Jump to content

Fréchet distribution

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Csigabi (talk | contribs) at 19:09, 11 March 2012 (External links: +hu). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Fréchet
Probability density function
PDF of the Fréchet distribution
Cumulative distribution function
CDF of the Fréchet distribution
Parameters shape.
(Optionally, two more parameters)
scale (default: )
location of minimum (default: )
Support
PDF
CDF
Mean
Median
Mode
Variance
Skewness
Excess kurtosis
Entropy , where is the Euler–Mascheroni constant.
MGF [1] Note: Moment exists if
CF [1]

The Fréchet distribution is a special case of the generalized extreme value distribution. It has the cumulative distribution function

where α>0 is a shape parameter. It can be generalised to include a location parameter m (the minimum) and a scale parameter s>0 with the cumulative distribution function

Named for Maurice Fréchet who wrote a related paper in 1927, further work was done by Fisher and Tippett in 1928 and by Gumbel in 1958

Characteristics

The single parameter Fréchet with parameter has standardized moment

,

(with ) defined only for :

where is the Gamma function.

In particular:

  • For the expectation is
  • For the variance is .

The quantile of order can be expressed through the inverse of the distribution,

.

In particular the median is:

.

The mode of the distribution is .

Especially for the 3-parameter Fréchet, the first quartile is and the third quartile

Also the quantiles for the mean and mode are:

Fitted cumulative Fréchet distribution to extreme one-day rainfalls

Applications

  • In hydrology, the Fréchet distribution is applied to extreme events such as annually maximum one-day rainfalls and river discharges.[2] The blue picture illustrates an example of fitting the Fréchet distribution to ranked annually maximum one-day rainfalls in Oman showing also the 90% confidence belt based on the binomial distribution. The cumulative frequencies of the rainfall data are represented by plotting positions as part of the cumulative frequency analysis. However, in most hydrological applications, the distribution fitting is via the generalized extreme value distribution as this avoids imposing the assumption that the distribution does not have an upper bound (as required by the Frechet distribution when applied to annual maxima). [citation needed]
  • If (Uniform distribution (continuous)) then
  • If then
  • If and then
  • The cumulative distribution function of the Frechet distribution solves the maximum stability postulate equation
  • If (Weibull distribution) then

Properties

See also

References

  1. ^ a b Muraleedharan. G, C. Guedes Soares and Cláudia Lucas (2011). "Characteristic and Moment Generating Functions of Generalised Extreme Value Distribution (GEV)". In Linda. L. Wright (Ed.), Sea Level Rise, Coastal Engineering, Shorelines and Tides, Chapter-14, pp. 269-276. Nova Science Publishers. ISBN 978-1-61728-655-1
  2. ^ Coles, Stuart (2001). An Introduction to Statistical Modeling of Extreme Values,. Springer-Verlag. ISBN 1-85233-459-2.

Publications

  • Fréchet, M., (1927). "Sur la loi de probabilité de l'écart maximum." Ann. Soc. Polon. Math. 6, 93.
  • Fisher, R.A., Tippett, L.H.C., (1928). "Limiting forms of the frequency distribution of the largest and smallest member of a sample." Proc. Cambridge Philosophical Society 24:180–190.
  • Gumbel, E.J. (1958). "Statistics of Extremes." Columbia University Press, New York.
  • Kotz, S.;Nadarajah, S. (2000) Extreme value distributions: theory and applications, World Scientific. ISBN 1860942245