From Wikipedia, the free encyclopedia
In mathematics, the classifying space
for the special orthogonal group
is the base space of the universal
principal bundle
. This means that
principal bundles over a CW complex up to isomorphism are in bijection with homotopy classes of its continuous maps into
. The isomorphism is given by pullback.
There is a canonical inclusion of real oriented Grassmannians given by
. Its colimit is:[1]
![{\displaystyle \operatorname {BSO} (n):={\widetilde {\operatorname {Gr} }}_{n}(\mathbb {R} ^{\infty }):=\lim _{k\rightarrow \infty }{\widetilde {\operatorname {Gr} }}_{n}(\mathbb {R} ^{k}).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/eccc9bc5c62bbe72834f5dc79837367ee440dd06)
Since real oriented Grassmannians can be expressed as a homogeneous space by:
![{\displaystyle {\widetilde {\operatorname {Gr} }}_{n}(\mathbb {R} ^{k})=\operatorname {SO} (n+k)/(\operatorname {SO} (n)\times \operatorname {SO} (k))}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9cf68a37e3b325feb440fbed63b01ef6be5261c7)
the group structure carries over to
.
Simplest classifying spaces
[edit]
- Since
is the trivial group,
is the trivial topological space.
- Since
, one has
.
Classification of principal bundles
[edit]
Given a topological space
the set of
principal bundles on it up to isomorphism is denoted
. If
is a CW complex, then the map:[2]
![{\displaystyle [X,\operatorname {BSO} (n)]\rightarrow \operatorname {Prin} _{\operatorname {SO} (n)}(X),[f]\mapsto f^{*}\operatorname {ESO} (n)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f1b8061607fe04a9c999bb55239d2b654e927521)
is bijective.
The cohomology ring of
with coefficients in the field
of two elements is generated by the Stiefel–Whitney classes:[3][4]
![{\displaystyle H^{*}(\operatorname {BSO} (n);\mathbb {Z} _{2})=\mathbb {Z} _{2}[w_{2},\ldots ,w_{n}].}](https://wikimedia.org/api/rest_v1/media/math/render/svg/587e2e35410acc6c185beb8cfb5fa2fcdfc382fd)
The results holds more generally for every ring with characteristic
.
The cohomology ring of
with coefficients in the field
of rational numbers is generated by Pontrjagin classes and Euler class:
![{\displaystyle H^{*}(\operatorname {BSO} (2n);\mathbb {Q} )\cong \mathbb {Q} [p_{1},\ldots ,p_{n},e]/(p_{n}-e^{2}),}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0757cb230177a64d2d3dd8e7b04eb5dfc9472c5d)
![{\displaystyle H^{*}(\operatorname {BSO} (2n+1);\mathbb {Q} )\cong \mathbb {Q} [p_{1},\ldots ,p_{n}].}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d8a9331db3b77ed73e3489df5ed30fb91133bd67)
The results holds more generally for every ring with characteristic
.
Infinite classifying space
[edit]
The canonical inclusions
induce canonical inclusions
on their respective classifying spaces. Their respective colimits are denoted as:
![{\displaystyle \operatorname {SO} :=\lim _{n\rightarrow \infty }\operatorname {SO} (n);}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b65a6921e07e16d03c61a1c4cd94d64788166d60)
![{\displaystyle \operatorname {BSO} :=\lim _{n\rightarrow \infty }\operatorname {BSO} (n).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7cbff7cd6209871275912a2c92657f93cdcb1e05)
is indeed the classifying space of
.
- ^ Milnor & Stasheff 74, section 12.2 The Oriented Universal Bundle on page 151
- ^ "universal principal bundle". nLab. Retrieved 2024-03-14.
- ^ Milnor & Stasheff, Theorem 12.4.
- ^ Hatcher 02, Example 4D.6.