Jump to content

Submarine navigation

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Me, Myself, and I are Here (talk | contribs) at 08:04, 26 January 2022 (Surface and near-surface navigation: dashes). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Submarine navigation underwater requires special skills and technologies not needed by surface ships. The challenges of underwater navigation have become more important as submarines spend more time underwater, travelling greater distances and at higher speed. Military submarines travel underwater in an environment of total darkness with neither windows nor lights. Operating in stealth mode, they cannot use their active sonar systems to ping ahead for underwater hazards such as undersea mountains, drilling rigs or other submarines. Surfacing to obtain navigational fixes is precluded by pervasive anti-submarine warfare detection systems such as radar and satellite surveillance. Antenna masts and antenna-equipped periscopes can be raised to obtain navigational signals but in areas of heavy surveillance, only for a few seconds or minutes;[1] current radar technology can detect even a slender periscope while submarine shadows may be plainly visible from the air.

A submarine at periscope depth risks visual or radar detection
Submarines can raise various antenna masts, radar masts and periscopes to facilitate communications and navigation

Surfaced submarines entering and leaving port navigate similarly to traditional ships but with a few extra considerations because most of the boat rides below the waterline, making them hard for other vessels to see and identify. Submarines carry an inertial navigation system, which measures the boat’s motion and constantly updates position. Because it does not rely on radio signals or celestial sightings, it allows the boat to navigate while remaining hidden under the surface. To maintain accuracy, the submarine must periodically update its position using outside navigational radio signals. From the 1960s to the 1990s, Transit satellites and LORAN shore stations provided those signals. GPS has now replaced both.

Surface and near-surface navigation

On the surface or at periscope depth, submarines have used these methods to fix their position:

  • Satellite navigation:
  • Terrestrial radio-based navigation systems; largely superseded by satellite systems
    • LORAN—no longer in use
    • CHAYKA, the Russian counterpart of LORAN
    • OMEGA, the Western counterpart of the Alpha Navigation System, no longer in use
    • Alpha, the Russian counterpart of the Omega Navigation System
  • Celestial navigation using the periscope, or sextant—seldom used anymore due to advancement in technology
  • Radar navigation; radar signals are easily detected so radar is normally only used in friendly waters entering and exiting ports. With the implementation of a more advanced radar system, many new techniques have been implemented in this process.
  • Active sonar; like radar, active sonar systems are readily detected, so active sonar is usually used only entering and exiting ports.
  • Pilotage—in coastal and internal waters, surfaced submarines rely on the standard system of navigational aids (buoys, navigational markers, lighthouses, etc.), utilizing the periscopes for obtaining lines of position to plot a triangulation fix.
  • Voyage Management System—referred to as the VMS, utilizes digital charts with other external sources fed in, to establish the ship's position. Other information may also be entered in manually in establishing a high quality fix or position.

Deep water navigation

At depths below periscope depth submarines determine their position using:

See also

Footnotes

  1. ^ Bivens, Arthur Clarke (July 2004). From Sailboats to Submarines. Infinity Publishing. p. 184. ISBN 978-0-7414-2152-4.
  2. ^ "Lesson 14: Electronic Navigation". Navigation and Operations I. University of Kansas, Naval Reserve Officer Training Corps. pp. Slides 19 to 21. Archived from the original (Microsoft PowerPoint) on September 11, 2006. Retrieved 2007-11-14.
  3. ^ "2003 CJCS Master Positioning, Navigation, And Timing Plan" (PDF). Joint Chiefs of Staff. p. F-12. Archived from the original (PDF) on 2007-07-05. Retrieved 2007-11-14.
  4. ^ S. E., Hamn (August 1995). "Coastal piloting: bottom contour navigation.(Seamanship)". Trailer Boats. Retrieved 2007-11-14. [dead link]

References