahl, Mats; Rettberg, Petra (2008). "Tardigrades survive exposure to space in low Earth orbit". Current Biology. 18 (17): R729–R731. Bibcode:2008CBio...18.R729J. doi:10.1016/j.cub.2008.06.048. PMID 18786368. S2CID 8566993.
  54. ^ "Creature Survives Naked in Space". Space.com. 8 September 2008. Retrieved 2011-12-22.
  55. ^ Mustain, Andrea (22 December 2011). "Weird wildlife: The real land animals of Antarctica". NBC News. Retrieved 2011-12-22.[dead link]
  56. ^ Jönsson, K. Ingemar; Rabbow, Elke; Schill, Ralph O.; Harms-Ringdahl, Mats; Rettberg, Petra (September 2008). "Tardigrades survive exposure to space in low Earth orbit". Current Biology. 18 (17): R729–R731. Bibcode:2008CBio...18.R729J. doi:10.1016/j.cub.2008.06.048. PMID 18786368. S2CID 8566993.
  57. ^ NASA Staff (17 May 2011). "BIOKon In Space (BIOKIS)". NASA. Archived from the original on 17 April 2011. Retrieved 2011-05-24.
  58. ^ Rebecchi, L.; Altiero, T.; Rizzo, A. M.; Cesari, M.; Montorfano, G.; Marchioro, T.; Bertolani, R.; Guidetti, R. (2012). "Two tardigrade species on board of the STS-134 space flight" (PDF). 12th International Symposium on Tardigrada. p. 89. hdl:2434/239127. ISBN 978-989-96860-7-6.
  59. ^ Reuell, Peter (2019-07-08). "Harvard study suggests asteroids might play key role in spreading life". Harvard Gazette. Retrieved 2019-11-30.
  60. ^ a b O'Callaghan, Jonathan (2021). "Hardy water bears survive bullet impacts—up to a point". Science. doi:10.1126/science.abj5282. S2CID 236376996.
  61. ^ Ledford, Heidi (2008-09-08). "Spacesuits optional for 'water bears'". Nature. doi:10.1038/news.2008.1087.
  62. ^ Greven, Hartmut (2015). "About the little water bear: A commented translation of GOEZE'S note "Ueber den kleinen Wasserbär" from 1773". Acta Biologica Benrodis. 17: 1–27. Retrieved 27 September 2024.
  63. ^ Cross, Ryan (2016-11-07). "Secrets of the tardigrade". C&EN Global Enterprise. 94 (44): 20–21. doi:10.1021/cen-09444-scitech1. Retrieved 31 May 2021.
  64. ^ Spallanzani, Lazzaro (2015-10-04). "Opuscoli di fisica animale, e vegetabile - Google Libros". Retrieved 2024-09-27.
  65. ^ Mach, Martin. "Prof. Ferdinand Richters". Water Bear web base. Retrieved 15 December 2024. (with full Richters bibliography; first published in Bärtierchen-Journal, issue 62)
  66. ^ Michalczyk, Łukasz; Kaczmarek, Łukasz (24 July 2013). "The Tardigrada Register: a comprehensive online data repository for tardigrade taxonomy". Journal of Limnology. 72 (1s). doi:10.4081/jlimnol.2013.s1.e22. Retrieved 15 December 2024.
  67. ^ "Eutardigrada Richters, 1926". Integrated Taxonomic Information System. Retrieved 16 December 2024.
  68. ^ Richters, Ferdinand; Krumbach, T.H. (1926). Kŭkenthal, W.; Krumbach, T.H. (eds.). "Handbook of Zoology". 3. Berlin and Leipzig: 1–68. {{cite journal}}: |chapter= ignored (help); Cite journal requires |journal= (help)
  69. ^ "Heterotardigrada Marcus, 1927". Integrated Taxonomic Information System. Retrieved 16 December 2024.
  70. ^ Rahm, Gilbert (1937). "A new ordo of tardigrades from the hot springs of Japan (Furu-yu section, Unzen)". 日本動物学彙報 (Bulletin of the Zoological Society of Japan). 16 (4): 345–352.
  71. ^ a b Fleming, James F.; Arakawa, Kazuharu (2021). "Systematics of tardigrada: A reanalysis of tardigrade taxonomy with specific reference to Guil et al. (2019)". Zoologica Scripta. 50 (3): 376–382. doi:10.1111/zsc.12476.
  72. ^ Ramazzotti, Giuseppe (1962). "Il Phylum Tardigrada" [The Phylum Tardigrada]. Memorie dell’Istituto Italiano di Idrobiologia (in Italian). 16: 1–595.
  73. ^ Guil, Noemi; Jørgensen, Aslak; Kristensen, Reinhardt (2019). "An upgraded comprehensive multilocus phylogeny of the Tardigrada tree of life". Zoologica Scripta. 48 (1): 120–137. doi:10.1111/zsc.12321. ISSN 0300-3256.
  74. ^ Degma, Peter; Bertolani, Roberto; Guidetti, Roberto (2021). "Actual checklist of Tardigrada species (2009–2021, 40th Edition: 19-07-2021)" (PDF). Università di Modena e Reggio Emilia. doi:10.25431/11380_1178608. Retrieved 2023-12-10.
  75. ^ a b Grimaldi, David A.; Engel, Michael S. (2005). Evolution of the Insects. Cambridge University Press. pp. 96–97. ISBN 978-0-521-82149-0.
  76. ^ a b Mapalo, M. A.; Robin, N.; Boudinot, B. E.; Ortega-Hernández, J.; Barden, P. (2021). "A tardigrade in Dominican amber". Proceedings of the Royal Society B: Biological Sciences. 288 (1960). Article 20211760. doi:10.1098/rspb.2021.1760. PMC 8493197. PMID 34610770.
  77. ^ Budd, Graham E (2001). "Tardigrades as 'Stem-Group Arthropods': The Evidence from the Cambrian Fauna". Zoologischer Anzeiger. 240 (3–4): 265–79. Bibcode:2001ZooAn.240..265B. doi:10.1078/0044-5231-00034.
  78. ^ a b Kihm, Ji-Hoon; Smith, Frank W.; Kim, Sanghee; Rho, Hyun Soo; Zhang, Xingliang; Liu, Jianni; Park, Tae-Yoon S. (2023). "Cambrian lobopodians shed light on the origin of the tardigrade body plan". Proceedings of the National Academy of Sciences. 120 (28): e2211251120. Bibcode:2023PNAS..12011251K. doi:10.1073/pnas.2211251120. PMC 10334802. PMID 37399417.
  79. ^ a b Fortey, Richard A.; Thomas, Richard H. (2001). Arthropod Relationships. Chapman & Hall. p. 383. ISBN 978-0-412-75420-3.
  80. ^ a b Smith, Martin R.; Ortega-Hernández, Javier (2014). "Hallucigenia's onychophoran-like claws and the case for Tactopoda" (PDF). Nature. 514 (7522): 363–366. Bibcode:2014Natur.514..363S. doi:10.1038/nature13576. PMID 25132546. S2CID 205239797.
  81. ^ Gross, Vladimir; Treffkorn, Sandra; Reichelt, Julian; Epple, Lisa; Lüter, Carsten; Mayer, Georg (2018). "Miniaturization of tardigrades (water bears): Morphological and genomic perspectives". Arthropod Structure & Development. 48: 12–19. doi:10.1016/j.asd.2018.11.006. PMID 30447338. S2CID 53669741.
  82. ^ Budd, Graham E. (1996). "The morphology of Opabinia regalis and the reconstruction of the arthropod stem-group". Lethaia. 29 (1): 1–14. Bibcode:1996Letha..29....1B. doi:10.1111/j.1502-3931.1996.tb01831.x.
  83. ^ Poinar, George; Nelson, Diane R. (September 28, 2019). "A new microinvertebrate with features of mites and tardigrades in Dominican amber". Invertebrate Biology. 138 (4). doi:10.1111/ivb.12265. S2CID 204157733.
  84. ^ a b Smith, Frank W.; Boothby, Thomas C.; Giovannini, Ilaria; Rebecchi, Lorena; Jockusch, Elizabeth L.; Goldstein, Bob (1 January 2016). "The Compact Body Plan of Tardigrades Evolved by the Loss of a Large Body Region". Current Biology. 26 (2): 224–229. Bibcode:2016CBio...26..224S. doi:10.1016/j.cub.2015.11.059. hdl:11380/1083953. PMID 26776737.
  85. ^ Cooper, Kenneth W. (1964). "The first fossil tardigrade: Beorn leggi, from Cretaceous Amber". Psyche: A Journal of Entomology. 71 (2): 41–48. doi:10.1155/1964/48418.
  86. ^ Mapalo, Marc A.; Wolfe, Joanna M.; Ortega-Hernández, Javier (2024-08-06). "Cretaceous amber inclusions illuminate the evolutionary origin of tardigrades". Communications Biology. 7 (1): 953. doi:10.1038/s42003-024-06643-2. ISSN 2399-3642. PMC 11303527. PMID 39107512.
  87. ^ Guidetti, Roberto; Bertolani, Roberto (2018), Schill, Ralph O. (ed.), "Paleontology and Molecular Dating", Water Bears: The Biology of Tardigrades, Zoological Monographs, vol. 2, Cham: Springer International Publishing, pp. 131–143, doi:10.1007/978-3-319-95702-9_5, ISBN 978-3-319-95701-2, retrieved 2020-11-24
  88. ^ a b Yoshida, Yuki; Koutsovoulos, Georgios; Laetsch, Dominik R.; Stevens, Lewis; Kumar, Sujai; et al. (2017-07-27). Tyler-Smith, Chris (ed.). "Comparative genomics of the tardigrades Hypsibius dujardini and Ramazzottius varieornatus". PLOS Biology. 15 (7): e2002266. doi:10.1371/journal.pbio.2002266. PMC 5531438. PMID 28749982.
  89. ^ Guil, Noemí; Giribet, Gonzalo (2012). "A comprehensive molecular phylogeny of tardigrades—adding genes and taxa to a poorly resolved phylum-level phylogeny". Cladistics. 28 (1): 21–49. doi:10.1111/j.1096-0031.2011.00364.x. PMID 34856729.
  90. ^ Jørgensen, Aslak; Kristensen, Reinhardt M.; Møbjerg, Nadja (2018). "Phylogeny and Integrative Taxonomy of Tardigrada". Water Bears: The Biology of Tardigrades. Vol. 2. Springer International Publishing. p. 95–114. doi:10.1007/978-3-319-95702-9_3. ISBN 978-3-319-95701-2.
  91. ^ "Genome Size of Tardigrades".
  92. ^ Gabriel, Willow N.; McNuff, Robert; Patel, Sapna K.; Gregory, T. Ryan; Jeck, William R.; Jones, Corbin D.; Goldstein, Bob (2007). "The tardigrade Hypsibius dujardini, a new model for studying the evolution of development". Developmental Biology. 312 (2): 545–559. doi:10.1016/j.ydbio.2007.09.055. PMID 17996863.
  93. ^ Zimmer, Carl (12 April 2024). "What Makes Tiny Tardigrades Nearly Radiation Proof - New research finds that the microscopic "water bears" are remarkably good at repairing their DNA after a huge blast of radiation". The New York Times. Archived from the original on 12 April 2024. Retrieved 13 April 2024.
  94. ^ Shaw, Michael W. "How to Find Tardigrades". Tardigrade USA. Archived from the original on 10 February 2014. Retrieved 2013-01-14.
  95. ^ a b Marshall, Michael (20 March 2021). "Tardigrades: nature's great survivors". The Observer.
  96. ^ Brenner, Kelly (2020). Nature Obscura: A City's Hidden Natural World. Mountaineers Books. p. 40. ISBN 978-1-68051-208-3.
  97. ^ Murphy, Coleen T. (2023). How We Age: The Science of Longevity. Princeton University Press. p. 180. ISBN 978-0-691-25033-5.
  98. ^ Saplakoglu, Yasemin (29 October 2018). "The Best Gifts for Tardigrade Lovers". Live Science.
  99. ^ "Eusebius Church Arnhem, Netherlands". Atlas Obscura. 3 January 2023. Retrieved 14 December 2024.
  100. ^ Blum, Hester (2019). The News at the Ends of the Earth: The Print Culture of Polar Exploration (PDF). Duke University Press. p. 170. ISBN 9781478004486.
  101. ^ Mawson, Douglas (July 1908). "Bathybia". In Shackleton, Ernest (ed.). Aurora Australis. British Antarctic Expedition. pp. 179–213.
  102. ^ Raftery, Brian (5 October 2016). "If You Only Read One Comic This Month, Make It 'Paper Girls'". Wired. Retrieved 8 August 2019.
  103. ^ Gilbert, Bob (11 May 2023). The Missing Musk: A Casebook of Mysteries from the Natural World. Hodder & Stoughton. p. 266. ISBN 978-1-5293-5598-7.
  104. ^ "Cosmo Sheldrake - Tardigrade Song". Folk Radio UK - Folk Music Magazine. 2 February 2015. Retrieved 21 September 2019.
  105. ^ "How the Quantum Realm could play into future Marvel films". The Daily Dot. 10 July 2018. Retrieved 29 July 2018.
  106. ^ King, Darryn (6 July 2018). "The Science (and the Scientists) Behind 'Ant-Man'". The New York Times. Retrieved 29 July 2018.
  107. ^ "Ant-Man and the Wasp needs a little help". 4 July 2018. Retrieved 29 July 2018. Ant-Man and the Wasp is still intermittent fun, particularly for fans of tardigrades, the water-dwelling micro-fauna that had a brief cameo in the first Ant-Man, and get their well-deserved close-up in this one.[permanent dead link]
  108. ^ "'Harbinger Down': New trailer for creature feature". Entertainment Weekly. Retrieved 3 October 2018.
  109. ^ a b Blaxter, Mark; Kazuharu, Arakawa (March 2018). "Tardigrades in space". Biologist. 65 (1): 16.
  110. ^ "The Scientific Truth About Ripper the 'Star Trek' Tardigrade Is a Huge Relief". Inverse. 10 October 2017. Retrieved 5 September 2018.
  111. ^ Placido, Dani Di. "'South Park' Review: Cartman Creates A Monster In 'Moss Piglets'". Forbes. Retrieved 29 July 2018.
  112. ^ Yang, Nicole (22 October 2018). "Kyrie Irving got a credit in the most recent episode of 'Family Guy'. Meet "Vernon The Water Bear."". Boston Globe Media Partners, LLC. Retrieved 22 October 2018.
[edit]