Jump to content

Isotopes of lanthanum

From Wikipedia, the free encyclopedia
(Redirected from Lanthanum-150)
Isotopes of lanthanum (57La)
Main isotopes[1] Decay
abun­dance half-life (t1/2) mode pro­duct
137La synth 6×104 y ε 137Ba
138La 0.089% 1.03×1011 y ε 138Ba
β 138Ce
139La 99.911% stable
Standard atomic weight Ar°(La)
Stable Z/N chart of La and Ba

Naturally occurring lanthanum (57La) is composed of one stable (139La) and one radioactive (138La) isotope, with the stable isotope, 139La, being the most abundant (99.91% natural abundance). There are 39 radioisotopes that have been characterized, with the most stable being 138La, with a half-life of 1.03×1011 years; 137La, with a half-life of 60,000 years and 140La, with a half-life of 1.6781 days. The remaining radioactive isotopes have half-lives that are less than a day and the majority of these have half-lives that are less than 1 minute. This element also has 12 nuclear isomers, the longest-lived of which is 132mLa, with a half-life of 24.3 minutes. Lighter isotopes mostly decay to isotopes of barium and heavy ones mostly decay to isotopes of cerium. 138La can decay to both.

The isotopes of lanthanum range in atomic weight from 115.96 u (116La) to 154.96 u (155La).

List of isotopes

[edit]
Nuclide
[n 1]
Z N Isotopic mass (Da)[4]
[n 2][n 3]
Half-life[1]
[n 4][n 5]
Decay
mode
[1]
[n 6]
Daughter
isotope

[n 7][n 8]
Spin and
parity[1]
[n 9][n 5]
Natural abundance (mole fraction)
Excitation energy[n 5] Normal proportion[1] Range of variation
116La[5] 57 59 115.95701(35)# 50(22) ms p (~60%) 115Ba
β+ (~40%) 116Ba
116mLa[5] 182 keV 2.0+2.8
−0.8
 μs
IT 116La
117La[5] 57 60 116.95033(22)# 21.6(31) ms p (94%) 116Ba (3/2+)
β+ (6%) 117Ba
117mLa[5] 192 keV 3.9+1.9
−0.9
 μs
IT 117La (7/2−)
120La 57 63 119.93820(32)# 2.8(2) s β+ 120Ba 4+[6]
β+, p (?%) 119Cs
121La 57 64 120.93324(32)# 5.3(2) s β+ 121Ba 11/2−#
122La 57 65 121.93071(32)# 8.6(5) s β+ 122Ba 2+[6]
β+, p (?%) 121Cs
123La 57 66 122.92630(21)# 17(3) s β+ 123Ba 11/2−#
124La 57 67 123.924574(61) 29.21(17) s β+ 124Ba (7−, 8−)
124mLa[n 10] 100(100)# keV 21(4) s β+ 124Ba 2−#
125La 57 68 124.920816(28) 64.8(12) s β+ 125Ba 11/2−#
125mLa 107.00(10) keV 390(40) ms IT 125La (3/2+)
126La 57 69 125.919513(97) 54(2) s β+ 126Ba 5−#
126mLa[n 10] 210(410) keV 20(20) s β+ 126Ba 1−#
127La 57 70 126.916375(28) 5.1(1) min β+ 127Ba (11/2−)
127mLa 14.2(4) keV 3.7(4) min β+ 127Ba (3/2+)
128La 57 71 127.915592(58) 5.18(14) min β+ 128Ba (5+)
128mLa[n 10] 100(100)# keV <1.4 min β+ 128Ba (1+, 2−)
129La 57 72 128.912696(23) 11.6(2) min β+ 129Ba (3/2+)
129mLa 172.33(20) keV 560(50) ms IT 129La (11/2−)
130La 57 73 129.912369(28) 8.7(1) min β+ 130Ba 3(+)
130mLa 214.0(5) keV 742(28) ns IT 130La (5+)
131La 57 74 130.910070(30) 59(2) min β+ 131Ba 3/2+
131mLa 304.52(24) keV 170(10) μs IT 131La 11/2−
132La 57 75 131.910119(39) 4.59(4) h β+ 132Ba 2−
132mLa 188.20(11) keV 24.3(5) min IT (76%) 132La 6−
β+ (24%) 132Ba
133La 57 76 132.908218(30) 3.912(8) h β+ 133Ba 5/2+
134La 57 77 133.908514(21) 6.45(16) min β+ 134Ba 1+
134mLa 440(100)# keV 29(4) μs IT 134La (6−)
135La 57 78 134.906984(10) 18.91(2) h β+ 135Ba 5/2+
136La 57 79 135.907635(57) 9.87(3) min β+ 136Ba 1+
136m1La 259.5(3) keV 114(5) ms IT 136La (7−)
136m2La 2520.6(4) keV 187(27) ns IT 136La (14+)
137La 57 80 136.9064504(18) 6(2)×104 y EC 137Ba 7/2+
137mLa 1869.50(21) keV 342(25) ns IT 137La 19/2−
138La[n 11] 57 81 137.90712404(45) 1.03(1)×1011 y β+ (65.5%) 138Ba 5+ 8.881(71)×10−4
β (34.5%) 138Ce
138m1La 72.57(3) keV 116(5) ns IT 138La (3)+
138m2La 738.80(20) keV 2.0(3) μs IT 138La 7−
139La[n 12] 57 82 138.90636293(65) Stable 7/2+ 0.9991119(71)
139mLa 1800.4(4) keV 315(35) ns IT 139La (17/2+)
140La[n 12] 57 83 139.90948729(65) 40.289(4) h β 140Ce 3−
141La 57 84 140.9109712(44) 3.92(3) h β 141Ce (7/2+)
142La 57 85 141.9140908(67) 91.1(5) min β 142Ce 2−
142mLa 145.82(8) keV 0.87(17) μs IT 142La (4)−
143La 57 86 142.9160795(79) 14.2(1) min β 143Ce (7/2)+
144La 57 87 143.919646(14) 44.0(7) s β 144Ce (3−)
145La 57 88 144.921808(13) 24.8(20) s β 145Ce (5/2+)
146La 57 89 145.9256880(18) 9.9(1) s β 146Ce (5−)
146mLa 141.5(24) keV 6.08(22) s β 146Ce (1−, 2−)
147La 57 90 146.928418(12) 4.026(20) s β (99.96%) 147Ce (5/2+)
β, n (0.041%) 146Ce
148La 57 91 147.932679(21) 1.414(25) s β (99.82%) 148Ce (2−)
β, n (0.18%) 147Ce
149La 57 92 148.93535(21) 1.071(22) s β (98.57%) 149Ce (3/2−)
β, n (1.43%) 148Ce
150La 57 93 149.9395475(27) 504(15) ms β (97.3%) 150Ce (3+)
β, n (2.7%) 149Ce
151La 57 94 150.94277(47) 465(24) ms β 151Ce 1/2+#
152La 57 95 151.94709(32)# 287(16) ms β 152Ce 2−#
153La 57 96 152.95055(32)# 245(18) ms β 153Ce 1/2+#
154La 57 97 153.95542(32)# 161(15) ms β 154Ce 2−#
155La 57 98 154.95928(43)# 101(28) ms β 155Ce 1/2+#
156La 57 99 155.96452(43)# 84(78) ms β 156Ce 4+#
157La 57 100 156.96879(32)# 30# ms
[>550 ns]
1/2+#
This table header & footer:
  1. ^ mLa – Excited nuclear isomer.
  2. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ Bold half-life – nearly stable, half-life longer than age of universe.
  5. ^ a b c # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  6. ^ Modes of decay:
    EC: Electron capture
    IT: Isomeric transition
    n: Neutron emission
    p: Proton emission
  7. ^ Bold italics symbol as daughter – Daughter product is nearly stable.
  8. ^ Bold symbol as daughter – Daughter product is stable.
  9. ^ ( ) spin value – Indicates spin with weak assignment arguments.
  10. ^ a b c Order of ground state and isomer is uncertain.
  11. ^ Primordial radionuclide
  12. ^ a b Fission product

References

[edit]
  1. ^ a b c d e Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. ^ "Standard Atomic Weights: Lanthanum". CIAAW. 2005.
  3. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  4. ^ Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  5. ^ a b c d Zhang, Wei; Cederwall, Bo; Aktas, Özge; Liu, Xiaoyu; Ertoprak, Aysegül; Nyberg, Ayse; Auranen, Kalle; Alayed, Betool; Badran, Hussam; Boston, Helen; Doncel, Maria; Forsberg, Ulrika; Grahn, Tuomas; Greenlees, Paul T.; Guo, Song; Heery, Jacob; Hilton, Joshua; Jenkins, David; Julin, Rauno; Juutinen, Sakari; Luoma, Minna; Neuvonen, Olavi; Ojala, Joonas; Page, Robert D.; Pakarinen, Janne; Partanen, Jari; Paul, Edward S.; Petrache, Costel; Rahkila, Panu; Ruotsalainen, Panu; Sandzelius, Mikael; Sarén, Jan; Szwec, Stuart; Tann, Holly; Uusitalo, Juha; Wadsworth, Robert (14 November 2022). "Observation of the proton emitter 116
    57
    La
    59
    "
    (PDF). Communications Physics. 5 (1): 1–8. doi:10.1038/s42005-022-01069-w. ISSN 2399-3650. S2CID 253512231.
  6. ^ a b Jodidar, P.M.; Petrache, C.M.; Lv, B.F.; Lawrie, E.A.; Astier, A.; Guo, S.; Zheng, K.K.; Auranen, K.; Briscoe, A.D.; Grahn, T.; Greenlees, P.T.; Illana, A.; Joukainen, H.; Julin, R.; Louko, J.; Luoma, M.; Jutila, H.; Ojala, J.; Pakarinen, J.; Plaza, A.M.; Rahkila, P.; Ruotsalainen, P.; Sarén, J.; Tolosa-Delgado, A.; Uusitalo, J.; Zimba, G.; Kuti, I.; Krakó, A.; Andreoiu, C.; Joss, D.T.; Page, R.D.; Cederlöf, E.A.; Ertoprak, A. (August 2024). "First observation of excited states in 120La and its impact on the shape evolution in the A ≈ 120 mass region" (PDF). Physics Letters B. 855: 138806. doi:10.1016/j.physletb.2024.138806.