Jump to content

WASP-72

Coordinates: Sky map 02h 44m 09.6098s, −30° 10′ 08.5614″
From Wikipedia, the free encyclopedia
(Redirected from Cuptor)
WASP-72 / Diya
Observation data
Epoch J2000.0      Equinox J2000.0
Constellation Fornax
Right ascension 02h 44m 09.6098s[1]
Declination −30° 10′ 08.5614″[1]
Apparent magnitude (V) 10.96[1]
Characteristics
Evolutionary stage main-sequence star
Spectral type F7[2]
Apparent magnitude (B) 11.54 [1]
Apparent magnitude (G) 10.8378 [1]
Apparent magnitude (R) 10.47 [1]
Astrometry
Radial velocity (Rv)37.36 km/s
Proper motion (μ) RA: 7.447[3] mas/yr
Dec.: -7.817[3] mas/yr
Parallax (π)2.2718 ± 0.0440 mas[3]
Distance1,440 ± 30 ly
(440 ± 9 pc)
Orbit[4]
PrimaryWASP-72
CompanionWASP-72B
Semi-major axis (a)0.639±0.003"
(281 AU)
Details[4]
WASP-72
Mass1.386 M
Radius1.98 R
Temperature6250 K
Rotational velocity (v sin i)6.0±2.1[5] km/s
Age3.55±0.82 Gyr
WASP-72B
Mass0.66±0.02 M
Temperature4234+80
−81
 K
Other designations
Diya, CD−30 1019, Gaia DR2 5065640460769428224, TYC 7011-487-1, 2MASS J02440959-3010085[1]
Database references
SIMBAD1019 data

WASP-72 (also known as CD-30 1019 and officially named Diya) is the primary of a binary star system. It is an F7 class dwarf star, with an internal structure just on the verge of the Kraft break.[5] It is orbited by a planet WASP-72b. The age of WASP-72 is younger than the Sun at 3.55±0.82 billion years.[4]

The primary seems to have UV-opaque matter in the line-of-sight, which may originate from atmosphere escaping from WASP-72b or from an unknown object in the interstellar medium.[6] WASP-72 was named Diya in 2019.[7]

A faint stellar companion WASP-72B was discovered in 2020 at a projected separation of 281 AU. It may still be a false positive, with a probability of 0.02%.[4]

Planetary system

[edit]

The transiting hot Jupiter exoplanet orbiting WASP-72 was discovered by WASP in 2012.[8] The planetary orbit is well aligned to the equatorial plane of the star, with misalignment equal to −7°+11°
−12°
.[5] Despite the close proximity of the planet to the parent star, orbital decay was not detected as of 2020.[9] The planetary equilibrium temperature is 2210+120
−130
K,[8] compatible with the measured dayside temperature of 2098+335
−364
K.[10]

WASP-72b was named "Cuptor" in 2019 by Mauritian amateur astronomers as part of the NameExoWorlds contest.[7]

The WASP-72 planetary system[2]
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
b / Cuptor 0.0344±0.0046 2.216789+0.000041
−0.000054
0 79.9+1.6
−1.3
°
1.24±0.15 RJ

References

[edit]
  1. ^ a b c d e f g "CD-30 1019". SIMBAD. Centre de données astronomiques de Strasbourg.
  2. ^ a b Wong, Ian; Shporer, Avi; Daylan, Tansu; Benneke, Björn; Fetherolf, Tara; Kane, Stephen R.; Ricker, George R.; Vanderspek, Roland; Latham, David W.; Winn, Joshua N.; Jenkins, Jon M.; Boyd, Patricia T.; Glidden, Ana; Goeke, Robert F.; Sha, Lizhou; Ting, Eric B.; Yahalomi, Daniel (2020), "Systematic phase curve study of known transiting systems from year one of the TESS mission", The Astronomical Journal, 160 (4): 155, arXiv:2003.06407, Bibcode:2020AJ....160..155W, doi:10.3847/1538-3881/ababad, S2CID 212717799
  3. ^ a b c Brown, A. G. A.; et al. (Gaia collaboration) (August 2018). "Gaia Data Release 2: Summary of the contents and survey properties". Astronomy & Astrophysics. 616. A1. arXiv:1804.09365. Bibcode:2018A&A...616A...1G. doi:10.1051/0004-6361/201833051. Gaia DR2 record for this source at VizieR.
  4. ^ a b c d Bohn, A. J.; Southworth, J.; Ginski, C.; Kenworthy, M. A.; Maxted, P. F. L.; Evans, D. F. (2020), "A multiplicity study of transiting exoplanet host stars. I. High-contrast imaging with VLT/SPHERE", Astronomy & Astrophysics, 635: A73, arXiv:2001.08224, Bibcode:2020A&A...635A..73B, doi:10.1051/0004-6361/201937127, S2CID 210861118
  5. ^ a b c Addison, B. C.; Wang, Songhu; Johnson, M. C.; Tinney, C. G.; Wright, D. J.; Bayliss, D. (2018), "Stellar Obliquities and Planetary Alignments (SOPA). I. Spin-orbit measurements of three transiting hot Jupiters: WASP-72b, WASP-100b, and WASP-109b", The Astronomical Journal, 156 (5): 197, arXiv:1809.00314, Bibcode:2018AJ....156..197A, doi:10.3847/1538-3881/aade91, S2CID 67819738
  6. ^ SALT observations of the chromosphere activity of transiting planet hosts: mass-loss and star–planet interactions
  7. ^ a b "Methodology | IAU100 Name ExoWorlds - An IAU100 Global Event". Name Exoworlds. International Astronomical Union. Retrieved 2020-11-10.
  8. ^ a b Gillon, M.; Anderson, D. R.; Collier-Cameron, A.; Doyle, A. P.; Fumel, A.; Hellier, C.; Jehin, E.; Lendl, M.; Maxted, P. F. L.; Montalban, J.; Pepe, F.; Pollacco, D.; Queloz, D.; Segransan, D.; Smith, A. M. S.; Smalley, B.; Southworth, J.; Triaud, A. H. M. J.; Udry, S.; West, R. G. (2012), "WASP-64b and WASP-72b: two new transiting highly irradiated giant planets", Astronomy & Astrophysics, 552: A82, arXiv:1210.4257, Bibcode:2013A&A...552A..82G, doi:10.1051/0004-6361/201220561, S2CID 53687206
  9. ^ Patra, Kishore C.; Winn, Joshua N.; Holman, Matthew J.; Gillon, Michael; Burdanov, Artem; Jehin, Emmanuel; Delrez, Laetitia; Pozuelos, Francisco J.; Barkaoui, Khalid; Benkhaldoun, Zouhair; Narita, Norio; Fukui, Akihiko; Kusakabe, Nobuhiko; Kawauchi, Kiyoe; Terada, Yuka; Bouma, L. G.; Weinberg, Nevin N.; Broome, Madelyn (2020), "The continuing search for evidence of tidal orbital decay of hot Jupiters", The Astronomical Journal, 159 (4): 150, arXiv:2002.02606, Bibcode:2020AJ....159..150P, doi:10.3847/1538-3881/ab7374, S2CID 211066260
  10. ^ Wallack, Nicole L.; Knutson, Heather A.; Deming, Drake (2021), "Trends in Spitzer Secondary Eclipses", The Astronomical Journal, 162 (1): 36, arXiv:2103.15833, Bibcode:2021AJ....162...36W, doi:10.3847/1538-3881/abdbb2, S2CID 232417602