Jump to content

Cuspidal representation

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Reuns (talk | contribs) at 19:08, 5 December 2018 (Formulation). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In number theory, cuspidal representations are certain representations of algebraic groups that occur discretely in spaces. The term cuspidal is derived, at a certain distance, from the cusp forms of classical modular form theory. In the contemporary formulation of automorphic representations, representations take the place of holomorphic functions; these representations may be of adelic algebraic groups.

When the group is the general linear group , the cuspidal representations are directly related to cusp forms and Maass forms. For the case of cusp forms, each Hecke eigenform (newform) corresponds to a cuspidal representation.

Formulation

Let G be a reductive algebraic group over a number field K and let A denote the adeles of K. Embed G(K) diagonally in G(A), for example with and the corresponding elements of then ). Let Z denote the centre of G and let ω be a continuous unitary character from Z(K) \ Z(A)× to C×. Fix a Haar measure on G(A) and let L20(G(K) \ G(A), ω) denote the Hilbert space of measurable complex-valued functions, f, on G(A) satisfying

  1. fg) = f(g) for all γ ∈ G(K)
  2. f(gz) = f(g)ω(z) for all zZ(A)
  3. for all unipotent radicals, U, of all proper parabolic subgroups of G(A).

This is called the space of cusp forms with central character ω on G(A). A function occurring in such a space is called a cuspidal function.

Such a cuspidal function generates an unitary representation of the group G(A) on the complex Hilbert space generated by the right translates of f where the action of gG(A) on is given by

The space of cusp forms with central character ω decomposes into a direct sum of Hilbert spaces

where the sum is over irreducible subrepresentations of L20(G(K) \ G(A), ω) and mπ are positive integers (i.e. each irreducible subrepresentation occurs with finite multiplicity). A cuspidal representation of G(A) is such a subrepresentation (π, Vπ) for some ω.

The groups for which the multiplicities mπ all equal one are said to have the multiplicity-one property.

References

  • James W. Cogdell, Henry Hyeongsin Kim, Maruti Ram Murty. Lectures on Automorphic L-functions (2004), Chapter 5.