Jump to content

Pinch point (mathematics)

From Wikipedia, the free encyclopedia

This is the current revision of this page, as edited by Mazewaxie (talk | contribs) at 21:30, 31 March 2024 (WP:GENFIXES). The present address (URL) is a permanent link to this version.

(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)
Section of the Whitney umbrella, an example of pinch point singularity.

In geometry, a pinch point or cuspidal point is a type of singular point on an algebraic surface.

The equation for the surface near a pinch point may be put in the form

where [4] denotes terms of degree 4 or more and is not a square in the ring of functions.

For example the surface near the point , meaning in coordinates vanishing at that point, has the form above. In fact, if and then {} is a system of coordinates vanishing at then is written in the canonical form.

The simplest example of a pinch point is the hypersurface defined by the equation called Whitney umbrella.

The pinch point (in this case the origin) is a limit of normal crossings singular points (the -axis in this case). These singular points are intimately related in the sense that in order to resolve the pinch point singularity one must blow-up the whole -axis and not only the pinch point.

See also

[edit]

References

[edit]
  • P. Griffiths; J. Harris (1994). Principles of Algebraic Geometry. Wiley Classics Library. Wiley Interscience. pp. 23–25. ISBN 0-471-05059-8.