8000 (number)
Appearance
(Redirected from 8000-8999 (numbers))
This article needs additional citations for verification. (June 2016) |
| ||||
---|---|---|---|---|
Cardinal | eight thousand | |||
Ordinal | 8000th (eight thousandth) | |||
Factorization | 26 × 53 | |||
Greek numeral | ,Η´ | |||
Roman numeral | VMMM, or VIII | |||
Unicode symbol(s) | VMMM, vmmm, VIII, viii | |||
Binary | 11111010000002 | |||
Ternary | 1012220223 | |||
Senary | 1010126 | |||
Octal | 175008 | |||
Duodecimal | 476812 | |||
Hexadecimal | 1F4016 | |||
Armenian | Փ |
8000 (eight thousand) is the natural number following 7999 and preceding 8001.
8000 is the cube of 20, as well as the sum of four consecutive integers cubed, 113 + 123 + 133 + 143.
The fourteen tallest mountains on Earth, which exceed 8000 meters in height, are sometimes referred to as eight-thousanders.[1]
Selected numbers in the range 8001–8999
[edit]8001 to 8099
[edit]- 8001 – triangular number
- 8002 – Mertens function zero
- 8011 – Mertens function zero, super-prime
- 8012 – Mertens function zero
- 8017 – Mertens function zero
- 8021 – Mertens function zero
- 8039 – safe prime
- 8059 – super-prime
- 8069 – Sophie Germain prime
- 8093 – Sophie Germain prime
8100 to 8199
[edit]- 8100 = 902
- 8101 – super-prime
- 8111 – Sophie Germain prime
- 8117 – super-prime, balanced prime
- 8119 – octahedral number;[2] 8119/5741 ≈ √2
- 8125 – pentagonal pyramidal number[3]
- 8128 – perfect number, harmonic divisor number, 127th triangular number, 64th hexagonal number, eighth 292-gonal number, fourth 1356-gonal number
- 8147 – safe prime
- 8189 – highly cototient number
- 8190 – harmonic divisor number
- 8191 – Mersenne prime
- 8192 = 213
8200 to 8299
[edit]- 8208 – base 10 narcissistic number as 84 + 24 + 04 + 84 = 8208[4]
- 8219 – twin prime with 8221
- 8221 – super-prime, twin prime with 8219
- 8233 – super-prime, centered heptagonal number
- 8243 – Sophie Germain prime
- 8256 – triangular number
- 8257 – sum of the squares of the first fourteen primes
- 8269 – cuban prime of the form x = y + 1[5]
- 8273 – Sophie Germain prime
- 8281 = 912, sum of the cubes of the first thirteen integers, nonagonal number, centered octagonal number
- 8287 – super-prime
8300 to 8399
[edit]- 8321 – super-Poulet number[6]
- 8326 – decagonal number[7]
- 8345 - smallest pandigital number in base 6[8]
- 8361 – Leyland number[9]
- 8363 – prime number, number of prime numbers having five digits[10]
- 8377 – super-prime
- 8385 – triangular number
- 8389 – super-prime, twin prime
8400 to 8499
[edit]- 8423 – safe prime
- 8436 – tetrahedral number[11]
- 8464 = 922
8500 to 8599
[edit]- 8513 – Sophie Germain prime, super-prime
- 8515 – triangular number
- 8521 – sexy prime with 8527
- 8527 – super-prime, sexy prime with 8521
- 8543 – safe prime
- 8555 – square pyramidal number[12]
- 8558 – Large Schröder number
- 8576 – centered heptagonal number
- 8581 – super-prime
8600 to 8699
[edit]- 8625 – nonagonal number
- 8646 – triangular number
- 8649 = 932, centered octagonal number
- 8658 - sum of the first four perfect numbers (6, 28, 496, 8128) and the product of the culturally significant 666 and 13
- 8663 – Sophie Germain prime
- 8693 – Sophie Germain prime
- 8695 – decagonal number
- 8699 – safe prime
8700 to 8799
[edit]- 8712 – smallest number that is divisible by its reverse: 8712 = 4 × 2178 (excluding palindromes and numbers with trailing zeros)
- 8713 – balanced prime
- 8719 – super-prime
- 8741 – Sophie Germain prime
- 8747 – safe prime, balanced prime, super-prime
- 8748 – 3-smooth number (22×37)
- 8751 – perfect totient number[13]
- 8760 - the number of hours in a non-leap year; 365 × 24
- 8761 – super-prime
- 8778 – triangular number
- 8783 – safe prime
- 8784 - the number of hours in a leap year; 366 × 24
8800 to 8899
[edit]- 8801 – magic constant of n × n normal magic square and n-Queens Problem for n = 26.
- 8807 – super-prime, sum of eleven consecutive primes (761 + 769 + 773 + 787 + 797 + 809 + 811 + 821 + 823 + 827 + 829)
- 8819 – safe prime
- 8833 = 882 + 332
- 8836 = 942
- 8839 – sum of twenty-three consecutive primes (313 + 317 + 331 + 337 + 347 + 349 + 353 + 359 + 367 + 373 + 379 + 383 + 389 + 397 + 401 + 409 + 419 + 421 + 431 + 433 + 439 + 443 + 449)
- 8849 – super-prime
- 8855 – member of a Ruth-Aaron pair (first definition) with 8856
- 8856 – member of a Ruth-Aaron pair (first definition) with 8855
- 8888 - repdigit
8900 to 8999
[edit]- 8911 – Carmichael number,[14] triangular number
- 8923 – super-prime
- 8926 – centered heptagonal number
- 8933 – the 1,111th prime number
- 8944 – sum of the cubes of the first seven primes
- 8951 – Sophie Germain prime
- 8963 – safe prime
- 8964 – number referring to the 1989 Tiananmen Square Protests
- 8969 – Sophie Germain prime
- 8976 – enneagonal number
- 8999 – super-prime
Prime numbers
[edit]There are 110 prime numbers between 8000 and 9000:[15][16]
- 8009, 8011, 8017, 8039, 8053, 8059, 8069, 8081, 8087, 8089, 8093, 8101, 8111, 8117, 8123, 8147, 8161, 8167, 8171, 8179, 8191, 8209, 8219, 8221, 8231, 8233, 8237, 8243, 8263, 8269, 8273, 8287, 8291, 8293, 8297, 8311, 8317, 8329, 8353, 8363, 8369, 8377, 8387, 8389, 8419, 8423, 8429, 8431, 8443, 8447, 8461, 8467, 8501, 8513, 8521, 8527, 8537, 8539, 8543, 8563, 8573, 8581, 8597, 8599, 8609, 8623, 8627, 8629, 8641, 8647, 8663, 8669, 8677, 8681, 8689, 8693, 8699, 8707, 8713, 8719, 8731, 8737, 8741, 8747, 8753, 8761, 8779, 8783, 8803, 8807, 8819, 8821, 8831, 8837, 8839, 8849, 8861, 8863, 8867, 8887, 8893, 8923, 8929, 8933, 8941, 8951, 8963, 8969, 8971, 8999
References
[edit]- ^ Voiland, Adam (16 December 2013). "The Eight-Thousanders". The Earth Observatory. NASA. Retrieved 12 September 2016.
- ^ "Sloane's A005900 : Octahedral numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
- ^ "Sloane's A002411 : Pentagonal pyramidal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
- ^ Sloane, N. J. A. (ed.). "Sequence A005188 (Armstrong (or Plus Perfect, or narcissistic) numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A002407 (Cuban primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A050217 (Super-Poulet numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A001107 (10-gonal (or decagonal) numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A049363 (a(1) = 1; for n > 1, smallest digitally balanced number in base n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A076980 (Leyland numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A006879 (Number of primes with n digits.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A000292 (Tetrahedral numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A000330 (Square pyramidal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A082897 (Perfect totient numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A002997 (Carmichael numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A038823 (Number of primes between n*1000 and (n+1)*1000)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Stein, William A. (10 February 2017). "The Riemann Hypothesis and The Birch and Swinnerton-Dyer Conjecture". wstein.org. Retrieved 6 February 2021.