Jump to content

Systems science

From Wikipedia, the free encyclopedia
(Redirected from Systems sciences)
Impression of systems thinking about society

Systems science, also referred to as systems research or simply systems,[1] is a transdisciplinary[2] field that is concerned with understanding simple and complex systems in nature and society, which leads to the advancements of formal, natural, social, and applied attributions throughout engineering, technology and science, itself.

To systems scientists, the world can be understood as a system of systems.[3] The field aims to develop transdisciplinary foundations that are applicable in a variety of areas, such as psychology, biology, medicine, communication, business, technology, computer science, engineering, and social sciences.[4]

Themes commonly stressed in system science are (a) holistic view, (b) interaction between a system and its embedding environment, and (c) complex (often subtle) trajectories of dynamic behavior that sometimes are stable (and thus reinforcing), while at various 'boundary conditions' can become wildly unstable (and thus destructive). Concerns about Earth-scale biosphere/geosphere dynamics is an example of the nature of problems to which systems science seeks to contribute meaningful insights.

Associated fields

[edit]

The systems sciences are a broad array of fields. One way of conceiving of these is in three groups: fields that have developed systems ideas primarily through theory; those that have done so primarily through practical engagements with problem situations; and those that have applied ideas for other disciplines.[5]

Theoretical fields

[edit]

Chaos and dynamical systems

[edit]

Complexity

[edit]

Control theory

[edit]

Cybernetics

[edit]

Information theory

[edit]

General systems theory

[edit]

Hierarchy Theory

[edit]

Practical fields

[edit]

Critical systems thinking

[edit]

Operations research and management science

[edit]

Soft systems methodology

[edit]

The soft systems methodology was developed in England by academics at the University of Lancaster Systems Department through a ten-year action research programme. The main contributor is Peter Checkland (born 18 December 1930, in Birmingham, UK), a British management scientist and emeritus professor of systems at Lancaster University.

Systems analysis

[edit]

Systems analysis branch of systems science that analyzes systems, the interactions within those systems, or interaction with its environment,[6] often prior to their automation as computer models. Systems analysis is closely associated with the RAND corporation.

Systemic design

[edit]

Systemic design integrates methodologies from systems thinking with advanced design practices to address complex, multi-stakeholder situations.

Systems dynamics

[edit]
System dynamics is an approach to understanding the behavior of complex systems over time. It offers "simulation technique for modeling business and social systems",[7] which deals with internal feedback loops and time delays that affect the behavior of the entire system. What makes using system dynamics different from other approaches to studying complex systems is the use of feedback loops and stocks and flows.

Systems engineering

[edit]
Systems engineering (SE) is an interdisciplinary field of engineering, that focuses on the development and organization of complex systems. It is the "art and science of creating whole solutions to complex problems",[8] for example: signal processing systems, control systems and communication system, or other forms of high-level modelling and design in specific fields of engineering. Systems Science is foundational to the Embedded Software Development that is founded in the embedded requirements of Systems Engineering.

Applications in other disciplines

[edit]

Earth system science

[edit]

Systems biology

[edit]

Systems chemistry

[edit]

Systems ecology

[edit]

Systems psychology

[edit]

See also

[edit]

References

[edit]
  1. ^ Ison, Ray. Systems Practice: How to Act: In situations of uncertainty and complexity in a climate-change world, 2nd ed, 2017. Springer, p. 33
  2. ^ Hammond, Ross A.; Dubé, Laurette (2012). "A systems science perspective and transdisciplinary models for food and nutrition security". Proceedings of the National Academy of Sciences. 109 (31): 12356–12363. Bibcode:2012PNAS..10912356H. doi:10.1073/pnas.0913003109. PMC 3411994. PMID 22826247.
  3. ^ G. E. Mobus & M. C. Kalton, Principles of Systems Science, 2015, New York:Springer.
  4. ^ Philip M'Pherson (1974, p. 229); as cited by: Hieronymi, Andreas (2013). "Understanding Systems Science: A Visual and Integrative Approach" (PDF). Systems Research and Behavioral Science. 30 (5): 580–595. doi:10.1002/sres.2215.. He defined systems science as "the ordered arrangement of knowledge acquired from the study of systems in the observable world, together with the application of this knowledge to the design of man-made systems".
  5. ^ Peter Checkland. 1981. Systems Thinking, Systems Practice. Chichester: Wiley.
  6. ^ Anthony Debons. "Command and Control: Technology and Social Impact" in: Advances in computers, Vol. 11. Franz L. Alt & Morris Rubinoff eds. (1971). p. 362
  7. ^ Center for Complex Adaptive Agent Systems Simulation Argonne National Laboratory (2007) Managing Business Complexity : Discovering Strategic Solutions with Agent-Based Modeling and Simulation: Discovering Strategic Solutions with Agent-Based Modeling and Simulation. Oxford University Press. p. 55
  8. ^ Derek K. Hitchins (2008) Systems Engineering: A 21st Century Systems Methodology. p. 100

Further reading

[edit]
[edit]