Jump to content

Coating

From Wikipedia, the free encyclopedia
(Redirected from List of coating techniques)
Lacquer being sprayed onto a cabinet

A coating is a covering that is applied to the surface of an object, or substrate.[1] The purpose of applying the coating may be decorative, functional, or both.[2] Coatings may be applied as liquids, gases or solids e.g. powder coatings.

Paints and lacquers are coatings that mostly have dual uses, which are protecting the substrate and being decorative, although some artists paints are only for decoration, and the paint on large industrial pipes is for identification (e.g. blue for process water, red for fire-fighting control) in addition to preventing corrosion. Along with corrosion resistance, functional coatings may also be applied to change the surface properties of the substrate, such as adhesion, wettability, or wear resistance.[3] In other cases the coating adds a completely new property, such as a magnetic response or electrical conductivity (as in semiconductor device fabrication, where the substrate is a wafer), and forms an essential part of the finished product.[4][5]

A major consideration for most coating processes is controlling coating thickness. Methods of achieving this range from a simple brush to expensive precision machinery in the electronics industry. Limiting coating area is crucial in some applications, such as printing.

"Roll-to-roll" or "web-based" coating is the process of applying a thin film of functional material to a substrate on a roll, such as paper, fabric, film, foil, or sheet stock. This continuous process is highly efficient for producing large volumes of coated materials, which are essential in various industries including printing, packaging, and electronics. The technology allows for consistent high-quality application of the coating material over large surface areas, enhancing productivity and uniformity.[6]

Applications

[edit]

Coatings can be both decorative and have other functions.[3][7] A pipe carrying water for a fire suppression system can be coated with a red (for identification) anticorrosion paint. Most coatings to some extent protect the substrate, such as maintenance coatings for metals and concrete.[8] A decorative coating can offer a particular reflective property, such as high gloss, satin, matte, or flat appearance.[9]

A major coating application is to protect metal from corrosion.[10][11][12][13][14] Automotive coatings are used to enhance the appearance and durability of vehicles. These include primers, basecoats, and clearcoats, primarily applied with spray guns and electrostatically.[15] The body and underbody of automobiles receive some form of underbody coating.[16] Such anticorrosion coatings may use graphene in combination with water-based epoxies.[17]

Coatings are used to seal the surface of concrete, such as seamless polymer/resin flooring,[18][19][20][21][22] bund wall/containment lining, waterproofing and damp proofing concrete walls, and bridge decks.[23][24][25][26]

Most roof coatings are designed primarily for waterproofing, though sun reflection (to reduce heating and cooling) may also be a consideration. They tend to be elastomeric to allow for movement of the roof without cracking within the coating membrane.[27][28][29]

Wood has been a key material in construction since ancient times, so its preservation by coating has received much attention.[30] Efforts to improve the performance of wood coatings continue.[31][32][33][34][35]

Coatings are used to alter tribological properties and wear characteristics.[36][37] These include anti-friction, wear and scuffing resistance coatings for rolling-element bearings[38]

Other

[edit]

Other functions of coatings include:

Analysis and characterization

[edit]
photothermal coating thickness gauges (OptiSense Paintchecker Gun-R & Coatmaster Flex)

Numerous destructive and non-destructive evaluation (NDE) methods exist for characterizing coatings.[55][56][57][58] The most common destructive method is microscopy of a mounted cross-section of the coating and its substrate.[59][60][61] The most common non-destructive techniques include ultrasonic thickness measurement, X-ray fluorescence (XRF),[62] X-Ray diffraction (XRD), photothermal coating thickness measurement[63] and micro hardness indentation.[64] X-ray photoelectron spectroscopy (XPS) is also a classical characterization method to investigate the chemical composition of the nanometer thick surface layer of a material.[65] Scanning electron microscopy coupled with energy dispersive X-ray spectrometry (SEM-EDX, or SEM-EDS) allows to visualize the surface texture and to probe its elementary chemical composition.[66] Other characterization methods include transmission electron microscopy (TEM), atomic force microscopy (AFM), scanning tunneling microscope (STM), and Rutherford backscattering spectrometry (RBS). Various methods of Chromatography are also used,[67] as well as thermogravimetric analysis.[68]

Formulation

[edit]

The formulation of a coating depends primarily on the function required of the coating and also on aesthetics required such as color and gloss.[69] The four primary ingredients are the resin (or binder), solvent which may be water (or solventless), pigment(s) and additives.[example needed][70][71] Research is ongoing to remove heavy metals from coating formulations completely.[72]

For example, on the basis of experimental and epidemiological evidence, it has been classified by the IARC (International Agency for Research on Cancer) as a human carcinogen by inhalation (class I) (ISPESL, 2008).[73]

Processes

[edit]

Coating processes may be classified as follows:

Vapor deposition

[edit]

Chemical vapor deposition

[edit]

Physical vapor deposition

[edit]

Chemical and electrochemical techniques

[edit]

Spraying

[edit]

Roll-to-roll coating processes

[edit]

Common roll-to-roll coating processes include:

  • Air knife coating
  • Anilox coater
  • Flexo coater
  • Gap Coating
    • Knife-over-roll coating
  • Gravure coating
  • Hot melt coating- when the necessary coating viscosity is achieved by temperature rather than solution of the polymers etc. This method commonly implies slot-die coating above room temperature, but it also is possible to have hot-melt roller coating; hot-melt metering-rod coating, etc.
  • Immersion dip coating
  • Kiss coating
  • Metering rod (Meyer bar) coating
  • Roller coating
  • Silk Screen coater
    • Rotary screen
  • Slot Die coating - Slot die coating was originally developed in the 1950s.[76] Slot die coating has a low operational cost and is an easily scaled processing technique for depositing thin and uniform films rapidly, while minimizing material waste.[77] Slot die coating technology is used to deposit a variety of liquid chemistries onto substrates of various materials such as glass, metal, and polymers by precisely metering the process fluid and dispensing it at a controlled rate while the coating die is precisely moved relative to the substrate.[78] The complex inner geometry of conventional slot dies require machining or can be accomplished with 3-D printing.[79]
  • Extrusion coating - generally high pressure, often high temperature, and with the web travelling much faster than the speed of the extruded polymer
    • Curtain coating- low viscosity, with the slot vertically above the web and a gap between slot-die and web.
    • Slide coating- bead coating with an angled slide between the slot-die and the bead. Commonly used for multilayer coating in the photographic industry.
    • Slot die bead coating- typically with the web backed by a roller and a very small gap between slot-die and web.
    • Tensioned-web slot-die coating- with no backing for the web.
  • Inkjet printing
  • Lithography
  • Flexography

Physical

[edit]

See also

[edit]

References

[edit]
  1. ^ Carroll, Gregory T.; Turro, Nicholas J.; Mammana, Angela; Koberstein, Jeffrey T. (2017). "Photochemical Immobilization of Polymers on a Surface: Controlling Film Thickness and Wettability". Photochemistry and Photobiology. 93 (5): 1165–1169. doi:10.1111/php.12751. ISSN 0031-8655. PMID 28295380. S2CID 32105803.
  2. ^ Howarth, G A; Manock, H L (July 1997). "Water-borne polyurethane dispersions and their use in functional coatings". Surface Coatings International. 80 (7): 324–328. doi:10.1007/bf02692680. ISSN 1356-0751. S2CID 137433262.
  3. ^ a b Howarth G.A "Synthesis of a legislation compliant corrosion protection coating system based on urethane, oxazolidine and waterborne epoxy technology" Master of Science Thesis April 1997 Imperial College London
  4. ^ Wu, Kunjie; Li, Hongwei; Li, Liqiang; Zhang, Suna; Chen, Xiaosong; Xu, Zeyang; Zhang, Xi; Hu, Wenping; Chi, Lifeng; Gao, Xike; Meng, Yancheng (2016-06-28). "Controlled Growth of Ultrathin Film of Organic Semiconductors by Balancing the Competitive Processes in Dip-Coating for Organic Transistors". Langmuir. 32 (25): 6246–6254. doi:10.1021/acs.langmuir.6b01083. ISSN 0743-7463. PMID 27267545.
  5. ^ Campoy-Quiles, M.; Schmidt, M.; Nassyrov, D.; Peña, O.; Goñi, A. R.; Alonso, M. I.; Garriga, M. (2011-02-28). "Real-time studies during coating and post-deposition annealing in organic semiconductors". Thin Solid Films. 5th International Conference on Spectroscopic Ellipsometry (ICSE-V). 519 (9): 2678–2681. Bibcode:2011TSF...519.2678C. doi:10.1016/j.tsf.2010.12.228. ISSN 0040-6090.
  6. ^ Granqvist, Claes G.; Bayrak Pehlivan, İlknur; Niklasson, Gunnar A. (2018-02-25). "Electrochromics on a roll: Web-coating and lamination for smart windows". Surface and Coatings Technology. Society of Vacuum Coaters Annual Technical Conference 2017. 336: 133–138. doi:10.1016/j.surfcoat.2017.08.006. ISSN 0257-8972. S2CID 136248754.
  7. ^ Howarth, G A; Manock, H L (July 1997). "Water-borne polyurethane dispersions and their use in functional coatings". Surface Coatings International. 80 (7): 324–328. doi:10.1007/bf02692680. ISSN 1356-0751. S2CID 137433262.
  8. ^ Howarth, G.A (1995). "5". In Karsa, D.R; Davies, W.D (eds.). Waterborne Maintenance Systems for Concrete and Metal Structures. Vol. 165. Cambridge, U.K: The Royal Society of Chemistry. ISBN 0-85404-740-9.
  9. ^ Akram, Waseem; Farhan Rafique, Amer; Maqsood, Nabeel; Khan, Afzal; Badshah, Saeed; Khan, Rafi Ullah (2020-01-14). "Characterization of PTFE Film on 316L Stainless Steel Deposited through Spin Coating and Its Anticorrosion Performance in Multi Acidic Mediums". Materials. 13 (2): 388. Bibcode:2020Mate...13..388A. doi:10.3390/ma13020388. ISSN 1996-1944. PMC 7014069. PMID 31947700.
  10. ^ Li, Jiao; Bai, Huanhuan; Feng, Zhiyuan (January 2023). "Advances in the Modification of Silane-Based Sol-Gel Coating to Improve the Corrosion Resistance of Magnesium Alloys". Molecules. 28 (6): 2563. doi:10.3390/molecules28062563. ISSN 1420-3049. PMC 10055842. PMID 36985537.
  11. ^ S. Grainger and J. Blunt, Engineering Coatings: Design and Application, Woodhead Publishing Ltd, UK, 2nd ed., 1998, ISBN 978-1-85573-369-5
  12. ^ Ramakrishnan, T.; Raja Karthikeyan, K.; Tamilselvan, V.; Sivakumar, S.; Gangodkar, Durgaprasad; Radha, H. R.; Narain Singh, Anoop; Asrat Waji, Yosef (2022-01-13). "Study of Various Epoxy-Based Surface Coating Techniques for Anticorrosion Properties". Advances in Materials Science and Engineering. 2022: e5285919. doi:10.1155/2022/5285919. ISSN 1687-8434.
  13. ^ Mutyala, Kalyan C.; Ghanbari, E.; Doll, G.L. (August 2017). "Effect of deposition method on tribological performance and corrosion resistance characteristics of Cr x N coatings deposited by physical vapor deposition". Thin Solid Films. 636: 232–239. Bibcode:2017TSF...636..232M. doi:10.1016/j.tsf.2017.06.013. ISSN 0040-6090.
  14. ^ Gao, Mei-lian; Wu, Xiao-bo; Gao, Ping-ping; Lei, Ting; Liu, Chun-xuan; Xie, Zhi-yong (2019-11-01). "Properties of hydrophobic carbon–PTFE composite coating with high corrosion resistance by facile preparation on pure Ti". Transactions of Nonferrous Metals Society of China. 29 (11): 2321–2330. doi:10.1016/S1003-6326(19)65138-1. ISSN 1003-6326. S2CID 213902777.
  15. ^ Jaiswal, Vishal. "Coating Process: Types, Applications, and Advantages". Archived from the original on May 5, 2023. Retrieved 2023-05-05.
  16. ^ "Applying underbody sealant". How a Car Works. Retrieved 2022-11-14.
  17. ^ Monetta, T.; Acquesta, A.; Carangelo, A.; Bellucci, F. (2018-09-01). "Considering the effect of graphene loading in water-based epoxy coatings". Journal of Coatings Technology and Research. 15 (5): 923–931. doi:10.1007/s11998-018-0045-8. ISSN 1935-3804. S2CID 139956928.
  18. ^ "Polymer Flooring Systems For Industrial and Manufacturing Facilities". Surface Solutions. Retrieved 2022-11-14.
  19. ^ "Arizona Polymer Flooring | Industrial Epoxy Floor Coatings". www.apfepoxy.com. Retrieved 2022-11-14.
  20. ^ WO2016166361A1, WOLF, Elwin Aloysius Cornelius Adrianus DE; Thys, Ferry Ludovicus & Brinkhuis, Richard Hendrikus Gerrit et al., "Floor coating compositions", issued 2016-10-20 
  21. ^ Gelfant, Frederick (2015). "Polymeric Floor Coatings". Protective Organic Coatings. pp. 139–151. doi:10.31399/asm.hb.v05b.a0006037. ISBN 978-1-62708-172-6. Retrieved 2022-11-14.
  22. ^ Ateya, Taher & Balcı, Bekir & Bayraktar, Oğuzhan & Kaplan, Gökhan. (2019). Floor Coating Materials.
  23. ^ O’Reilly, Matthew; Darwin, David; Browning, JoAnn; Locke, Carl E. (January 2011). Evaluation of Multiple Corrosion Protection Systems for Reinforced Concrete Bridge Decks.
  24. ^ Weyers, Richard E.; Cady, Philip D. (1987-01-01). "Deterioration of Concrete Bridge Decks from Corrosion of Reinforcing Steel". Concrete International. 9 (1). ISSN 0162-4075.
  25. ^ Grace, Nabil; Hanson, James; AbdelMessih, Hany (2004-10-01). "Inspection and Deterioration of Bridge Decks Constructed Using Stay-In-Place Metal Forms and Epoxy-Coated Reinforcement". Civil and Environmental Engineering.
  26. ^ Babaei, K; Hawkins, N.M (1987). EVALUATION OF BRIDGE DECK PROTECTIVE STRATEGIES (PDF). Washington DC: Transportation Research Board. ISBN 0-309-04566-5. ISSN 0077-5614.
  27. ^ "History of Liquid Waterproofing". Liquid Roofing and Waterproofing Association. Archived from the original on 1 October 2011. Retrieved 12 September 2011.
  28. ^ "Liquid-Applied Monolithic Membrane Systems". Roof Coatings Manufacturers Association. Retrieved 12 September 2011.
  29. ^ "The benefits of liquid roofing". Why use liquid waterproofing. Liquid Roofing & Waterproofing Association. Archived from the original on 1 October 2011. Retrieved 12 September 2011.
  30. ^ Rowell, Roger M. (2021-07-31). "Understanding Wood Surface Chemistry and Approaches to Modification: A Review". Polymers. 13 (15): 2558. doi:10.3390/polym13152558. ISSN 2073-4360. PMC 8348385. PMID 34372161.
  31. ^ WO2014190515A1, Yang, Xiaohong; Xu, Jianming & Xu, Yawei et al., "Wood coating composition", issued 2014-12-04 
  32. ^ Hazir, Ender; Koc, Kücük Huseyin; Hazir, Ender; Koc, Kücük Huseyin (December 2019). "Evaluation of wood surface coating performance using water based, solvent based and powder coating". Maderas. Ciencia y tecnología. 21 (4): 467–480. doi:10.4067/S0718-221X2019005000404. ISSN 0718-221X. S2CID 198185614.
  33. ^ Désor, D.; Krieger, S.; Apitz, G.; Kuropka, R. (1999-10-01). "Water-borne acrylic dispersions for industrial wood coatings". Surface Coatings International. 82 (10): 488–496. doi:10.1007/BF02692644. ISSN 1356-0751. S2CID 135745347.
  34. ^ Podgorski, L.; Roux, M. (1999-12-01). "Wood modification to improve the durability of coatings". Surface Coatings International. 82 (12): 590–596. doi:10.1007/BF02692672. ISSN 1356-0751. S2CID 138555194.
  35. ^ Žigon, Jure; Kovač, Janez; Petrič, Marko (2022-01-01). "The influence of mechanical, physical and chemical pre-treatment processes of wood surface on the relationships of wood with a waterborne opaque coating". Progress in Organic Coatings. 162: 106574. doi:10.1016/j.porgcoat.2021.106574. ISSN 0300-9440. S2CID 240200011.
  36. ^ Tafreshi, Mahshid; Allahkaram, Saeid Reza; Mahdavi, Soheil (2020-12-01). "Effect of PTFE on characteristics, corrosion, and tribological behavior of Zn–Ni electrodeposits". Surface Topography: Metrology and Properties. 8 (4): 045013. Bibcode:2020SuTMP...8d5013T. doi:10.1088/2051-672X/ab9f05. ISSN 2051-672X. S2CID 225695450.
  37. ^ Peng, Shiguang; Zhang, Lin; Xie, Guoxin; Guo, Yue; Si, Lina; Luo, Jianbin (2019-09-01). "Friction and wear behavior of PTFE coatings modified with poly (methyl methacrylate)". Composites Part B: Engineering. 172: 316–322. doi:10.1016/j.compositesb.2019.04.047. ISSN 1359-8368. S2CID 155175532.
  38. ^ Mutyala, Kalyan C.; Singh, Harpal; Evans, R. D.; Doll, G. L. (23 June 2016). "Effect of Diamond-Like Carbon Coatings on Ball Bearing Performance in Normal, Oil-Starved, and Debris-Damaged Conditions". Tribology Transactions. 59 (6): 1039–1047. doi:10.1080/10402004.2015.1131349. S2CID 138874627.
  39. ^ Cassé, Franck; Swain, Geoffrey W. (2006-04-01). "The development of microfouling on four commercial antifouling coatings under static and dynamic immersion". International Biodeterioration & Biodegradation. 57 (3): 179–185. Bibcode:2006IBiBi..57..179C. doi:10.1016/j.ibiod.2006.02.008. ISSN 0964-8305.
  40. ^ Chambers, L.D.; Stokes, K.R.; Walsh, F.C.; Wood, R.J.K. (December 2006). "Modern approaches to marine antifouling coatings". Surface and Coatings Technology. 201 (6): 3642–3652. doi:10.1016/j.surfcoat.2006.08.129. ISSN 0257-8972.
  41. ^ Yebra, Diego Meseguer; Kiil, Søren; Dam-Johansen, Kim (2004-07-01). "Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings". Progress in Organic Coatings. 50 (2): 75–104. doi:10.1016/j.porgcoat.2003.06.001. ISSN 0300-9440.
  42. ^ Salwiczek, Mario; Qu, Yue; Gardiner, James; Strugnell, Richard A.; Lithgow, Trevor; McLean, Keith M.; Thissen, Helmut (2014-02-01). "Emerging rules for effective antimicrobial coatings". Trends in Biotechnology. 32 (2): 82–90. doi:10.1016/j.tibtech.2013.09.008. ISSN 0167-7799. PMID 24176168.
  43. ^ Anshel, Jeffrey (2005). Visual ergonomics handbook. CRC Press. p. 56. ISBN 1-56670-682-3.
  44. ^ Constantinides, Steve (2022-01-01), Croat, John; Ormerod, John (eds.), "Chapter 11 - Permanent magnet coatings and testing procedures", Modern Permanent Magnets, Woodhead Publishing Series in Electronic and Optical Materials, Woodhead Publishing, pp. 371–402, doi:10.1016/b978-0-323-88658-1.00011-x, ISBN 978-0-323-88658-1, S2CID 246599451, retrieved 2022-11-14
  45. ^ Biehl, Philip; Von der Lühe, Moritz; Dutz, Silvio; Schacher, Felix H. (January 2018). "Synthesis, Characterization, and Applications of Magnetic Nanoparticles Featuring Polyzwitterionic Coatings". Polymers. 10 (1): 91. doi:10.3390/polym10010091. ISSN 2073-4360. PMC 6414908. PMID 30966126.
  46. ^ Abdolrahimi, Maryam; Vasilakaki, Marianna; Slimani, Sawssen; Ntallis, Nikolaos; Varvaro, Gaspare; Laureti, Sara; Meneghini, Carlo; Trohidou, Kalliopi N.; Fiorani, Dino; Peddis, Davide (July 2021). "Magnetism of Nanoparticles: Effect of the Organic Coating". Nanomaterials. 11 (7): 1787. doi:10.3390/nano11071787. ISSN 2079-4991. PMC 8308320. PMID 34361173.
  47. ^ Liang, Shuyu; Neisius, N. Matthias; Gaan, Sabyasachi (2013-11-01). "Recent developments in flame retardant polymeric coatings". Progress in Organic Coatings. 76 (11): 1642–1665. doi:10.1016/j.porgcoat.2013.07.014. ISSN 0300-9440.
  48. ^ Gu, Jun-wei; Zhang, Guang-cheng; Dong, Shan-lai; Zhang, Qiu-yu; Kong, Jie (2007-06-25). "Study on preparation and fire-retardant mechanism analysis of intumescent flame-retardant coatings". Surface and Coatings Technology. 201 (18): 7835–7841. doi:10.1016/j.surfcoat.2007.03.020. ISSN 0257-8972.
  49. ^ Weil, Edward D. (May 2011). "Fire-Protective and Flame-Retardant Coatings - A State-of-the-Art Review". Journal of Fire Sciences. 29 (3): 259–296. doi:10.1177/0734904110395469. ISSN 0734-9041. S2CID 98415445.
  50. ^ Naiker, Vidhukrishnan E.; Mestry, Siddhesh; Nirgude, Tejal; Gadgeel, Arjit; Mhaske, S. T. (2023-01-01). "Recent developments in phosphorous-containing bio-based flame-retardant (FR) materials for coatings: an attentive review". Journal of Coatings Technology and Research. 20 (1): 113–139. doi:10.1007/s11998-022-00685-z. ISSN 1935-3804. S2CID 253349703.
  51. ^ Puri, Ravindra G.; Khanna, A. S. (2017-01-01). "Intumescent coatings: A review on recent progress". Journal of Coatings Technology and Research. 14 (1): 1–20. doi:10.1007/s11998-016-9815-3. ISSN 1935-3804. S2CID 138961125.
  52. ^ Thomas, P. (1998-12-01). "The use of fluoropolymers for non-stick cooking utensils". Surface Coatings International. 81 (12): 604–609. doi:10.1007/BF02693055. ISSN 1356-0751. S2CID 98242721.
  53. ^ Yao, Junyi; Guan, Yiyang; Park, Yunhwan; Choi, Yoon E; Kim, Hyun Soo; Park, Jaewon (2021-03-04). "Optimization of PTFE Coating on PDMS Surfaces for Inhibition of Hydrophobic Molecule Absorption for Increased Optical Detection Sensitivity". Sensors. 21 (5): 1754. Bibcode:2021Senso..21.1754Y. doi:10.3390/s21051754. ISSN 1424-8220. PMC 7961674. PMID 33806281.
  54. ^ "Radiation-Cured Coatings Continue to Experience Growth". www.coatingstech-digital.org. Retrieved 2022-11-14.
  55. ^ Walls, J. M. (1981-06-19). "The application of surface analytical techniques to thin films and surface coatings". Thin Solid Films. 80 (1): 213–220. Bibcode:1981TSF....80..213W. doi:10.1016/0040-6090(81)90224-8. ISSN 0040-6090.
  56. ^ Benninghoven, A. (1976-12-01). "Characterization of coatings". Thin Solid Films. 39: 3–23. Bibcode:1976TSF....39....3B. doi:10.1016/0040-6090(76)90620-9. ISSN 0040-6090.
  57. ^ Porter, Stuart C.; Felton, Linda A. (2010-01-21). "Techniques to assess film coatings and evaluate film-coated products". Drug Development and Industrial Pharmacy. 36 (2): 128–142. doi:10.3109/03639040903433757. ISSN 0363-9045. PMID 20050727. S2CID 20645493.
  58. ^ Doménech-Carbó, María Teresa (2008-07-28). "Novel analytical methods for characterising binding media and protective coatings in artworks". Analytica Chimica Acta. 621 (2): 109–139. Bibcode:2008AcAC..621..109D. doi:10.1016/j.aca.2008.05.056. ISSN 0003-2670. PMID 18573376.
  59. ^ Garcia-Ayuso, G.; Vázquez, L.; Martínez-Duart, J. M. (1996-03-01). "Atomic force microscopy (AFM) morphological surface characterization of transparent gas barrier coatings on plastic films". Surface and Coatings Technology. 80 (1): 203–206. doi:10.1016/0257-8972(95)02712-2. ISSN 0257-8972.
  60. ^ Caniglia, Giada; Kranz, Christine (2020-09-01). "Scanning electrochemical microscopy and its potential for studying biofilms and antimicrobial coatings". Analytical and Bioanalytical Chemistry. 412 (24): 6133–6148. doi:10.1007/s00216-020-02782-7. ISSN 1618-2650. PMC 7442582. PMID 32691088.
  61. ^ Erich, S. J. F.; Laven, J.; Pel, L.; Huinink, H. P.; Kopinga, K. (2005-03-01). "Comparison of NMR and confocal Raman microscopy as coatings research tools". Progress in Organic Coatings. 52 (3): 210–216. doi:10.1016/j.porgcoat.2004.12.002. ISSN 0300-9440.
  62. ^ Revenko, A. G.; Tsvetyansky, A. L.; Eritenko, A. N. (2022-08-01). "X-ray fluorescence analysis of solid-state films, layers, and coatings". Radiation Physics and Chemistry. 197: 110157. Bibcode:2022RaPC..19710157R. doi:10.1016/j.radphyschem.2022.110157. ISSN 0969-806X. S2CID 248276982.
  63. ^ Schorr, Brian S; Stein, Kevin J; Marder, Arnold R (1999-02-03). "Characterization of Thermal Spray Coatings". Materials Characterization. 42 (2): 93–100. doi:10.1016/S1044-5803(98)00048-5. ISSN 1044-5803.
  64. ^ Martín Sánchez, A.; Nuevo, M. J.; Ojeda, M. A.; Guerra Millán, S.; Celestino, S.; Rodríguez González, E. (2020-02-01). "Analytical techniques applied to the study of mortars and coatings from the Tartessic archaeological site "El Turuñuelo" (Spain)". Radiation Physics and Chemistry. Special issue dedicated to the 14th International Symposium on Radiation Physics. 167: 108341. Bibcode:2020RaPC..16708341M. doi:10.1016/j.radphyschem.2019.05.031. ISSN 0969-806X. S2CID 182324915.
  65. ^ Kravanja, Katja Andrina; Finšgar, Matjaž (December 2021). "Analytical Techniques for the Characterization of Bioactive Coatings for Orthopaedic Implants". Biomedicines. 9 (12): 1936. doi:10.3390/biomedicines9121936. ISSN 2227-9059. PMC 8698289. PMID 34944750.
  66. ^ Cook, Desmond C. (2005-10-01). "Spectroscopic identification of protective and non-protective corrosion coatings on steel structures in marine environments". Corrosion Science. International Symposium on Corrosion and Protection of Marine Structures—in memory of the late Professor Toshihei Misawa. 47 (10): 2550–2570. Bibcode:2005Corro..47.2550C. doi:10.1016/j.corsci.2004.10.018. ISSN 0010-938X.
  67. ^ Lestido-Cardama, Antía; Vázquez-Loureiro, Patricia; Sendón, Raquel; Bustos, Juana; Santillana, Mª Isabel; Paseiro Losada, Perfecto; Rodríguez Bernaldo de Quirós, Ana (January 2022). "Characterization of Polyester Coatings Intended for Food Contact by Different Analytical Techniques and Migration Testing by LC-MSn". Polymers. 14 (3): 487. doi:10.3390/polym14030487. ISSN 2073-4360. PMC 8839341. PMID 35160476.
  68. ^ Mansfield, Elisabeth; Tyner, Katherine M.; Poling, Christopher M.; Blacklock, Jenifer L. (2014-02-04). "Determination of Nanoparticle Surface Coatings and Nanoparticle Purity Using Microscale Thermogravimetric Analysis". Analytical Chemistry. 86 (3): 1478–1484. doi:10.1021/ac402888v. ISSN 0003-2700. PMID 24400715.
  69. ^ Müller, Bodo (2006). Coatings formulation : an international textbook. Urlich Poth. Hannover: Vincentz. ISBN 3-87870-177-2. OCLC 76886114.
  70. ^ Müller, Bodo (2006). Coatings formulation : an international textbook. Urlich Poth. Hannover: Vincentz. p. 19. ISBN 3-87870-177-2. OCLC 76886114.
  71. ^ "CoatingsTech - Novel Natural Additives for Surface Coatings". www.coatingstech-digital.org. Retrieved 2022-07-07.
  72. ^ Puthran, Dayanand; Patil, Dilip (2023-01-01). "Usage of heavy metal-free compounds in surface coatings". Journal of Coatings Technology and Research. 20 (1): 87–112. doi:10.1007/s11998-022-00648-4. ISSN 1935-3804. S2CID 251771272.
  73. ^ Brizzi, Luca; Galbusera, Federico. ""Riduzione in situ del cromo esavalente mediante iniezione di substrati organici in acquifero"" (PDF).
  74. ^ Fristad, W. E. (2000). "Epoxy Coatings for Automotive Corrosion Protection". SAE Technical Paper Series. Vol. 1. doi:10.4271/2000-01-0617.
  75. ^ Zanier, Fabiana. ""Studio del processo di nichelatura chimica"" (PDF).
  76. ^ US 2681294, "Method of coating strip material", issued 1951-08-23 
  77. ^ Beeker, L.Y. (March 2018). "Open-source parametric 3-D printed slot die system for thin film semiconductor processing" (PDF). Additive Manufacturing. 20: 90–100. doi:10.1016/j.addma.2017.12.004. ISSN 2214-8604. S2CID 86782023.
  78. ^ "Slot Die Coating - nTact". nTact. Retrieved 2018-11-24.
  79. ^ "Open Source 3D printing cuts cost from $4,000 to only $0.25 says new study - 3D Printing Industry". 3dprintingindustry.com. 16 January 2018. Retrieved 2018-11-24.

Further reading

[edit]