Jump to content

Davey–Stewartson equation

From Wikipedia, the free encyclopedia

In fluid dynamics, the Davey–Stewartson equation (DSE) was introduced in a paper by A. Davey and Keith Stewartson to describe the evolution of a three-dimensional wave-packet on water of finite depth.

It is a system of partial differential equations for a complex (wave-amplitude) field and a real (mean-flow) field :

The DSE is an example of a soliton equation in 2+1 dimensions. The corresponding Lax representation for it is given in Boiti, Martina & Pempinelli (1995).

In 1+1 dimensions the DSE reduces to the nonlinear Schrödinger equation

Itself, the DSE is the particular reduction of the Zakharov–Schulman system. On the other hand, the equivalent counterpart of the DSE is the Ishimori equation.

The DSE is the result of a multiple-scale analysis of modulated nonlinear surface gravity waves, propagating over a horizontal sea bed.

See also

[edit]

References

[edit]
  • Boiti, M.; Martina, L.; Pempinelli, F. (December 1995), "Multidimensional localized solitons", Chaos, Solitons & Fractals, 5 (12): 2377–2417, arXiv:patt-sol/9311002, Bibcode:1995CSF.....5.2377B, doi:10.1016/0960-0779(94)E0106-Y, ISSN 0960-0779, S2CID 1232249
  • Davey, A.; Stewartson, K. (1974), "On three dimensional packets of surface waves", Proc. R. Soc. A, 338 (1613): 101–110, Bibcode:1974RSPSA.338..101D, doi:10.1098/rspa.1974.0076, S2CID 121348168
  • Sattinger, David H.; Tracy, C. A.; Venakides, S., eds. (1991), Inverse Scattering and Applications, Contemporary Mathematics, vol. 122, Providence, RI: American Mathematical Society, ISBN 0-8218-5129-2, MR 1135850
[edit]