Cuspidal representation
In number theory, cuspidal representations are certain representations of algebraic groups that occur discretely in spaces. The term cuspidal is derived, at a certain distance, from the cusp forms of classical modular form theory. In the contemporary formulation of automorphic representations, representations take the place of holomorphic functions; these representations may be of adelic algebraic groups.
When the group is the general linear group , the cuspidal representations are directly related to cusp forms and Maass forms. For the case of cusp forms, each Hecke eigenform (newform) corresponds to a cuspidal representation.
Formulation
Let G be a reductive algebraic group over a number field K and let A denote the adeles of K. Embed G(K) diagonally in G(A), for example with and the corresponding elements of then ). Let Z denote the centre of G and let ω be a continuous unitary character from Z(K) \ Z(A)× to C×. Fix a Haar measure on G(A) and let L20(G(K) \ G(A), ω) denote the Hilbert space of measurable complex-valued functions, f, on G(A) satisfying
- f(γg) = f(g) for all γ ∈ G(K)
- f(gz) = f(g)ω(z) for all z ∈ Z(A)
- for all unipotent radicals, U, of all proper parabolic subgroups of G(A).
This is called the space of cusp forms with central character ω on G(A). A function occurring in such a space is called a cuspidal function.
Such a cuspidal function generates an unitary representation of the group G(A) on the complex Hilbert space generated by the right translates of f where the action of g ∈ G(A) on is given by
The space of cusp forms with central character ω decomposes into a direct sum of Hilbert spaces
where the sum is over irreducible subrepresentations of L20(G(K) \ G(A), ω) and mπ are positive integers (i.e. each irreducible subrepresentation occurs with finite multiplicity). A cuspidal representation of G(A) is such a subrepresentation (π, Vπ) for some ω.
The groups for which the multiplicities mπ all equal one are said to have the multiplicity-one property.
References
- James W. Cogdell, Henry Hyeongsin Kim, Maruti Ram Murty. Lectures on Automorphic L-functions (2004), Chapter 5.